1932

Abstract

Multisectoral integration has been at the core of sustainability debates and is continuously rearticulated through different concepts. Following the 2007–2008 financial, food, and energy crises, a new concept, the water–energy–food nexus, gained prominence to identify trade-offs and synergies between water, energy, and food systems and guide the development of cross-sectoral policies. The nexus is essentially a systems-based perspective that explicitly recognizes these three systems as both interconnected and interdependent, and thus integrated approaches are required that move beyond sectoral, policy, and disciplinary silos. The nexus is also a political process, one in which the interplay of different types of power, as well as the actors wielding them, is not just a procedurally technical one. This tension between the nexus as a complex system and the nexus as a political process constitutes the core debating idea, in terms of feasibility, methods, and theory, in this article.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112321-112445
2024-10-18
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/energy/49/1/annurev-environ-112321-112445.html?itemId=/content/journals/10.1146/annurev-environ-112321-112445&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    De Andrade Guerra JBSO, Berchin II, Garcia J, Da Silva Neiva S, Jonck AV, et al. 2021.. A literature-based study on the water–energy–food nexus for sustainable development. . Stoch. Environ. Res. Risk Assess. 35:(1):95116
    [Crossref] [Google Scholar]
  2. 2.
    Albrecht TR, Crootof A, Scott CA. 2018.. The water-energy-food nexus: a systematic review of methods for nexus assessment. . Environ. Res. Lett. 13:(4):043002
    [Crossref] [Google Scholar]
  3. 3.
    Sachs I, Silk D. 1990.. Food and Energy: Strategies for Sustainable Development. Tokyo:: U.N. Univ. Press
    [Google Scholar]
  4. 4.
    Al-Saidi M, Elagib NA. 2017.. Towards understanding the integrative approach of the water, energy and food nexus. . Sci. Total Environ. 574::113139
    [Crossref] [Google Scholar]
  5. 5.
    D'Odorico P, Davis KF, Rosa L, Carr JA, Chiarelli D, et al. 2018.. The global food-energy-water nexus. . Rev. Geophys. 56:(3):456531
    [Crossref] [Google Scholar]
  6. 6.
    Rosa L, Davis KF, Rulli MC, D'Odorico P. 2017.. Environmental consequences of oil production from oil sands. . Earth Future 5:(2):15870
    [Crossref] [Google Scholar]
  7. 7.
    Rosa L, Rulli MC, Davis KF, D'Odorico P. 2018.. The water-energy nexus of hydraulic fracturing: a global hydrologic analysis for shale oil and gas extraction. . Earth Future 6:(5):74556
    [Crossref] [Google Scholar]
  8. 8.
    Scanlon BR, Ruddell BL, Reed PM, Hook RI, Zheng C, et al. 2017.. The food-energy-water nexus: transforming science for society. . Water Resour. Res. 53:(5):355056
    [Crossref] [Google Scholar]
  9. 9.
    Hall DP, Hirsch TM, Li T. 2011.. Introduction. . In Powers of Exclusion: Land Dilemmas in Southeast Asia, ed. T Li , pp. 127. Singapore:: Natl. Univ. Singap. Press
    [Google Scholar]
  10. 10.
    Barney K. 2009.. Laos and the making of a ‘relational’ resource frontier. . Geogr. J. 175:(2):14659
    [Crossref] [Google Scholar]
  11. 11.
    Bernstein H. 2010.. Class Dynamics of Agrarian Change. Halifax, N.S.:: Fernwood Publ.
    [Google Scholar]
  12. 12.
    Hoff H. 2011.. Understanding the nexus. Paper presented at the Bonn2011 Conference: The Water, Energy and Food Security Nexus: Solutions for the Green Economy, Bonn, Ger.:, Nov. 16–18
    [Google Scholar]
  13. 13.
    Bizikova L, Roy D, Swanson D, Venema HD, McCandless M. 2013.. The water-energy-food security nexus: towards a practical planning and decision-support framework for landscape investment and risk management. Winnipeg, Can.:: Int. Inst. Sustain. Dev. https://www.iisd.org/system/files/publications/wef_nexus_2013.pdf
    [Google Scholar]
  14. 14.
    World Economic Forum Water Initiative. 2011.. Water Security: The Water-Food-Energy-Climate Nexus. Washington, DC:: Island Press
    [Google Scholar]
  15. 15.
    NIC (Natl. Intell. Counc.). 2012.. Global Trends 2030: Alternative Worlds. Washington, DC:: Natl. Intell. Counc.
    [Google Scholar]
  16. 16.
    [Google Scholar]
  17. 17.
    SIWI (Stockh. Int. Water Inst.). 2014.. 2014 Overarching Conclusions. World Water Week in Stockholm: Energy and Water. Stockholm:: Stockh. Int. Water Inst.
    [Google Scholar]
  18. 18.
    Vlotman WF, Ballard C. 2014.. Water, food and energy supply chains for a green economy. . Irrig. Drain. 63:(2):23240
    [Crossref] [Google Scholar]
  19. 19.
    Zahner A. 2014.. Making the Case: How Agrifood Firms Are Building New Business Cases in the Water–Energy–Food Nexus. Vienna:: REEP
    [Google Scholar]
  20. 20.
    Wales A. 2014.. Making sustainable beer. . Nat. Clim. Chang. 4:(5):31618
    [Crossref] [Google Scholar]
  21. 21.
    Weitz N, Strambo C, Kemp-Benedict E, Nilsson M. 2017.. Closing the governance gaps in the water-energy-food nexus: insights from integrative governance. . Glob. Environ. Chang. 45::16573
    [Crossref] [Google Scholar]
  22. 22.
    Stevens L, Gallagher M. 2015.. The Energy-Water-Food Nexus at Decentralised Scales. Rugby, UK:: Practical Action Publ.
    [Google Scholar]
  23. 23.
    WWF (World Wildl. Fund), SABMiller. 2014.. The Water-Food-Energy Nexus: Insights Into Resilient Development. Gland, Switz.:: WWF/SABMiller. http://assets.wwf.org.uk/downloads/sab03_01_sab_wwf_project_nexus_final.pdf
    [Google Scholar]
  24. 24.
    IUCN (Int. Union Conserv. Nat.). 2013.. Nexus dialogue on water infrastructure solutions: building partnerships for innovation in water, energy and food security. Gland, Switz.:: Int. Union Conserv. Nat. https://www.iucn.org/sites/default/files/import/downloads/nexus_dialogue_on_water_infrastructure__final_.pdf
    [Google Scholar]
  25. 25.
    Flammini A, Puri M, Pluschke L, Dubois O. 2017.. Walking the nexus talk: assessing the water-energy-food nexus in the context of the sustainable energy for all initiative. Work. Pap. 58, Environ. Nat. Resour. Manag. , FAO, Rome:
    [Google Scholar]
  26. 26.
    Borgomeo E, Jagerskog A, Talbi A, Wijnen M, Hejazi M, Miralles-Wilhelm F. 2018.. The Water-Energy-Food Nexus in the Middle East and North Africa: Scenarios for a Sustainable Future. Washington, DC:: World Bank
    [Google Scholar]
  27. 27.
    Cairnie R. 2020.. The stress nexus: ensuring water, food, and energy security. . Energy Digital, May 17. https://energydigital.com/utilities/stress-nexus-ensuring-water-food-and-energy-security
    [Google Scholar]
  28. 28.
    Wales A. 2013.. What is the water-food-energy nexus?. Huffington Post, June 2. https://www.huffingtonpost.co.uk/andy-wales/water-food-energy-nexus_b_2620885.html
    [Google Scholar]
  29. 29.
    Koch G. 2015.. Our sustainability challenge of the future: food-water-energy nexus. . Coca-Cola, Mar. 24
    [Google Scholar]
  30. 30.
    Beck MB, Villarroel Walker R. 2013.. On water security, sustainability, and the water-food-energy-climate nexus. . Front. Environ. Sci. Eng. 7:(5):62639
    [Crossref] [Google Scholar]
  31. 31.
    Pittock J, Hussey K, Dovers S. 2015.. Climate, Energy and Water: Managing Trade-Offs, Seizing Opportunities. New York:: Cambridge Univ. Press
    [Google Scholar]
  32. 32.
    World Econ. Forum. 2011.. Global Risks 2011 Sixth Edition: An Initiative of the Risk Response Network. Cologny/Geneva:: World Econ. Forum. https://www3.weforum.org/docs/WEF_Global_Risks_Report_2011.pdf
    [Google Scholar]
  33. 33.
    De Strasser L, Lipponen A, Howells M, Stec S, Bréthaut C. 2016.. A methodology to assess the water energy food ecosystems nexus in transboundary river basins. . Water 8::59
    [Crossref] [Google Scholar]
  34. 34.
    Dale VH, Efroymson RA, Kline KL. 2011.. The land use–climate change–energy nexus. . Landsc. Ecol. 26:(6):75573
    [Crossref] [Google Scholar]
  35. 35.
    European Commission. 2015.. Integrated approaches to food security, low-carbon energy, sustainable water management and climate change mitigation. . European Commission Horizon 2020 Funding Call. https://cordis.europa.eu/programme/id/H2020_WATER-2b-2015/de
    [Google Scholar]
  36. 36.
    Wolfe ML, Ting KC, Scott N, Sharpley A, Jones JW, Verma L. 2016.. Engineering solutions for food-energy-water systems: It is more than engineering. . J. Environ. Stud. Sci. 6::17282
    [Crossref] [Google Scholar]
  37. 37.
    Foran T. 2015.. Node and regime: interdisciplinary analysis of water-energy-food nexus in the Mekong region. . Water Altern. 8:(1):65574
    [Google Scholar]
  38. 38.
    Srivastava S, Allouche J. 2018.. The resource nexus in an uncertain world: a non-equilibrium perspective. . In Routledge Handbook of the Resource Nexus, ed. R Bleischwitz, H Hoff, C Spataru, E van der Voet, SD VanDeveer , pp. 25565. Abingdon, UK:: Routledge
    [Google Scholar]
  39. 39.
    Cairns R, Krzywoszynska A. 2016.. Anatomy of a buzzword: the emergence of ‘the water-energy-food nexus’ in UK natural resource debates. . Environ. Sci. Policy 64::16470
    [Crossref] [Google Scholar]
  40. 40.
    Szerszynski B, Galarraga M. 2013.. Geoengineering knowledge: interdisciplinarity and the shaping of climate engineering research. . Environ. Plan. A Econ. Space 45:(12):281724
    [Crossref] [Google Scholar]
  41. 41.
    Allouche J, Middleton C, Gyawali D. 2019.. The Water–Food–Energy Nexus: Power, Politics, and Justice. Abingdon, UK:: Routledge
    [Google Scholar]
  42. 42.
    Bréthaut C, Gallagher L, Dalton J, Allouche J. 2019.. Power dynamics and integration in the water-energy-food nexus: learning lessons for transdisciplinary research in Cambodia. . Environ. Sci. Policy 94::15362
    [Crossref] [Google Scholar]
  43. 43.
    Wichelns D. 2017.. The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective?. Environ. Sci. Policy 69::11323
    [Crossref] [Google Scholar]
  44. 44.
    Allouche J. 2016.. The birth and spread of IWRM—a case study of global policy diffusion and translation. . Water Altern. 9:(3):41233
    [Google Scholar]
  45. 45.
    Molle F. 2009.. River-basin planning and management: the social life of a concept. . Geoforum 40:(3):48494
    [Crossref] [Google Scholar]
  46. 46.
    Smajgl A, Ward J, Pluschke L. 2016.. The water–food–energy nexus – realising a new paradigm. . J. Hydrol. 533::53340
    [Crossref] [Google Scholar]
  47. 47.
    United Nations. 2015.. Transforming our world: the 2030 agenda for sustainable development. U.N. Rep. A/RES/70/1, 70th Session , United Nations, New York:. https://sdgs.un.org/2030agenda
    [Google Scholar]
  48. 48.
    Nilsson M, Griggs D, Visbeck M. 2016.. Map the interactions between sustainable development goals. . Nature 534::32022
    [Crossref] [Google Scholar]
  49. 49.
    Bennich T, Weitz N, Carlsen H. 2020.. Deciphering the scientific literature on SDG interactions: a review and reading guide. . Sci. Total Environ. 728::138405
    [Crossref] [Google Scholar]
  50. 50.
    Horvath SM, Muhr MM, Kirchner M, Toth W, Germann V, et al. 2022.. Handling a complex agenda: a review and assessment of methods to analyse SDG entity interactions. . Environ. Sci. Policy 131::16076
    [Crossref] [Google Scholar]
  51. 51.
    Lacey FG, Henze DK, Lee CJ, van Donkelaar A, Martin RV. 2017.. Transient climate and ambient health impacts due to national solid fuel cookstove emissions. . PNAS 114:(6):126974
    [Crossref] [Google Scholar]
  52. 52.
    Springmann M, Godfray HCJ, Rayner M, Scarborough P. 2016.. Analysis and valuation of the health and climate change cobenefits of dietary change. . PNAS 113:(15):414651
    [Crossref] [Google Scholar]
  53. 53.
    Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K. 2013.. Probabilistic cost estimates for climate change mitigation. . Nature 493::7983
    [Crossref] [Google Scholar]
  54. 54.
    Rasul G. 2014.. Food, water, and energy security in South Asia: a nexus perspective from the Hindu Kush Himalayan region. . Environ. Sci. Policy 39::3548
    [Crossref] [Google Scholar]
  55. 55.
    Laurentiis V, de Hunt DVL, Rogers CDF. 2016.. Overcoming food security challenges within an energy/water/food nexus (EWFN) approach. . Sustainability 8::95
    [Crossref] [Google Scholar]
  56. 56.
    Karan E, Asadi S, Mohtar R, Baawain M. 2018.. Towards the optimization of sustainable food-energy-water systems: a stochastic approach. . J. Clean. Prod. 171::66274
    [Crossref] [Google Scholar]
  57. 57.
    Romero-Lankao P, McPhearson T, Davidson DJ. 2017.. The food-energy-water nexus and urban complexity. . Nat. Clim. Chang. 7:(4):23335
    [Crossref] [Google Scholar]
  58. 58.
    Lele U, Klousia-Marquis M, Goswami S. 2013.. Good governance for food, water and energy security. . Aquat. Procedia 1::4463
    [Crossref] [Google Scholar]
  59. 59.
    Perrone D, Hornberger GM. 2014.. Water, food, and energy security: scrambling for resources or solutions?. Wiley Interdiscip. Rev. Water 1:(1):4968
    [Crossref] [Google Scholar]
  60. 60.
    Beisheim M. 2013.. The water, energy & food security nexus: how to govern complex risks to sustainable supply. . SWP Comments 32::18
    [Google Scholar]
  61. 61.
    Benson D, Gain AK, Rouillard JJ. 2015.. Water governance in a comparative perspective: from IWRM to a ‘nexus’ approach?. Water Altern. 8:(1):75673
    [Google Scholar]
  62. 62.
    Leck H, Conway D, Bradshaw M, Rees J. 2015.. Tracing the water–energy–food nexus: description, theory and practice. . Geogr. Compass 9:(8):44560
    [Crossref] [Google Scholar]
  63. 63.
    Endo A, Yamada M, Miyashita Y, Sugimoto R, Ishii A, et al. 2020.. Dynamics of water–energy–food nexus methodology, methods, and tools. . Curr. Opin. Environ. Sci. Health 13::4660
    [Crossref] [Google Scholar]
  64. 64.
    Endo A, Burnett K, Orencio P, Kumazawa T, Wada C, et al. 2015.. Methods of the water-energy-food nexus. . Water 7::580630
    [Crossref] [Google Scholar]
  65. 65.
    Bian Z, Liu D. 2021.. A comprehensive review on types, methods and different regions related to water–energy–food nexus. . Int. J. Environ. Res. Public Health 18:(16):8276
    [Crossref] [Google Scholar]
  66. 66.
    Zhang C, Chen X, Li Y, Ding W, Fu G. 2018.. Water-energy-food nexus: concepts, questions and methodologies. . J. Clean. Prod. 195::62539
    [Crossref] [Google Scholar]
  67. 67.
    Kaddoura S, El Khatib S. 2017.. Review of water-energy-food nexus tools to improve the nexus modelling approach for integrated policy making. . Environ. Sci. Policy 77::11421
    [Crossref] [Google Scholar]
  68. 68.
    Larkin A, Hoolohan C, McLachlan C. 2020.. Embracing context and complexity to address environmental challenges in the water-energy-food nexus. . Futures 123::102612
    [Crossref] [Google Scholar]
  69. 69.
    Dooley K, Christoff P, Nicholas KA. 2018.. Co-producing climate policy and negative emissions: trade-offs for sustainable land-use. . Glob. Sustain. 1::e3
    [Crossref] [Google Scholar]
  70. 70.
    Ackerman F, DeCanio SJ, Howarth RB, Sheeran K. 2009.. Limitations of integrated assessment models of climate change. . Clim. Chang. 95::297315
    [Crossref] [Google Scholar]
  71. 71.
    Geels FW, Sovacool BK, Schwanen T, Sorrell S. 2017.. The socio-technical dynamics of low-carbon transitions. . Joule 1:(3):46379
    [Crossref] [Google Scholar]
  72. 72.
    Mont O, Neuvonen A, Lähteenoja S. 2014.. Sustainable lifestyles 2050: stakeholder visions, emerging practices and future research. . J. Clean. Prod. 63::2432
    [Crossref] [Google Scholar]
  73. 73.
    Bruns A, Meisch S, Ahmed A, Meissner R, Romero-Lankao P. 2022.. Nexus disrupted: lived realities and the water-energy-food nexus from an infrastructure perspective. . Geoforum 133::7988
    [Crossref] [Google Scholar]
  74. 74.
    Itayi CL, Mohan G, Saito O. 2021.. Understanding the conceptual frameworks and methods of the food–energy–water nexus at the household level for development-oriented policy support: a systematic review. . Environ. Res. Lett. 16:(3):033006
    [Crossref] [Google Scholar]
  75. 75.
    Huntington HP, Schmidt JI, Loring PA, Whitney E, Aggarwal S, et al. 2021.. Applying the food–energy–water nexus concept at the local scale. . Nat. Sustain. 4:(8):67279
    [Crossref] [Google Scholar]
  76. 76.
    Guan X, Mascaro G, Sampson D, Maciejewski R. 2020.. A metropolitan scale water management analysis of the food-energy-water nexus. . Sci. Total Environ. 701::134478
    [Crossref] [Google Scholar]
  77. 77.
    Spiegelberg M, Baltazar DE, Sarigumba MPE, Orencio PM, Hoshino S, et al. 2017.. Unfolding livelihood aspects of the water–energy–food nexus in the Dampalit watershed, Philippines. . J. Hydrol. Reg. Stud. 11::5368
    [Crossref] [Google Scholar]
  78. 78.
    Wa'el AH, Memon FA, Savic DA. 2017.. An integrated model to evaluate water-energy-food nexus at a household scale. . Environ. Model. Softw. 93::36680
    [Crossref] [Google Scholar]
  79. 79.
    Biggs EM, Bruce E, Boruff B, Duncan JM, Horsley J, et al. 2015.. Sustainable development and the water–energy–food nexus: a perspective on livelihoods. . Environ. Sci. Policy 54::38997
    [Crossref] [Google Scholar]
  80. 80.
    Villarroel Walker R, Beck MB, Hall JW, Dawson RJ, Heidrich O. 2014.. The energy-water-food nexus: strategic analysis of technologies for transforming the urban metabolism. . J. Environ. Manag. 141::10415
    [Crossref] [Google Scholar]
  81. 81.
    Scott CA, Pierce SA, Pasqualetti MJ, Jones AL, Montz BE. 2011.. Policy and institutional dimensions of the water-energy nexus. . Energy Policy 39::662230
    [Crossref] [Google Scholar]
  82. 82.
    Gain AK, Giupponi C, Benson D. 2018.. The water–energy–food (WEF) security nexus: the policy perspective of Bangladesh. . In Sustainability in the Water Energy Food Nexus, ed. A Bhaduri, C Ringler, I Dombrowsky, R Mohtar, W Scheumann , pp. 18398. London:: Routledge
    [Google Scholar]
  83. 83.
    Halbe J, Knüppe K. 2015.. The need for policy coordination in governing the water-energy-food nexus. . Change Adapt. Socio-Ecol. Syst. 2:(1):8284
    [Google Scholar]
  84. 84.
    Howarth C, Monasterolo I. 2016.. Understanding barriers to decision making in the UK energy-food-water nexus: the added value of interdisciplinary approaches. . Environ. Sci. Policy 61::5360
    [Crossref] [Google Scholar]
  85. 85.
    Miralles-Wilhelm F. 2016.. Development and application of integrative modeling tools in support of food-energy-water nexus planning—a research agenda. . J. Environ. Stud. Sci. 6::310
    [Crossref] [Google Scholar]
  86. 86.
    Bach H, Bird J, Jønch Clausen T, Mørck Jensen K, Baadsgarde Lange R, et al. 2012.. Transboundary River Basin Management: Addressing Water, Energy and Food Security. Vientiane, Laos:: Mekong River Commission. https://www.mrcmekong.org/assets/Uploads/M2R-report-address-water-energy-food-security.pdf
    [Google Scholar]
  87. 87.
    Kibaroglu A, Gürsoy SI. 2015.. Water-energy-food nexus in a transboundary context: the Euphrates-Tigris river basin as a case study. . Water Int. 40::82438
    [Crossref] [Google Scholar]
  88. 88.
    McLachlan SN. 2015.. Implementing the water-energy-food nexus at various scales: trans-boundary challenges and solutions. . Chang. Adapt. Socio-Ecol. Syst. 2::9496
    [Google Scholar]
  89. 89.
    Lawford R, Bogardi J, Marx S, Jain S, Pahl Wostl C, et al. 2013.. Basin perspectives on the water-energy-food security nexus. . Curr. Opin. Environ. Sustain. 5::60716
    [Crossref] [Google Scholar]
  90. 90.
    Houghton-Carr H, Fry M. 2006.. The decline of hydrological data collection for development of integrated water resource management tools in Southern Africa. . Clim. Var. Chang. Hydrol. Impacts 308::5155
    [Google Scholar]
  91. 91.
    Mohtar RH, Lawford R. 2016.. Present and future of the water-energy-food nexus and the role of the community of practice. . J. Environ. Stud. Sci. 6::19299
    [Crossref] [Google Scholar]
  92. 92.
    Eftelioglu E, Jiang Z, Tang X, Shekhar S. 2017.. The nexus of food, energy, and water resources: visions and challenges in spatial computing. . In Advances in Geocomputation, ed. D Griffith, Y Chun, D Dean , pp. 520. Cham, Switz:.: Springer
    [Google Scholar]
  93. 93.
    Chang Y, Li G, Yao Y, Zhang L, Yu C. 2016.. Quantifying the water-energy-food nexus: current status and trends. . Energies 9:(2):6582
    [Crossref] [Google Scholar]
  94. 94.
    Bijl DL, Bogaart PW, Dekker SC, van Vuuren DP. 2018.. Unpacking the nexus: different spatial scales for water, food and energy. . Glob. Environ. Chang. 48::2231
    [Crossref] [Google Scholar]
  95. 95.
    McGrane SJ, Acuto M, Artioli F, Chen PY, Comber R, et al. 2019.. Scaling the nexus: towards integrated frameworks for analysing water, energy and food. . Geogr. J. 185:(4):41931
    [Crossref] [Google Scholar]
  96. 96.
    Liu J, Bridget R. 2020.. Food-energy-water nexus for multi-scale sustainable development. . Resour. Conserv. Recycl. 154::104565
    [Crossref] [Google Scholar]
  97. 97.
    Stirling A. 2015.. Developing ‘nexus capabilities’: towards transdisciplinary methodologies. Work. Pap. , Univ. Sussex, Brighton, UK:
    [Google Scholar]
  98. 98.
    Kurian M, Ardakanian R. 2015.. Governing the Nexus. Cham, Switz.:: Springer
    [Google Scholar]
  99. 99.
    Artioli F, Acuto M, McArthur J. 2017.. The water-energy-food nexus: an integration agenda and implications for urban governance. . Polit. Geogr. 61::21523
    [Crossref] [Google Scholar]
  100. 100.
    Cottee J, López-Avilés A, Behzadian K, Bradley D, Butler D, et al. 2016.. The local nexus network: exploring the future of localised food systems and associated energy and water supply. Paper presented at the International Conference on Sustainable Design and Manufacturing, Heraklion, Greece:, April 4–6
    [Google Scholar]
  101. 101.
    Smajgl A, Ward J. 2013.. A framework to bridge science and policy in complex decision making arenas. . Futures 52::5258
    [Crossref] [Google Scholar]
  102. 102.
    El Gafy I, Grigg N, Reagan W. 2017.. Water-food-energy nexus index to maximize the economic water and energy productivity in an optimal cropping pattern. . Water. Int. 42:(4):495503
    [Crossref] [Google Scholar]
  103. 103.
    Martinez-Hernandez E, Leach M, Yang A. 2017.. Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym. . Appl. Energy 206::100921
    [Crossref] [Google Scholar]
  104. 104.
    Bazilian M, Rogner H, Howells M, Hermann S, Arent D, et al. 2011.. Considering the energy, water and food nexus: towards an integrated modelling approach. . Energy Policy 39:(12):7896906
    [Crossref] [Google Scholar]
  105. 105.
    Hussey K, Pittock J. 2012.. The energy–water nexus: managing the links between energy and water for a sustainable future. . Ecol. Soc. 17:(1):31
    [Crossref] [Google Scholar]
  106. 106.
    Howells M, Hermann S, Welsch M, Bazilian M, Segerström R, et al. 2013.. Integrated analysis of climate change, land-use, energy and water strategies. . Nat. Clim. Chang. 3:(7):62126
    [Crossref] [Google Scholar]
  107. 107.
    Wiegleb V, Bruns A. 2018.. What is driving the water-energy-food nexus? Discourses, knowledge, and politics of an emerging resource governance concept. . Front. Environ. Sci. 6::128
    [Crossref] [Google Scholar]
  108. 108.
    Rasul G. 2016.. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. . Environ. Dev. 18::1425
    [Crossref] [Google Scholar]
  109. 109.
    Pittock J, Hussey K, McGlennon S. 2013.. Australian climate, energy and water policies: conflicts and synergies. . Aust. Geogr. 44:(1):322
    [Crossref] [Google Scholar]
  110. 110.
    Death C. 2014.. The green economy in South Africa: global discourses and local politics. . Politikon 41:(1):122
    [Crossref] [Google Scholar]
  111. 111.
    Allouche J, Middleton C, Gyawali D. 2015.. Technical veil, hidden politics: interrogating the power linkages behind the nexus. . Water Altern. 8:(1):61026
    [Google Scholar]
  112. 112.
    Leese M, Meisch S. 2015.. Securitising sustainability? Questioning the ‘water, energy and food-security nexus. .’ Water Altern. 8:(1):695709
    [Google Scholar]
  113. 113.
    Middleton C, Allouche J, Gyawali D, Allen S. 2015.. The rise and implications of the water-energy-food nexus in Southeast Asia through an environmental justice lens. . Water Altern. 8:(1):62754
    [Google Scholar]
  114. 114.
    Mdee A. 2017.. Disaggregating orders of water scarcity – the politics of nexus in the Wami-Ruvu River Basin, Tanzania. . Water Altern. 10:(1):10015
    [Google Scholar]
  115. 115.
    Rees J. 2013.. Geography and the nexus: presidential address and record of the Royal Geographical Society (with IBG) AGM 2013. . Geogr. J. 179:(3):27982
    [Crossref] [Google Scholar]
  116. 116.
    Allouche J, Middleton C, Gyawali D. 2014.. Nexus nirvana or nexus nullity? A dynamic approach to security and sustainability in the water-energy-food nexus. STEPS Work. Pap. 63 , Inst. Dev. Stud., Brighton, UK:. https://steps-centre.org/wp-content/uploads/Water-and-the-Nexus.pdf
    [Google Scholar]
  117. 117.
    Stein C, Barron J, Moss T. 2014.. Governance of the nexus: from buzz words to a strategic action perspective. Nexus Netw. Think Piece Ser., Pap. 3. https://thenexusnetwork.org/wp-content/uploads/2014/08/Stein-Barron-and-Moss-Strategic-Action-Perspective-Nexus-Thinkpiece-2014-page-numbers.pdf
    [Google Scholar]
  118. 118.
    Williams J, Bouzarovski S, Swyngedouw E. 2019.. The urban resource nexus: on the politics of relationality, water–energy infrastructure and the fallacy of integration. . Environ. Plan. C Polit. Space 37:(4):65269
    [Crossref] [Google Scholar]
  119. 119.
    Luke TW. 2005.. Neither sustainable nor development: reconsidering sustainability in development. . Sustain. Dev. 13:(4):22838
    [Crossref] [Google Scholar]
  120. 120.
    Schmidt JJ, Matthews N. 2018.. From state to system: financialization and the water-energy-food-climate nexus. . Geoforum 91::15159
    [Crossref] [Google Scholar]
  121. 121.
    Foran T, Manorom K. 2009.. Pak Mun Dam: perpetually contested?. In Contested Waterscapes in the Mekong Region: Hydropower, Trans-Boundary Governance and Livelihoods, ed. F Molle, T Foran, M Kakonen , pp. 5574. London:: Earthscan
    [Google Scholar]
  122. 122.
    Jobbins G, Kalpakian J, Chriyaa A, Legrouri A, El Mzouri EH. 2017.. To what end? Drip irrigation and the water–energy–food nexus in Morocco. . In The Water-Energy-Food Nexus in the Middle East and North Africa, ed. M Keulertz, E Woertz , pp. 10518. London:: Routledge
    [Google Scholar]
  123. 123.
    Baird IG, Barney K. 2017.. The political ecology of cross-sectoral cumulative impacts: modern landscapes, large hydropower dams and industrial tree plantations in Laos and Cambodia. . J. Peasant Stud. 44:(4):76995
    [Crossref] [Google Scholar]
  124. 124.
    Batterbury S. 2001.. Landscapes of diversity: a local political ecology of livelihood diversification in south-western Niger. . Ecumene 8:(4):43764
    [Crossref] [Google Scholar]
  125. 125.
    Leach M, Scoones I, Stirling A, eds. 2010.. Dynamic Sustainabilities: Technology, Environment, and Social Justice. Abingdon, UK:: Earthscan
    [Google Scholar]
  126. 126.
    Lavau S. 2013.. Going with the flow: sustainable water management as ontological cleaving. . Environ. Plan. D Soc. Space 31:(3):41633
    [Crossref] [Google Scholar]
  127. 127.
    2030 Water Resources Group. 2009.. Charting Our Water Future: Economic Frameworks to Inform Decision-Making. Washington, DC:: 2030 Water Resources Group
    [Google Scholar]
  128. 128.
    Hagemann N, Kirschke S. 2017.. Key issues of interdisciplinary NEXUS governance analyses: lessons learned from research on integrated water resources management. . Resources 6:(1):9
    [Crossref] [Google Scholar]
  129. 129.
    Hernandez RR, Easter SB, Murphy-Mariscal ML, Maestre FT, Tavassoli M, et al. 2014.. Environmental impacts of utility-scale solar energy. . Renew. Sustain. Energy Rev. 29::76679
    [Crossref] [Google Scholar]
  130. 130.
    Abdullaev I, Rakhmatullaev S. 2016.. Setting up the agenda for water reforms in Central Asia: Does the nexus approach help?. Environ. Earth Sci. 75::87080
    [Crossref] [Google Scholar]
  131. 131.
    Brouwer F, Avgerinopoulos G, Fazekas D, Laspidou C, Mercure JF, et al. 2018.. Energy modelling and the nexus concept. . Energy Strategy Rev. 19::16
    [Crossref] [Google Scholar]
  132. 132.
    Jones A. 2009.. Redisciplining generic attributes: the disciplinary context in focus. . Stud. High. Educ. 34:(1):85100
    [Crossref] [Google Scholar]
  133. 133.
    McPhearson T, Pickett ST, Grimm NB, Niemelä J, Alberti M, et al. 2016.. Advancing urban ecology toward a science of cities. . BioScience 66:(3):198212
    [Crossref] [Google Scholar]
  134. 134.
    Schwanen T. 2018.. Thinking complex interconnections: transition, nexus and geography. . Trans. Inst. Br. Geogr. 43:(2):26283
    [Crossref] [Google Scholar]
  135. 135.
    Stengers I. 2016.. “Another science is possible!”: a plea for slow science. . In Demo(s), ed. H Letiche, G Lightfoot, J-L Moriceau , pp. 5370. Leiden, Neth:.: Brill
    [Google Scholar]
  136. 136.
    Pratt ML. 1991.. Arts of the contact zone. . Profession 1991::3340
    [Google Scholar]
  137. 137.
    Urbinatti AM, Benites-Lazaro LL, Carvalho CMD, Giatti LL. 2020.. The conceptual basis of water-energy-food nexus governance: systematic literature review using network and discourse analysis. . J. Integr. Environ. Sci. 17:(2):2143
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-environ-112321-112445
Loading
/content/journals/10.1146/annurev-environ-112321-112445
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error