1932

Abstract

Groundwater deterioration due to enrichment with contaminants of either geogenic or anthropogenic origin has adversely affected safe water supply for drinking and irrigation, with pervasive impacts on human health and ecosystem functions. However, the spatiotemporal evolution and public health effects of groundwater quality remain unclarified, posing a grand challenge for the safe and sustainable supply of global groundwater resources. This article provides a state-of-the-art review of the complexity and dynamics of groundwater quality, as well as the impacts of various groundwater substances on human health. In particular, knowledge is growing about the health impacts of key substances ranging from nutritional elements (e.g., Ca2+, Mg2+) to pollutants (e.g., heavy metals/metalloids, persistent organic pollutants, and emerging contaminants) and, further, to pathogenic microorganisms to which the human body can be exposed through multiple patterns of groundwater use. Proliferating concerns at the same time call for enhancing science-based governance directives, economic policies, and management strategies coordinating groundwater quality. We propose that safeguarding groundwater-dependent public health needs concerted efforts in source control, cross-scale rehabilitation, and social hydrology-based groundwater governance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112321-114701
2023-11-13
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112321-114701.html?itemId=/content/journals/10.1146/annurev-environ-112321-114701&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wang Y, Zheng C, Ma R. 2018. Review: safe and sustainable groundwater supply in China. Hydrogeol. J. 26:1301–24
    [Google Scholar]
  2. 2.
    Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB. 2016. The global volume and distribution of modern groundwater. Nat. Geosci. 9:161–67
    [Google Scholar]
  3. 3.
    Wang Y, Li J, Ma T, Xie X, Deng Y, Gan Y. 2020. Genesis of geogenic contaminated groundwater: As, F and I. Crit. Rev. Environ. Sci. Technol. 51:2895–933
    [Google Scholar]
  4. 4.
    Lall U, Josset L, Russo T. 2020. A snapshot of the world's groundwater challenges. Annu. Rev. Environ. Resour. 45:171–94
    [Google Scholar]
  5. 5.
    Ma R, Yan M, Han P, Wang T, Li B et al. 2022. Deficiency and excess of groundwater iodine and their health associations. Nat. Commun. 13:7354
    [Google Scholar]
  6. 6.
    Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C. 2019. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environ. Res. 169:483–93
    [Google Scholar]
  7. 7.
    Mukherjee A, Scanlon BR, Aureli A, Langan S, Guo H, McKenzie A 2021. Global groundwater: from scarcity to security through sustainability and solutions. Global Groundwater: Source, Scarcity, Sustainability, Security, and Solutions A Mukherjee, B Scanlon, A Aureli, S Langan, H Guo, et al. 3–20. Amsterdam: Elsevier
    [Google Scholar]
  8. 8.
    Oelkers EH, Bénézeth P, Pokrovski GS. 2009. Thermodynamic databases for water-rock interaction. Rev. Mineral. Geochem. 70:1–46
    [Google Scholar]
  9. 9.
    Famiglietti JS. 2014. The global groundwater crisis. Nat. Clim. Change 4:945–48
    [Google Scholar]
  10. 10.
    Li P, Karunanidhi D, Subramani T, Srinivasamoorthy K. 2021. Sources and consequences of groundwater contamination. Arch. Environ. Contam. Toxicol. 80:1–10
    [Google Scholar]
  11. 11.
    Wang Y, Pi K, Fendorf S, Deng Y, Xie X. 2019. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems. Earth-Sci. Rev. 189:79–98
    [Google Scholar]
  12. 12.
    Wen D, Zhang F, Zhang E, Wang C, Han S, Zheng Y. 2013. Arsenic, fluoride and iodine in groundwater of China. J. Geochem. Explor. 135:1–21
    [Google Scholar]
  13. 13.
    Zainab SM, Junaid M, Xu N, Malik RN. 2020. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 187:116455
    [Google Scholar]
  14. 14.
    Bagheri R, Nosrati A, Jafari H, Eggenkamp H, Mozafari M. 2019. Overexploitation hazards and salinization risks in crucial declining aquifers, chemo-isotopic approaches. J. Hazard. Mater. 369:150–63
    [Google Scholar]
  15. 15.
    Xue X, Li J, Xie X, Qian K, Wang Y. 2019. Impacts of sediment compaction on iodine enrichment in deep aquifers of the North China Plain. Water Res. 159:480–89
    [Google Scholar]
  16. 16.
    Murphy HM, Prioleau MD, Borchardt MA, Hynds PD. 2017. Epidemiological evidence of groundwater contribution to global enteric disease, 1948–2015. Hydrogeol. J. 25:981–1001
    [Google Scholar]
  17. 17.
    Silori R, Shrivastava V, Singh A, Sharma P, Aouad M et al. 2022. Global groundwater vulnerability for Pharmaceutical and Personal care products (PPCPs): the scenario of second decade of 21st century. J. Environ. Manag. 320:115703
    [Google Scholar]
  18. 18.
    Zhu C, Schwartz FW. 2011. Hydrogeochemical processes and controls on water quality and water management. Elements 7:169–74
    [Google Scholar]
  19. 19.
    Wang Y, Wang Q, Deng Y, Chen Z, Van Cappellen P et al. 2020. Assessment of the impact of geogenic and climatic factors on global risk of urinary stone disease. Sci. Total Environ. 721:137769
    [Google Scholar]
  20. 20.
    MacKay H. 2006. Protection and management of groundwater-dependent ecosystems: emerging challenges and potential approaches for policy and management. Aust. J. Bot. 54:231–37
    [Google Scholar]
  21. 21.
    Ma T, Du Y, Ma R, Xiao C, Liu Y. 2018. Water–rock interactions and related eco-environmental effects in typical land subsidence zones of China. Hydrogeol. J. 26:1339–49
    [Google Scholar]
  22. 22.
    Du Y, Ma T, Deng Y, Shen S, Lu Z. 2018. Characterizing groundwater/surface-water interactions in the interior of Jianghan Plain, central China. Hydrogeol. J. 26:1047–59
    [Google Scholar]
  23. 23.
    Xie X, Wang Y, Ellis A, Su C, Li J et al. 2013. Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: a case study in high arsenic aquifer systems of the Datong basin, northern China. J. Hydrol. 476:87–96
    [Google Scholar]
  24. 24.
    Li J, DePaolo DJ, Wang Y, Xie X. 2018. Calcium isotope fractionation in a silicate dominated Cenozoic aquifer system. J. Hydrol. 559:523–33
    [Google Scholar]
  25. 25.
    Wang Y, Li P, Guo Q, Jiang Z, Liu M. 2018. Environmental biogeochemistry of high arsenic geothermal fluids. Appl. Geochem. 97:81–92
    [Google Scholar]
  26. 26.
    Kalhor K, Ghasemizadeh R, Rajic L, Alshawabkeh A. 2019. Assessment of groundwater quality and remediation in karst aquifers: a review. Groundwater Sustain. Dev. 8:104–21
    [Google Scholar]
  27. 27.
    Tomiyama S, Igarashi T. 2022. The potential threat of mine drainage to groundwater resources. Curr. Opin. Environ. Sci. Health 27:100347
    [Google Scholar]
  28. 28.
    Chia RW, Lee J-Y, Kim H, Jang J. 2021. Microplastic pollution in soil and groundwater: a review. Environ. Chem. Lett. 19:4211–24
    [Google Scholar]
  29. 29.
    Kurwadkar S, Kanel SR, Nakarmi A. 2020. Groundwater pollution: occurrence, detection, and remediation of organic and inorganic pollutants. Water Environ. Res. 92:1659–68
    [Google Scholar]
  30. 30.
    Postma D, Pham TKT, HU, Hoang VH, Vi ML et al. 2016. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam. Geochim. Cosmochim. Acta 195:277–92
    [Google Scholar]
  31. 31.
    Pi K, Wang Y, Postma D, Ma T, Su C, Xie X. 2018. Vertical variability of arsenic concentrations under the control of iron-sulfur-arsenic interactions in reducing aquifer systems. J. Hydrol. 561:200–10
    [Google Scholar]
  32. 32.
    Schaefer MV, Ying SC, Benner SG, Duan Y, Wang Y, Fendorf S. 2016. Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River Basin. Environ. Sci. Technol. 50:3521–29
    [Google Scholar]
  33. 33.
    Stegen JC, Fredrickson JK, Wilkins MJ, Konopka AE, Nelson WC et al. 2016. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat. Commun. 7:11237
    [Google Scholar]
  34. 34.
    Jiang Q, Jin G, Tang H, Xu J, Chen Y 2021. N2O production and consumption processes in a salinity-impacted hyporheic zone. J. Geophys. Res. Biogeosci. 126:e2021JG006512
    [Google Scholar]
  35. 35.
    Gómez-Gener L, Siebers AR, Arce MI, Arnon S, Bernal S et al. 2021. Towards an improved understanding of biogeochemical processes across surface-groundwater interactions in intermittent rivers and ephemeral streams. Earth-Sci. Rev. 220:103724
    [Google Scholar]
  36. 36.
    Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M et al. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44:15–23
    [Google Scholar]
  37. 37.
    HU, Postma D, Lan VM, Trang PTK, Kazmierczak J et al. 2018. Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: effects of sediment-water interactions, sediment burial age and groundwater residence time. Geochim. Cosmochim. Acta 225:192–209
    [Google Scholar]
  38. 38.
    Stefánsson A, Arnórsson S, Sveinbjörnsdóttir ÁE, Heinemaier J, Kristmannsdóttir H. 2019. Isotope (δD, δ18O, 3H, δ13C, 14C) and chemical (B, Cl) constrains on water origin, mixing, water-rock interaction and age of low-temperature geothermal water. Appl. Geochem. 108:104380
    [Google Scholar]
  39. 39.
    van Geen A, Bostick BC, Pham TKT, Vi ML, Mai N-N et al. 2013. Retardation of arsenic transport through a Pleistocene aquifer. Nature 501:204–7
    [Google Scholar]
  40. 40.
    Jakobsen R, Kazmierczak J, HU, Postma D. 2018. Spatial variability of groundwater arsenic concentration as controlled by hydrogeology: conceptual analysis using 2-D reactive transport modeling. Water Resour. Res. 54:10254–69
    [Google Scholar]
  41. 41.
    Pi K, Wang Y, Xie X, Liu Y, Ma T, Su C. 2016. Multilevel hydrogeochemical monitoring of spatial distribution of arsenic: a case study at Datong Basin, northern China. J. Geochem. Explor. 161:16–26
    [Google Scholar]
  42. 42.
    Giordano M. 2009. Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour. 34:153–78
    [Google Scholar]
  43. 43.
    Li C, Gao X, Li S, Bundschuh J. 2020. A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Environ. Sci. Pollut. Res. 27:41157–74
    [Google Scholar]
  44. 44.
    Chen Q, Wei J-C, Jia C-P, Wang H-M, Shi L-Q et al. 2019. Groundwater selenium level and its enrichment dynamics in seawater intrusion area along the northern coastal zones of Shandong Province, China. Geochem. Int. 57:1236–42
    [Google Scholar]
  45. 45.
    Nwankwo CB, Hoque MA, Islam MA, Dewan A. 2020. Groundwater constituents and trace elements in the basement aquifers of Africa and sedimentary aquifers of Asia: medical hydrogeology of drinking water minerals and toxicants. Earth Syst. Environ. 4:369–84
    [Google Scholar]
  46. 46.
    Li J, Wang Y, Zhu C, Xue X, Qian K et al. 2020. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain. Sci. Total Environ. 730:138877
    [Google Scholar]
  47. 47.
    Radloff KA, Zheng Y, Michael HA, Stute M, Bostick BC et al. 2011. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nat. Geosci. 4:793–98
    [Google Scholar]
  48. 48.
    Fendorf S, Michael HA, van Geen A. 2010. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–27
    [Google Scholar]
  49. 49.
    McDonough LK, Santos IR, Andersen MS, O'Carroll DM, Rutlidge H et al. 2020. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. 11:1279
    [Google Scholar]
  50. 50.
    Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. 2019. The essential metals for humans: a brief overview. J. Inorg. Biochem. 195:120–29
    [Google Scholar]
  51. 51.
    Rosborg I, Kozisek F. 2019. Drinking Water Minerals and Mineral Balance Cham, Switz.: Springer
  52. 52.
    Voutchkova DD, Ernstsen V, Hansen B, Sørensen BL, Zhang C, Kristiansen SM. 2014. Assessment of spatial variation in drinking water iodine and its implications for dietary intake: a new conceptual model for Denmark. Sci. Total Environ. 493:432–44
    [Google Scholar]
  53. 53.
    Dhillon KS, Dhillon SK. 2016. Selenium in groundwater and its contribution towards daily dietary Se intake under different hydrogeological zones of Punjab, India. J. Hydrol. 533:615–26
    [Google Scholar]
  54. 54.
    Hoque MA, Butler AP. 2016. Medical hydrogeology of Asian deltas: status of groundwater toxicants and nutrients, and implications for human health. Int. J. Environ. Res. Public Health 13:81
    [Google Scholar]
  55. 55.
    Gianfredi V, Bragazzi NL, Nucci D, Villarini M, Moretti M. 2017. Cardiovascular diseases and hard drinking waters: implications from a systematic review with meta-analysis of case-control studies. J. Water Health 15:31–40
    [Google Scholar]
  56. 56.
    Buck BJ, Londono SC, McLaurin BT, Metcalf R, Mouri H et al. 2016. The emerging field of medical geology in brief: some examples. Environ. Earth Sci. 75:449
    [Google Scholar]
  57. 57.
    Scheelbeek PF, Chowdhury MA, Haines A, Alam DS, Hoque MA et al. 2017. Drinking water salinity and raised blood pressure: evidence from a cohort study in coastal Bangladesh. Environ. Health Perspect. 125:057007
    [Google Scholar]
  58. 58.
    Yang Y, Deng Y, Wang Y. 2016. Major geogenic factors controlling geographical clustering of urolithiasis in China. Sci. Total Environ. 571:1164–71
    [Google Scholar]
  59. 59.
    Bailey RT. 2017. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health. Hydrogeol. J. 25:1191–217
    [Google Scholar]
  60. 60.
    Bajaj M, Eiche E, Neumann T, Winter J, Gallert C. 2011. Hazardous concentrations of selenium in soil and groundwater in North-West India. J. Hazard. Mater. 189:640–46
    [Google Scholar]
  61. 61.
    Vinceti M, Crespi CM, Bonvicini F, Malagoli C, Ferrante M et al. 2013. The need for a reassessment of the safe upper limit of selenium in drinking water. Sci. Total Environ. 443:633–42
    [Google Scholar]
  62. 62.
    Chakraborty R, Khan KM, Dibaba DT, Khan MA, Ahmed A, Islam MZ. 2019. Health implications of drinking water salinity in coastal areas of Bangladesh. Int. J. Environ. Res. Public Health 16:3746
    [Google Scholar]
  63. 63.
    Adimalla N. 2019. Groundwater quality for drinking and irrigation purposes and potential health risks assessment: a case study from semi-arid region of South India. Exposure Health 11:109–23
    [Google Scholar]
  64. 64.
    Li C, Gao X, Liu Y, Wang Y. 2019. Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ18O, δ2H, δ13C and δ7Li isotopes. J. Hydrol. 579:124211
    [Google Scholar]
  65. 65.
    Vareda JP, Valente AJ, Durães L. 2019. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J. Environ. Manag. 246:101–18
    [Google Scholar]
  66. 66.
    Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M et al. 2021. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 22:101504
    [Google Scholar]
  67. 67.
    Yadav MK, Saidulu D, Gupta AK, Ghosal PS, Mukherjee A. 2021. Status and management of arsenic pollution in groundwater: a comprehensive appraisal of recent global scenario, human health impacts, sustainable field-scale treatment technologies. J. Environ. Chem. Eng. 9:105203
    [Google Scholar]
  68. 68.
    WHO (World Health Organ.) 2011. Guideline for Drinking-Water Quality Geneva: WHO. , 4th ed..
  69. 69.
    Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019:6730305
    [Google Scholar]
  70. 70.
    Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. 2016. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. 23:8244–59
    [Google Scholar]
  71. 71.
    Qian H, Li P, Wu J, Zhou Y. 2012. Isotopic characteristics of precipitation, surface and ground waters in the Yinchuan plain, Northwest China. Environ. Earth Sci. 70:57–70
    [Google Scholar]
  72. 72.
    Amrose S, Burt Z, Ray I. 2015. Safe drinking water for low-income regions. Annu. Rev. Environ. Resour. 40:203–31
    [Google Scholar]
  73. 73.
    Monika M, Gupta PK, Singh A, Vaish B, Singh P et al. 2021. A comprehensive study on aquatic chemistry, health risk and remediation techniques of cadmium in groundwater. Sci. Total Environ. 818:151784
    [Google Scholar]
  74. 74.
    Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T. 2016. Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci. Total Environ. 569–570:476–88
    [Google Scholar]
  75. 75.
    Shahid M, Niazi NK, Dumat C, Naidu R, Khalid S et al. 2018. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ. Pollut. 242:307–19
    [Google Scholar]
  76. 76.
    Podgorski J, Berg M. 2020. Global threat of arsenic in groundwater. Science 368:845–50
    [Google Scholar]
  77. 77.
    Chakraborti D, Rahman MM, Das B, Murrill M, Dey S et al. 2010. Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res. 44:5789–802
    [Google Scholar]
  78. 78.
    Muehe EM, Wang T, Kerl CF, Planer-Friedrich B, Fendorf S. 2019. Rice production threatened by coupled stresses of climate and soil arsenic. Nat. Commun. 10:4985
    [Google Scholar]
  79. 79.
    Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC et al. 2021. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium)-induced hepatotoxicity—A review. Chemosphere 271:129735
    [Google Scholar]
  80. 80.
    Leung CM, Jiao JJ. 2006. Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in Mid-Levels area, Hong Kong. Water Res. 40:753–67
    [Google Scholar]
  81. 81.
    Kumar A, Kumar A, Cabral-Pinto MMS, Chaturvedi AK, Shabnam AA et al. 2020. Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 17:2179
    [Google Scholar]
  82. 82.
    Boskabady M, Marefati N, Farkhondeh T, Shakeri F, Farshbaf A, Boskabady MH. 2018. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ. Int. 120:404–20
    [Google Scholar]
  83. 83.
    Zahir F, Rizwi SJ, Haq SK, Khan RH. 2005. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 20:351–60
    [Google Scholar]
  84. 84.
    Hino O, Yan Y, Ogawa H. 2018. Environmental pollution and related diseases reported in Japan: from an era of “risk evaluation” to an era of “risk management. .” Juntendo Med. J. 64:122–27
    [Google Scholar]
  85. 85.
    Jadhav S, Sarkar S, Patil R, Tripathi H. 2007. Effects of subchronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Arch. Environ. Contam. Toxicol. 53:667–77
    [Google Scholar]
  86. 86.
    Sun B, Li Q, Zheng M, Su G, Lin S et al. 2020. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials: a review. Environ. Pollut. 265:114908
    [Google Scholar]
  87. 87.
    Fiedler H, Kallenborn R, De Boer J, Sydnes LK. 2019. The Stockholm convention: a tool for the global regulation of persistent organic pollutants. Chem. Int. 41:4–11
    [Google Scholar]
  88. 88.
    Alharbi OM, Khattab RA, Ali I. 2018. Health and environmental effects of persistent organic pollutants. J. Mol. Liquids 263:442–53
    [Google Scholar]
  89. 89.
    Kean E, Shore R, Scholey G, Strachan R, Chadwick E. 2021. Persistent pollutants exceed toxic thresholds in a freshwater top predator decades after legislative control. Environ. Pollut. 272:116415
    [Google Scholar]
  90. 90.
    Adithya S, Jayaraman RS, Krishnan A, Malolan R, Gopinath KP et al. 2021. A critical review on the formation, fate and degradation of the persistent organic pollutant hexachlorocyclohexane in water systems and waste streams. Chemosphere 271:129866
    [Google Scholar]
  91. 91.
    Dong W, Xie W, Su X, Wen C, Cao Z, Wan Y. 2018. Micro-organic contaminants in groundwater in China. Hydrogeol. J. 26:1351–69
    [Google Scholar]
  92. 92.
    Li L, Zhang Y, Wang J, Lu S, Cao Y et al. 2020. History traces of HCHs and DDTs by groundwater dating and their behaviours and ecological risk in northeast China. Chemosphere 257:127212
    [Google Scholar]
  93. 93.
    Chen W, Peng B, Huang H, Kuang Y, Qian Z et al. 2021. Distribution and potential sources of OCPs and PAHs in waters from the Danshui River Basin in Yichang, China. Int. J. Environ. Res. Public Health 19:263
    [Google Scholar]
  94. 94.
    Pan H, Lei H, He X, Xi B, Xu Q. 2019. Spatial distribution of organochlorine and organophosphorus pesticides in soil-groundwater systems and their associated risks in the middle reaches of the Yangtze River Basin. Environ. Geochem. Health 41:1833–45
    [Google Scholar]
  95. 95.
    Berni I, Menouni A, El Ghazi I, Godderis L, Duca R-C, El Jaafari S. 2021. Health and ecological risk assessment based on pesticide monitoring in Saïss plain (Morocco) groundwater. Environ. Pollut. 276:116638
    [Google Scholar]
  96. 96.
    Karadeniz H, Yenisoy-Karakaş S. 2015. Spatial distributions and seasonal variations of organochlorine pesticides in water and soil samples in Bolu, Turkey. Environ. Monit. Assess. 187:94
    [Google Scholar]
  97. 97.
    Jabali Y, Iaaly A, Millet M. 2021. Environmental occurrence, spatial distribution, and source identification of PAHs in surface and groundwater samples of Abou Ali River-North Lebanon. Environ. Monitor. Assess. 193:714
    [Google Scholar]
  98. 98.
    López-Macias R, Cobos-Gasca V, Cabañas-Vargas D, Rendón von Osten J. 2019. Presence and spatial distribution of polynuclear aromatic hydrocarbons (PAHs) in groundwater of Merida City, Yucatan, Mexico. Bull. Environ. Contam. Toxicol. 102:538–43
    [Google Scholar]
  99. 99.
    Qiao X, Zheng B, Li X, Zhao X, Dionysiou DD, Liu Y. 2021. Influencing factors and health risk assessment of polycyclic aromatic hydrocarbons in groundwater in China. J. Hazard. Mater. 402:123419
    [Google Scholar]
  100. 100.
    Gebbink WA, Van Asseldonk L, Van Leeuwen SP. 2017. Presence of emerging per- and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands. Environ. Sci. Technol. 51:11057–65
    [Google Scholar]
  101. 101.
    Bruce-Vanderpuije P, Megson D, Reiner EJ, Bradley L, Adu-Kumi S, Gardella JA Jr. 2019. The state of POPs in Ghana - a review on persistent organic pollutants: environmental and human exposure. Environ. Pollut. 245:331–42
    [Google Scholar]
  102. 102.
    Harada KH, Takasuga T, Hitomi T, Wang P, Matsukami H, Koizumi A. 2011. Dietary exposure to short-chain chlorinated paraffins has increased in Beijing, China. Environ. Sci. Technol. 45:7019–27
    [Google Scholar]
  103. 103.
    Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C. 2013. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 307:74–88
    [Google Scholar]
  104. 104.
    Wu Z, He C, Han W, Song J, Li H et al. 2020. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: a review. Environ. Res. 187:109531
    [Google Scholar]
  105. 105.
    Vafeiadi M, Vrijheid M, Fthenou E, Chalkiadaki G, Rantakokko P et al. 2014. Persistent organic pollutants exposure during pregnancy, maternal gestational weight gain, and birth outcomes in the mother-child cohort in Crete, Greece (RHEA study). Environ. Int. 64:116–23
    [Google Scholar]
  106. 106.
    Ruzzin J. 2012. Public health concern behind the exposure to persistent organic pollutants and the risk of metabolic diseases. BMC Public Health 12:298
    [Google Scholar]
  107. 107.
    Wang Y, Cai Y, Jiang G. 2010. Research processes of persistent organic pollutants (POPs) newly listed and candidate POPs in Stockholm Convention. Sci. Sin. Chim. 40:99–123
    [Google Scholar]
  108. 108.
    Genuis SJ, Lane K, Birkholz D. 2016. Human elimination of organochlorine pesticides: blood, urine, and sweat study. BioMed. Res. Int. 2016:1624643
    [Google Scholar]
  109. 109.
    LaKind JS, Verner M-A, Rogers RD, Goeden H, Naiman DQ et al. 2022. Current breast milk PFAS levels in the United States and Canada: After all this time, why don't we know more?. Environ. Health Perspect. 130:025002
    [Google Scholar]
  110. 110.
    Richardson SD, Kimura SY. 2016. Water analysis: emerging contaminants and current issues. Anal. Chem. 88:546–82
    [Google Scholar]
  111. 111.
    Morin-Crini N, Lichtfouse E, Fourmentin M, Ribeiro ARL, Noutsopoulos C et al. 2022. Removal of emerging contaminants from wastewater using advanced treatments. A review. Environ. Chem. Lett. 20:1333–75
    [Google Scholar]
  112. 112.
    Zainab SM, Junaid M, Rehman MYA, Lv M, Yue L et al. 2021. First insight into the occurrence, spatial distribution, sources, and risks assessment of antibiotics in groundwater from major urban-rural settings of Pakistan. Sci. Total Environ. 791:148298
    [Google Scholar]
  113. 113.
    Kahn LG, Philippat C, Nakayama SF, Slama R, Trasande L. 2020. Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol. 8:703–18
    [Google Scholar]
  114. 114.
    Li J, Fu J, Zhang H, Li Z, Ma Y et al. 2013. Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: a field study along the Chaobai River, Beijing. Sci. Total Environ. 450:162–68
    [Google Scholar]
  115. 115.
    Careghini A, Mastorgio AF, Saponaro S, Sezenna E. 2015. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ. Sci. Pollut. Res. 22:5711–41
    [Google Scholar]
  116. 116.
    Huang G, Sun J, Chen Z, Chen X, Jing J et al. 2012. Levels and sources of phthalate esters in shallow groundwater and surface water of Dongguan city, South China. Geochem. J. 46:421–28
    [Google Scholar]
  117. 117.
    Postigo C, Barceló D. 2015. Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci. Total Environ. 503:32–47
    [Google Scholar]
  118. 118.
    Panno SV, Kelly WR, Scott J, Zheng W, McNeish RE et al. 2019. Microplastic contamination in karst groundwater systems. Groundwater 57:189–96
    [Google Scholar]
  119. 119.
    Selvam S, Jesuraja K, Venkatramanan S, Roy PD, Kumari VJ. 2021. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India. J. Hazard. Mater. 402:123786
    [Google Scholar]
  120. 120.
    Shi J, Dong Y, Shi Y, Yin T, He W et al. 2022. Groundwater antibiotics and microplastics in a drinking-water source area, northern China: occurrence, spatial distribution, risk assessment, and correlation. Environ. Res. 210:112855
    [Google Scholar]
  121. 121.
    Zhang Q, Xu EG, Li J, Chen Q, Ma L et al. 2020. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ. Sci. Technol. 54:3740–51
    [Google Scholar]
  122. 122.
    Ferrara F, Ademollo N, Orrù MA, Silvestroni L, Funari E. 2011. Alkylphenols in adipose tissues of Italian population. Chemosphere 82:1044–49
    [Google Scholar]
  123. 123.
    Cui F-P, Yang P, Liu C, Chen P-P, Deng Y-L et al. 2021. Urinary bisphenol A and its alternatives among pregnant women: predictors and risk assessment. Sci. Total Environ. 784:147184
    [Google Scholar]
  124. 124.
    Su T-C, Hwang J-S, Torng P-L, Wu C, Lin C-Y, Sung F-C. 2019. Phthalate exposure increases subclinical atherosclerosis in young population. Environ. Pollut. 250:586–93
    [Google Scholar]
  125. 125.
    Wingender J, Flemming H-C. 2011. Biofilms in drinking water and their role as reservoir for pathogens. Int. J. Hyg. Environ. Health 214:417–23
    [Google Scholar]
  126. 126.
    Stokdyk JP, Firnstahl AD, Walsh JF, Spencer SK, de Lambert JR et al. 2020. Viral, bacterial, and protozoan pathogens and fecal markers in wells supplying groundwater to public water systems in Minnesota, USA. Water Res. 178:115814
    [Google Scholar]
  127. 127.
    Hu W, Liang J, Ju F, Wang Q, Liu R et al. 2020. Metagenomics unravels differential microbiome composition and metabolic potential in rapid sand filters purifying surface water versus groundwater. Environ. Sci. Technol. 54:5197–206
    [Google Scholar]
  128. 128.
    Khalil I, Walker R, Porter CK, Muhib F, Chilengi R et al. 2021. Enterotoxigenic Escherichia coli (ETEC) vaccines: priority activities to enable product development, licensure, and global access. Vaccine 39:4266–77
    [Google Scholar]
  129. 129.
    Nelson EJ, Chowdhury A, Harris JB, Begum YA, Chowdhury F et al. 2007. Complexity of rice-water stool from patients with Vibrio cholerae plays a role in the transmission of infectious diarrhea. PNAS 104:19091–96
    [Google Scholar]
  130. 130.
    Charles K, Shore J, Sellwood J, Laverick M, Hart A, Pedley S. 2009. Assessment of the stability of human viruses and coliphage in groundwater by PCR and infectivity methods. J. Appl. Microbiol. 106:1827–37
    [Google Scholar]
  131. 131.
    Sorensen JP, Aldous P, Bunting SY, McNally S, Townsend BR et al. 2021. Seasonality of enteric viruses in groundwater-derived public water sources. Water Res. 207:117813
    [Google Scholar]
  132. 132.
    Wang X, Ren J, Gao Q, Hu Z, Sun Y et al. 2015. Hepatitis A virus and the origins of picornaviruses. Nature 517:85–88
    [Google Scholar]
  133. 133.
    La Rosa G, Bonadonna L, Lucentini L, Kenmoe S, Suffredini E 2020. Coronavirus in water environments: occurrence, persistence and concentration methods—a scoping review. Water Res. 179:115899
    [Google Scholar]
  134. 134.
    Burch TR, Stokdyk JP, Rice N, Anderson AC, Walsh JF et al. 2022. Statewide quantitative microbial risk assessment for waterborne viruses, bacteria, and protozoa in public water supply wells in Minnesota. Environ. Sci. Technol. 56:6315–24
    [Google Scholar]
  135. 135.
    Omarova A, Tussupova K, Berndtsson R, Kalishev M, Sharapatova K. 2018. Protozoan parasites in drinking water: a system approach for improved water, sanitation and hygiene in developing countries. Int. J. Environ. Res. Public Health 15:495
    [Google Scholar]
  136. 136.
    Alegbeleye OO, Sant'Ana AS. 2020. Manure-borne pathogens as an important source of water contamination: an update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. Int. J. Hyg. Environ. Health 227:113524
    [Google Scholar]
  137. 137.
    Medema G, Stuyfzand P. 2020. Removal of micro-organisms upon basin recharge, deep well injection and river bank filtration in the Netherlands. Management of Aquifer Recharge for Sustainability PJ Dillon 125–31. Boca Raton, FL: CRC Press
    [Google Scholar]
  138. 138.
    Gleeson T, Cuthbert M, Ferguson G, Perrone D. 2020. Global groundwater sustainability, resources, and systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 48:431–63
    [Google Scholar]
  139. 139.
    Burri NM, Weatherl R, Moeck C, Schirmer M. 2019. A review of threats to groundwater quality in the anthropocene. Sci. Total Environ. 684:136–54
    [Google Scholar]
  140. 140.
    Megdal SB. 2018. Invisible water: the importance of good groundwater governance and management. npj Clean Water 1:15
    [Google Scholar]
  141. 141.
    Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo J-D, Ross A et al. 2016. Integrated groundwater management: an overview of concepts and challenges. Integrated Groundwater Management: Concepts, Approaches and Challenges AJ Jakeman, O Barreteau, RJ Hunt, J-D Rinaudo, A Ross 3–20
    [Google Scholar]
  142. 142.
    Safavi HR, Golmohammadi MH, Sandoval-Solis S. 2015. Expert knowledge based modeling for integrated water resources planning and management in the Zayandehrud River Basin. J. Hydrol. 528:773–89
    [Google Scholar]
  143. 143.
    Keiser DA, Shapiro JS. 2019. Consequences of the Clean Water Act and the demand for water quality. Q. J. Econ. 134:349–96
    [Google Scholar]
  144. 144.
    Dovers S, Grafton RQ, Connell D. 2005. A critical analysis of the National Water Initiative. Aust. J. Nat. Resour. Law Policy 10:81–107
    [Google Scholar]
  145. 145.
    Quevauviller P. 2008. From the 1996 groundwater action programme to the 2006 groundwater directive—What have we done, what have we learnt, what is the way ahead?. J. Environ. Monit. 10:408–21
    [Google Scholar]
  146. 146.
    Yeh WW. 2015. Optimization methods for groundwater modeling and management. Hydrogeol. J. 23:1051–65
    [Google Scholar]
  147. 147.
    Mulligan KB, Brown C, Yang YCE, Ahlfeld DP. 2014. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling. Water Resour. Res. 50:2257–75
    [Google Scholar]
  148. 148.
    Pi K, Xie X, Ma T, Su C, Li J, Wang Y. 2020. Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation. Water Res. 181:115859
    [Google Scholar]
  149. 149.
    Hoque M, Scheelbeek P, Vineis P, Khan A, Ahmed K, Butler A. 2016. Drinking water vulnerability to climate change and alternatives for adaptation in coastal South and South East Asia. Clim. Change 136:247–63
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112321-114701
Loading
/content/journals/10.1146/annurev-environ-112321-114701
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error