1932

Abstract

We present an overview of the global spatiotemporal distribution of avian biodiversity, changes in our knowledge of that biodiversity, and the extent to which it is imperilled. Birds are probably the most completely inventoried large taxonomic class of organisms, permitting a uniquely detailed understanding of how the Anthropocene has shaped their distributions and conservation status in space and time. We summarize the threats driving changes in bird species richness and abundance, highlighting the increasingly synergistic interactions between threats such as habitat loss, climate change, and overexploitation. Many metrics of avian biodiversity are exhibiting globally consistent negative trends, with the International Union for Conservation of Nature's Red List Index showing a steady deterioration in the conservation status of the global avifauna over the past three decades. We identify key measures to counter this loss of avian biodiversity and associated ecosystemservices, which will necessitate increased consideration of the social context of bird conservation interventions in order to deliver positive transformative change for nature.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112420-014642
2022-10-17
2024-05-26
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-112420-014642.html?itemId=/content/journals/10.1146/annurev-environ-112420-014642&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Clarke J, Middleton K. 2006. Bird evolution. Curr. Biol. 16:R350–54
    [Google Scholar]
  2. 2.
    Longrich NR, Tokaryk T, Field DJ. 2011. Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. PNAS 108:15253–57
    [Google Scholar]
  3. 3.
    Field DJ, Bercovici A, Berv JS, Dunn R, Fastovsky DE et al. 2018. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Curr. Biol. 28:1825–31
    [Google Scholar]
  4. 4.
    Dyke GJ. 2001. The evolutionary radiation of modern birds: systematics and patterns of diversification. Geol. J. 36:305–15
    [Google Scholar]
  5. 5.
    Fromm A, Meiri S. 2021. Big, flightless, insular and dead: characterising the extinct birds of the Quaternary. J. Biogeogr. 48:2350–59
    [Google Scholar]
  6. 6.
    Butchart SH, Lowe S, Martin RW, Symes A, Westrip JR, Wheatley H. 2018. Which bird species have gone extinct? A novel quantitative classification approach. Biol. Conserv. 227:9–18
    [Google Scholar]
  7. 7.
    Mehlum F, Gjessing Y, Haftorn S, Bech C. 1988. Census of breeding Antarctic petrels Thalassoica antarctica and physical features of the breeding colony at Svarthamaren, Dronning Maud Land, with notes on breeding snow petrels Pagodroma nivea and south polar skuas Catharacta maccormicki. Polar Res 6:1–9
    [Google Scholar]
  8. 8.
    Goldsworthy PM, Thomson PG. 2000. An extreme inland breeding locality of snow petrels (Pagodroma nivea) in the southern Prince Charles Mountains, Antarctica. Polar Biol. 23:717–20
    [Google Scholar]
  9. 9.
    Barros R, Medrano F, Silva R, de Groote F. 2018. First breeding site record of Hornby's storm petrel Oceanodroma hornbyi in the Atacama Desert, Chile. Ardea 106:203–7
    [Google Scholar]
  10. 10.
    Weimerskirch H, Bishop C, Jeanniard-du-Dot T, Prudor A, Sachs G. 2016. Frigate birds track atmospheric conditions over months-long transoceanic flights. Science 353:74–78
    [Google Scholar]
  11. 11.
    Laybourne RC. 1974. Collision between a vulture and an aircraft at an altitude of 37,000 feet. Wilson Bull 86:461–62
    [Google Scholar]
  12. 12.
    Wienecke B, Robertson G, Kirkwood R, Lawton K 2007. Extreme dives by free-ranging emperor penguins. Polar Biol 30:133–42
    [Google Scholar]
  13. 13.
    Davies RG, Orme CDL, Storch D, Olson VA, Thomas GH et al. 2007. Topography, energy and the global distribution of bird species richness. Proc. R. Soc. B. 274:1189–97
    [Google Scholar]
  14. 14.
    Salisbury CL, Seddon N, Cooney CR, Tobias JA. 2012. The latitudinal gradient in dispersal constraints: Ecological specialisation drives diversification in tropical birds. Ecol. Lett. 15:847–55
    [Google Scholar]
  15. 15.
    Betts MG, Wolf C, Pfeifer M, Banks-Leite C, Arroyo-Rodríguez V et al. 2019. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366:1236–39
    [Google Scholar]
  16. 16.
    Newton I. 2003. The Speciation and Biogeography of Birds London: Academic
  17. 17.
    Barlow J, França F, Gardner TA, Hicks CC, Lennox GD et al. 2018. The future of hyperdiverse tropical ecosystems. Nature 559:517–26
    [Google Scholar]
  18. 18.
    Sangster G, Luksenburg JA. 2015. Declining rates of species described per taxonomist: Slowdown of progress or a side-effect of improved quality in taxonomy?. Syst. Biol. 64:144–51
    [Google Scholar]
  19. 19.
    Sangster G. 2014. The application of species criteria in avian taxonomy and its implications for the debate over species concepts. Biol. Rev. 89:199–214
    [Google Scholar]
  20. 20.
    Cadena CD, Cuervo AM, Céspedes LN, Bravo GA, Krabbe N et al. 2020. Systematics, biogeography, and diversification of Scytalopus tapaculos (Rhinocryptidae), an enigmatic radiation of Neotropical montane birds. Auk 137:ukz077
    [Google Scholar]
  21. 21.
    Collar NJ, del Hoyo J, Jutglar F. 2015. The number of species and subspecies in the Red-bellied Pitta Erythropitta erythrogaster complex: a quantitative analysis of morphological characters. Forktail 31:13–23
    [Google Scholar]
  22. 22.
    Burney CW, Brumfield RT. 2009. Ecology predicts levels of genetic differentiation in Neotropical birds. Am. Nat. 174:358–68
    [Google Scholar]
  23. 23.
    Pulido-Santacruz P, Aleixo A, Weir JT 2018. Morphologically cryptic Amazonian bird species pairs exhibit strong postzygotic reproductive isolation. Proc. R. Soc. B. 285:20172081
    [Google Scholar]
  24. 24.
    Freeman BG, Pennell MW. 2021. The latitudinal taxonomy gradient. Trends Ecol. Evol. 36:778–86
    [Google Scholar]
  25. 25.
    Milligan MC, Johnson MD, Garfinkel M, Smith CJ, Njoroge P. 2016. Quantifying pest control services by birds and ants in Kenyan coffee farms. Biol. Conserv. 194:58–65
    [Google Scholar]
  26. 26.
    Kross SM, Bourbour RP, Martinico BL. 2016. Agricultural land use, barn owl diet, and vertebrate pest control implications. Agric. Ecosyst. Environ. 223:167–74
    [Google Scholar]
  27. 27.
    Graham NA, Wilson SK, Carr P, Hoey AS, Jennings S, MacNeil MA 2018. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559:250–53
    [Google Scholar]
  28. 28.
    Robinson TP, Wint GW, Conchedda G, Van Boeckel TP, Ercoli V et al. 2014. Mapping the global distribution of livestock. PLOS ONE 9:e96084
    [Google Scholar]
  29. 29.
    Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:6506–11
    [Google Scholar]
  30. 30.
    Gaston KJ, Blackburn TM, Goldewijk KK. 2003. Habitat conversion and global avian biodiversity loss. Proc. R. Soc. B. 270:1293–300
    [Google Scholar]
  31. 31.
    Butchart SH. 2008. Red List Indices to measure the sustainability of species use and impacts of invasive alien species. Bird Conserv. Int. 18:S245–62
    [Google Scholar]
  32. 32.
    Shutt JD, Lees AC. 2021. Killing with kindness: Does widespread generalised provisioning of wildlife help or hinder biodiversity conservation efforts?. Biol. Conserv. 261:109295
    [Google Scholar]
  33. 33.
    BirdLife International 2020. Birds and biodiversity targets: What do birds tell us about progress to the Aichi Targets and requirements for the post-2020 biodiversity framework? A State of the World's Birds Report Rep., BirdLife Int. Cambridge, UK:
  34. 34.
    Tobias JA, Sheard C, Pigot AL, Devenish AJ, Yang J et al. 2022. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25:581–97
    [Google Scholar]
  35. 35.
    BirdLife International and Handbook of the Birds of the World 2020. Bird species distribution maps of the world. Database. http://datazone.birdlife.org/species/requestdis
  36. 36.
    Sullivan BL, Aycrigg JL, Barry JH, Bonney RE, Bruns N et al. 2014. The eBird enterprise: an integrated approach to development and application of citizen science. Biol. Conserv. 169:31–40
    [Google Scholar]
  37. 37.
    BirdLife International 2020. IUCN Red List for birds BirdLife International http://www.birdlife.org
  38. 38.
    Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC et al. 2019. Decline of the North American avifauna. Science 366:120–24
    [Google Scholar]
  39. 39.
    Burns F, Eaton MA, Burfield IJ, Klvaňová A, Šilarová E et al. 2021. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 11:16647–60
    [Google Scholar]
  40. 40.
    Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, Van Bommel FP. 2006. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131:93–105
    [Google Scholar]
  41. 41.
    Gregory RD, Skorpilova J, Vorisek P, Butler S. 2019. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 103:676–87
    [Google Scholar]
  42. 42.
    Reif J, Vermouzek Z. 2019. Collapse of farmland bird populations in an Eastern European country following its EU accession. Conserv. Lett. 12:e12585
    [Google Scholar]
  43. 43.
    Attwood SJ, Park SE, Maron M, Collard SJ, Robinson D et al. 2009. Declining birds in Australian agricultural landscapes may benefit from aspects of the European agri-environment model. Biol. Conserv. 142:1981–91
    [Google Scholar]
  44. 44.
    Amano T. 2009. Conserving bird species in Japanese farmland: past achievements and future challenges. Biol. Conserv. 142:1913–21
    [Google Scholar]
  45. 45.
    Tori GM, McLeod S, McKnight K, Moorman T, Reid FA. 2002. Wetland conservation and Ducks Unlimited: real world approaches to multispecies management. Waterbirds 25:115–21
    [Google Scholar]
  46. 46.
    Gaget E, Galewski T, Jiguet F, Le Viol I 2018. Waterbird communities adjust to climate warming according to conservation policy and species protection status. Biol. Conserv. 227:205–12
    [Google Scholar]
  47. 47.
    Amano T, Székely T, Sandel B, Nagy S, Mundkur T et al. 2018. Successful conservation of global waterbird populations depends on effective governance. Nature 553:199–202
    [Google Scholar]
  48. 48.
    Cooper TJ, Wannenburgh AM, Cherry MI. 2017. Atlas data indicate forest dependent bird species declines in South Africa. Bird Conserv. Int. 27:337–54
    [Google Scholar]
  49. 49.
    Şekercioğlu ÇH, Mendenhal CD, Oviedo-Brenes F, Horns JJ, Ehrlich PR, Daily GC. 2019. Long-term declines in bird populations in tropical agricultural countryside. PNAS 116:9903–12
    [Google Scholar]
  50. 50.
    Stouffer PC, Jirinec V, Rutt CL, Bierregaard RO, Hernández-Palma A et al. 2021. Long-term change in the avifauna of undisturbed Amazonian rainforest: ground-foraging birds disappear and the baseline shifts. Ecol. Lett. 24:186–95
    [Google Scholar]
  51. 51.
    SoIB 2020. State of India's Birds 2020: range, trends and conservation status Rep. SoIB Partnersh.
  52. 52.
    Bird JP, Martin R, Akçakaya HR, Gilroy J, Burfield IJ. 2020. Generation lengths of the world's birds and their implications for extinction risk. Conserv. Biol. 34:1252–61
    [Google Scholar]
  53. 53.
    Jenkins CN, Pimm SL, Joppa LN. 2013. Global patterns of terrestrial vertebrate diversity and conservation. PNAS 110:E2602–10
    [Google Scholar]
  54. 54.
    Simkins AT, Buchanan GM, Davies RG, Donald PF. 2020. The implications for conservation of a major taxonomic revision of the world's birds. Anim. Conserv. 23:345–52
    [Google Scholar]
  55. 55.
    Fernandes AM. 2013. Fine-scale endemism of Amazonian birds in a threatened landscape. Biodivers. Conserv. 22:2683–94
    [Google Scholar]
  56. 56.
    Visconti P, Bakkenes M, Baisero D, Brooks T, Butchart SH et al. 2016. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9:5–13
    [Google Scholar]
  57. 57.
    Monroe MJ, Butchart SH, Mooers AO, Bokma F. 2019. The dynamics underlying avian extinction trajectories forecast a wave of extinctions. Biol. Lett. 15:20190633
    [Google Scholar]
  58. 58.
    Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR 2016. Invasive predators and global biodiversity loss. PNAS 113:11261–65
    [Google Scholar]
  59. 59.
    Pereira GA, de Melo S, Silveira LF, Roda SA, Albano C et al. 2014. Status of the globally threatened forest birds of northeast Brazil. Pap. Avulsos Zool. 54:177–94
    [Google Scholar]
  60. 60.
    Lees AC, Devenish C, Areta JI, de Araújo CB, Keller C et al. 2021. Assessing the extinction probability of the Purple-winged Ground Dove, an enigmatic bamboo specialist. Front. Ecol. Evol. 9:624959
    [Google Scholar]
  61. 61.
    Bolam FC, Mair L, Angelico M, Brooks TM, Burgman M et al. 2021. How many bird and mammal extinctions has recent conservation action prevented?. Conserv. Lett. 14:e12762
    [Google Scholar]
  62. 62.
    Duncan RP, Boyer AG, Blackburn TM. 2013. Magnitude and variation of prehistoric bird extinctions in the Pacific. PNAS 110:6436–41
    [Google Scholar]
  63. 63.
    Lees AC, Pimm SL. 2015. Species, extinct before we know them?. Curr. Biol. 25:R177–80
    [Google Scholar]
  64. 64.
    Collar NJ. 1998. Extinction by assumption; or, the Romeo Error on Cebu. Oryx 32:239–43
    [Google Scholar]
  65. 65.
    Akçakaya HR, Keith DA, Burgman M, Butchart SH, Hoffmann M. 2017. Inferring extinctions III: a cost-benefit framework for listing extinct species. Biol. Conserv. 214:336–42
    [Google Scholar]
  66. 66.
    Scheffers BR, Yong DL, Harris JBC, Giam X, Sodhi NS. 2011. The world's rediscovered species: Back from the brink?. PLOS ONE 6:e22531
    [Google Scholar]
  67. 67.
    Song XP, Hansen MC, Stehman SV, Potapov PV, Tyukavina A et al. 2018. Global land change from 1982 to 2016. Nature 560:639–43
    [Google Scholar]
  68. 68.
    Donald P, Collar N, Marsden S, Pain D. 2010. Facing Extinction: The World's Rarest Birds and the Race to Save Them London: Bloomsbury Publ.
  69. 69.
    Pimm SL, Askins RA. 1995. Forest losses predict bird extinctions in eastern North America. PNAS 92:9343–47
    [Google Scholar]
  70. 70.
    Sheard C, Neate-Clegg MH, Alioravainen N, Jones SE, Vincent C. 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11:2463
    [Google Scholar]
  71. 71.
    Moore RP, Robinson WD, Lovette IJ, Robinson TR. 2008. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11:960–68
    [Google Scholar]
  72. 72.
    Lees AC, Peres CA. 2009. Gap-crossing movements predict species occupancy in Amazonian forest fragments. Oikos 118:280–90
    [Google Scholar]
  73. 73.
    Fletcher RJ Jr., Didham RK, Banks-Leite C, Barlow J, Ewers RM et al. 2018. Is habitat fragmentation good for biodiversity?. Biol. Conserv. 226:9–15
    [Google Scholar]
  74. 74.
    Cornelius C, Awade M, Cândia-Gallardo C, Sieving KE, Metzger JP. 2017. Habitat fragmentation drives inter-population variation in dispersal behavior in a Neotropical rainforest bird. Perspect. Ecol. Conserv. 15:3–9
    [Google Scholar]
  75. 75.
    Barlow J, Lennox GD, Ferreira J, Berenguer E, Lees AC et al. 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535:144–47
    [Google Scholar]
  76. 76.
    Edwards DP, Larsen TH, Docherty TD, Ansell FA, Hsu WW et al. 2011. Degraded lands worth protecting: the biological importance of Southeast Asia's repeatedly logged forests. Proc. R. Soc. B. 278:82–90
    [Google Scholar]
  77. 77.
    Messina S, Edwards DP, Eens M, Costantini D. 2018. Physiological and immunological responses of birds and mammals to forest degradation: a meta-analysis. Biol. Conserv. 224:223–29
    [Google Scholar]
  78. 78.
    Brennan LA, Kuvlesky WP Jr. 2005. North American grassland birds: An unfolding conservation crisis?. J. Wildl. Manag. 69:1–13
    [Google Scholar]
  79. 79.
    Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009. Is there a latitudinal gradient in the importance of biotic interactions?. Annu. Rev. Ecol. Evol. Syst. 40:245–69
    [Google Scholar]
  80. 80.
    Chanthorn W, Hartig F, Brockelman WY, Srisang W, Nathalang A, Santon J. 2019. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9:10015
    [Google Scholar]
  81. 81.
    McMahon BJ, Doyle S, Gray A, Kelly SB, Redpath SM. 2020. European bird declines: Do we need to rethink approaches to the management of abundant generalist predators?. J. Appl. Ecol. 57:1885–90
    [Google Scholar]
  82. 82.
    Harrison RD, Sreekar R, Brodie JF, Brook S, Luskin M et al. 2016. Impacts of hunting on tropical forests in Southeast Asia. Conserv. Biol. 30:972–81
    [Google Scholar]
  83. 83.
    Brochet AL, Van den Bossche W, Jbour S, Ndang'Ang'A PK, Jones VR et al. 2016. Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird Conserv. Int 26:1–28
    [Google Scholar]
  84. 84.
    Jiguet F, Robert A, Lorrillière R, Hobson KA, Kardynal KJ et al. 2019. Unravelling migration connectivity reveals unsustainable hunting of the declining ortolan bunting. Sci. Adv. 5:eaau2642
    [Google Scholar]
  85. 85.
    Casas F, Mougeot F, Viñuela J, Bretagnolle V. 2009. Effects of hunting on the behaviour and spatial distribution of farmland birds: importance of hunting-free refuges in agricultural areas. Anim. Conserv. 12:346–54
    [Google Scholar]
  86. 86.
    Pain DJ, Mateo R, Green RE 2019. Effects of lead from ammunition on birds and other wildlife: a review and update. Ambio 48:935–53
    [Google Scholar]
  87. 87.
    Dias MP, Martin R, Pearmain EJ, Burfield IJ, Small C et al. 2019. Threats to seabirds: a global assessment. Biol. Conserv. 237:525–37
    [Google Scholar]
  88. 88.
    Beastall C, Shepherd CR, Hadiprakarsa Y, Martyr D. 2016. Trade in the Helmeted Hornbill Rhinoplax vigil: the ‘ivory hornbill. ’. Bird Conserv. Int. 26:137–46
    [Google Scholar]
  89. 89.
    Scheffers BR, Oliveira BF, Lamb I, Edwards DP. 2019. Global wildlife trade across the tree of life. Science 366:71–76
    [Google Scholar]
  90. 90.
    Marshall H, Collar NJ, Lees AC, Moss A, Yuda P, Marsden SJ. 2020. Spatio-temporal dynamics of consumer demand driving the Asian Songbird Crisis. Biol. Conserv. 241:108237
    [Google Scholar]
  91. 91.
    Siriwat P, Nijman V. 2020. Wildlife trade shifts from brick-and-mortar markets to virtual marketplaces: a case study of birds of prey trade in Thailand. J. Asia-Pac. Biodivers. 13:454–61
    [Google Scholar]
  92. 92.
    Clavero M, Brotons L, Pons P, Sol D 2009. Prominent role of invasive species in avian biodiversity loss. Biol. Conserv. 142:2043–49
    [Google Scholar]
  93. 93.
    Loss SR, Will T, Marra PP 2015. Direct mortality of birds from anthropogenic causes. Annu. Rev. Ecol. Evol. Syst. 46:99–120
    [Google Scholar]
  94. 94.
    Weston MA, Stankowich T. 2013. Dogs as agents of disturbance. Free-Ranging Dogs and Wildlife Conservation ME Gompper 94–113 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  95. 95.
    Camp RJ, Pratt TK, Marshall AP, Amidon F, Williams LL. 2009. Recent status and trends of the land bird avifauna on Saipan, Mariana Islands, with emphasis on the endangered Nightingale Reed-warbler Acrocephalus luscinia. Bird Conserv. Int. 19:323–37
    [Google Scholar]
  96. 96.
    Rogers H, Lambers JHR, Miller R, Tewksbury JJ. 2012.. ‘ Natural experiment’ demonstrates top-down control of spiders by birds on a landscape level. PLOS ONE 7:e43446
    [Google Scholar]
  97. 97.
    Mortensen HS, Dupont YL, Olesen JM. 2008. A snake in paradise: disturbance of plant reproduction following extirpation of bird flower-visitors on Guam. Biol. Conserv. 141:2146–54
    [Google Scholar]
  98. 98.
    Plentovich S, Hebshi A, Conant S. 2009. Detrimental effects of two widespread invasive ant species on weight and survival of colonial nesting seabirds in the Hawaiian Islands. Biol. Invasions 11:289–98
    [Google Scholar]
  99. 99.
    Fessl B, Young HG, Young RP, Rodríguez-Matamoros J, Dvorak M, Tebbich S. 2010. How to save the rarest Darwin's finch from extinction: the mangrove finch on Isabela Island. Proc. R. Soc. B. 365:1019–30
    [Google Scholar]
  100. 100.
    Dyer EE, Cassey P, Redding DW, Collen B, Franks V et al. 2017. The global distribution and drivers of alien bird species richness. PLOS Biol 15:e2000942
    [Google Scholar]
  101. 101.
    Baker J, Harvey KJ, French K. 2014. Threats from introduced birds to native birds. Emu 114:1–12
    [Google Scholar]
  102. 102.
    Shivambu TC, Shivambu N, Downs CT. 2020. Impact assessment of seven alien invasive bird species already introduced to South Africa. Biol. Invasions 22:1829–47
    [Google Scholar]
  103. 103.
    van Riper C III, van Riper SG, Goff ML, Laird M. 1986. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 56:327–44
    [Google Scholar]
  104. 104.
    Boersma PD, Borboroglu PG, Gownaris NJ, Bost CA, Chiaradia A et al. 2020. Applying science to pressing conservation needs for penguins. Conserv. Biol. 34:103–12
    [Google Scholar]
  105. 105.
    Cerdà-Cuéllar M, Moré E, Ayats T, Aguilera M, Muñoz-González S et al. 2019. Do humans spread zoonotic enteric bacteria in Antarctica?. Sci. Total Environ. 654:190–96
    [Google Scholar]
  106. 106.
    Thaxter CB, Buchanan GM, Carr J, Butchart SHM, Newbold T et al. 2017. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. B. 284:20170829
    [Google Scholar]
  107. 107.
    Bernardino J, Bevanger K, Barrientos R, Dwyer JF, Marques AT et al. 2018. Bird collisions with power lines: state of the art and priority areas for research. Biol. Conserv. 222:1–13
    [Google Scholar]
  108. 108.
    Uddin M, Dutta S, Kolipakam V, Sharma H, Usmani F, Jhala Y. 2021. High bird mortality due to power lines invokes urgent environmental mitigation in a tropical desert. Biol. Conserv. 261:109262
    [Google Scholar]
  109. 109.
    Nichols KS, Homayoun T, Eckles J, Blair RB. 2018. Bird-building collision risk: an assessment of the collision risk of birds with buildings by phylogeny and behavior using two citizen-science datasets. PLOS ONE 13:e0201558
    [Google Scholar]
  110. 110.
    Van Doren BM, Horton KG, Dokter AM, Klinck H, Elbin SB, Farnsworth A. 2017. High-intensity urban light installation dramatically alters nocturnal bird migration. PNAS 114:11175–80
    [Google Scholar]
  111. 111.
    Chilvers BL, Morgan KJ, White BJ. 2021. Sources and reporting of oil spills and impacts on wildlife 1970–2018. Environ. Sci. Pollut. Res. 28:754–62
    [Google Scholar]
  112. 112.
    Kühn S, van Franeker JA. 2020. Quantitative overview of marine debris ingested by marine megafauna. Mar. Pollut. Bull. 151:110858
    [Google Scholar]
  113. 113.
    Lavers JL, Bond AL, Hutton I. 2014. Plastic ingestion by Flesh-footed Shearwaters (Puffinus carneipes): implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environ. Pollut. 187:124–29
    [Google Scholar]
  114. 114.
    Hallmann CA, Foppen RP, Van Turnhout CA, De Kroon H, Jongejans E 2014. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341–43
    [Google Scholar]
  115. 115.
    Wagner DL. 2020. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65:457–80
    [Google Scholar]
  116. 116.
    Margalida A, Oliva-Vidal P. 2017. The shadow of diclofenac hangs over European vultures. Nat. Ecol. Evol. 1:1050
    [Google Scholar]
  117. 117.
    Møller AP, Laursen K. 2015. Reversible effects of fertilizer use on population trends of waterbirds in Europe. Biol. Conserv. 184:389–95
    [Google Scholar]
  118. 118.
    Morelli F, Laursen K, Svitok M, Benedetti Y, Møller AP. 2021. Eiders, nutrients and eagles: bottom-up and top-down population dynamics in a marine bird. J. Anim. Ecol. 90:1844–53
    [Google Scholar]
  119. 119.
    Rushing CS, Royle JA, Ziolkowski DJ, Pardieck KL. 2020. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. PNAS 117:12897–903
    [Google Scholar]
  120. 120.
    Virkkala R, Lehikoinen A. 2017. Birds on the move in the face of climate change: high species turnover in northern Europe. Ecol. Evol. 7:8201–209
    [Google Scholar]
  121. 121.
    Şekercioğlu ÇH, Primack RB, Wormworth J. 2012. The effects of climate change on tropical birds. Biol. Conserv. 148:1–18
    [Google Scholar]
  122. 122.
    Freeman BG, Scholer MN, Ruiz-Gutierrez V, Fitzpatrick JW. 2018. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. PNAS 115:11982–87
    [Google Scholar]
  123. 123.
    Howard C, Stephens PA, Tobias JA, Sheard C, Butchart SH, Willis SG. 2018. Flight range, fuel load and the impact of climate change on the journeys of migrant birds. Proc. R. Soc. B. 285:20172329
    [Google Scholar]
  124. 124.
    Mayor SJ, Guralnick RP, Tingley MW, Otegui J, Withey J et al. 2017. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci. Rep. 7:1902
    [Google Scholar]
  125. 125.
    Shipley JR, Twining CW, Taff CC, Vitousek MN, Flack A, Winkler DW. 2020. Birds advancing lay dates with warming springs face greater risk of chick mortality. PNAS 117:25590–94
    [Google Scholar]
  126. 126.
    Zuckerberg B, Strong C, LaMontagne JM, George SS, Betancourt JL, Koenig WD. 2020. Climate dipoles as continental drivers of plant and animal populations. Trends Ecol. Evol. 35:440–53
    [Google Scholar]
  127. 127.
    Strong C, Zuckerberg B, Betancourt JL, Koenig WD. 2015. Climatic dipoles drive two principal modes of North American boreal bird irruption. PNAS 112:E2795–802
    [Google Scholar]
  128. 128.
    Bateman BL, Taylor L, Wilsey C, Wu J, LeBaron GS, Langham G. 2020. Risk to North American birds from climate change-related threats. Conserv. Sci. Pract. 2:e243
    [Google Scholar]
  129. 129.
    Weeks BC, Willard DE, Zimova M, Ellis AA, Witynski ML, Hennen M, Winger BM. 2020. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23:316–25
    [Google Scholar]
  130. 130.
    Marques A, Martins IS, Kastner T, Plutzar C, Theurl MC et al. 2019. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3:628–37
    [Google Scholar]
  131. 131.
    Steven R, Castley JG. 2013. Tourism as a threat to critically endangered and endangered birds: global patterns and trends in conservation hotspots. Biod. Conserv. 22:1063–82
    [Google Scholar]
  132. 132.
    Lindsey P, Allan J, Brehony P, Dickman A, Robson A et al. 2020. Conserving Africa's wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 4:1300–10
    [Google Scholar]
  133. 133.
    Schrimpf MB, Des Brisay PG, Johnston A, Smith AC, Sánchez-Jasso J et al. 2021. Reduced human activity during COVID-19 alters avian land use across North America. Sci. Adv. 7:eabf5073
    [Google Scholar]
  134. 134.
    Boyd C, Brooks TM, Butchart SH, Edgar GJ, Da Fonseca GA et al. 2008. Spatial scale and the conservation of threatened species. Conserv. Lett. 1:37–43
    [Google Scholar]
  135. 135.
    Donald PF, Fishpool LDC, Ajagbe A, Bennun LA, Bunting G et al. 2018. Important Bird and Biodiversity Areas (IBAs): the development and characteristics of a global inventory of key sites for biodiversity. Bird Conserv. Int. 29:177–98
    [Google Scholar]
  136. 136.
    Donald P, Buchanan GM, Balmford A, Bingham H, Couturier AR et al. 2019. The prevalence, characteristics and effectiveness of Aichi Target 11's “other effective area-based conservation measures” (OECMs) in Key Biodiversity Areas. Conserv. Lett. 12:e12659
    [Google Scholar]
  137. 137.
    Rozendaal DM, Bongers F, Aide TM, Alvarez-Dávila E, Ascarrunz N et al. 2019. Biodiversity recovery of Neotropical secondary forests. Sci. Adv 5:eaau3114
    [Google Scholar]
  138. 138.
    Strassburg BB, Iribarrem A, Beyer HL, Cordeiro CL, Crouzeilles R et al. 2020. Global priority areas for ecosystem restoration. Nature 586:724–29
    [Google Scholar]
  139. 139.
    Lorimer J, Sandom C, Jepson P, Doughty C, Barua M, Kirby KJ. 2015. Rewilding: science, practice, and politics. Annu. Rev. Environ. Resour. 40:39–62
    [Google Scholar]
  140. 140.
    Veldman JW, Overbeck GE, Negreiros D, Mahy G, Le Stradic S et al. 2015. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65:1011–18
    [Google Scholar]
  141. 141.
    Pulido-Santacruz P, Renjifo LM. 2010. Live fences as tools for biodiversity conservation: a study case with birds and plants. Agrofor. Syst. 81:15–30
    [Google Scholar]
  142. 142.
    Golet GH, Low C, Avery S, Andrews K, McColl CJ et al. 2018. Using ricelands to provide temporary shorebird habitat during migration. Ecol. Appl. 28:409–26
    [Google Scholar]
  143. 143.
    Margalida A, Mateo R 2019. Illegal killing of birds in Europe continues. Science 363:1161
    [Google Scholar]
  144. 144.
    Gallo-Cajiao E, Morrison TH, Woodworth BK, Lees AC, Naves LC et al. 2020. Extent and potential impact of hunting on migratory shorebirds in the Asia-Pacific. Biol. Conserv. 246:108582
    [Google Scholar]
  145. 145.
    Carrasco LR, Chan J, McGrath FL, Nghiem LT. 2017. Biodiversity conservation in a telecoupled world. Ecol. Soc. 22:24
    [Google Scholar]
  146. 146.
    Roulin A, Rashid MA, Spiegel B, Charter M, Dreiss AN, Leshem Y. 2017.. ‘ Nature knows no boundaries’: the role of nature conservation in peacebuilding. Trends Ecol. Evol. 32:305–10
    [Google Scholar]
  147. 147.
    Collar NJ, Butchart SHM. 2014. Conservation breeding and avian diversity: chances and challenges. Int. Zoo Yearb. 48:7–28
    [Google Scholar]
  148. 148.
    Owen A, Wilkinson R, Sözer R. 2014. In situ conservation breeding and the role of zoological institutions and private breeders in the recovery of highly endangered Indonesian passerine birds. Int. Zoo Yearb. 48:199–211
    [Google Scholar]
  149. 149.
    Butchart SH, Bird JP. 2010. Data deficient birds on the IUCN Red List: What don't we know and why does it matter?. Biol. Conserv. 143:239–47
    [Google Scholar]
  150. 150.
    Wearn OR, Freeman R, Jacoby DM. 2019. Responsible AI for conservation. Nat. Mach. Intell. 1:72–73
    [Google Scholar]
  151. 151.
    Akçakaya HR, Bennett EL, Brooks TM, Grace MK, Heath A et al. 2018. Quantifying species recovery and conservation success to develop an IUCN Green List of Species. Conserv. Biol. 32:1128–38
    [Google Scholar]
  152. 152.
    Dayer AA, Barnes JC, Dietsch AM, Keating JM, Naves LC. 2020. Advancing scientific knowledge and conservation of birds through inclusion of conservation social sciences in the American Ornithological Society. Condor 122:duaa047
    [Google Scholar]
  153. 153.
    Manfredo MJ, Dayer AA. 2004. Concepts for exploring the social aspects of human-wildlife conflicts in a global context. Hum. Dimens. Wildl. 9:317–28
    [Google Scholar]
  154. 154.
    Bennett NJ, Roth R, Klain SC, Chan K, Christie P et al. 2017. Conservation social science: understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205:93–108
    [Google Scholar]
  155. 155.
    Wotton SR, Eaton MA, Sheehan D, Munyekenye FB, Burfield IJ et al. 2020. Developing biodiversity indicators for African birds. Oryx 54:62–73
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112420-014642
Loading
/content/journals/10.1146/annurev-environ-112420-014642
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error