1932

Abstract

Ecological thresholds comprise relatively fast changes in ecological conditions, with respect to time or external drivers, and are an attractive concept in both scientific and policy arenas. However, there is considerable debate concerning the existence, underlying mechanisms, and generalizability of ecological thresholds across a range of ecological subdisciplines. Here, we usethe general concept of scale as a unifying framework with which to systematically navigate the variability within ecological threshold research. We review the literature to show how the observational scale adopted in any one study, defined by its organizational level, spatiotemporal grain and extent, and analytical method, can influence threshold detection and magnitude. We highlight a need for nuance in synthetic studies of thresholds, which could improve our predictive understanding of thresholds. Nuance is also needed when translating threshold concepts into policies, including threshold contingencies and uncertainties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112420-015910
2022-10-17
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-112420-015910.html?itemId=/content/journals/10.1146/annurev-environ-112420-015910&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y et al. 2020. Global ecosystem thresholds driven by aridity. Science 367:6479787–90
    [Google Scholar]
  2. 2.
    Hillebrand H, Donohue I, Harpole WS, Hodapp D, Kucera M et al. 2020. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4:111502–9
    [Google Scholar]
  3. 3.
    Ruddiman WF. 2013. The Anthropocene. Annu. Rev. Earth Planet. Sci. 41:45–68
    [Google Scholar]
  4. 4.
    Malhi Y. 2017. The concept of the Anthropocene. Annu. Rev. Environ. Resour. 42:77–104
    [Google Scholar]
  5. 5.
    Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J et al. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:64711–10
    [Google Scholar]
  6. 6.
    Leclère D, Obersteiner M, Barrett M, Butchart SHM, Chaudhary A et al. 2020. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585:7826551–56
    [Google Scholar]
  7. 7.
    Scheffer M, Jeppesen E. 2007. Regime shifts in shallow lakes. Ecosystems 10:11–3
    [Google Scholar]
  8. 8.
    de Young B, Barange M, Beaugrand G, Harris R, Perry RI et al. 2008. Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol. Evol. 23:7402–9
    [Google Scholar]
  9. 9.
    Ratajczak Z, Carpenter SR, Ives AR, Kucharik CJ, Ramiadantsoa T et al. 2018. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33:7513–26
    [Google Scholar]
  10. 10.
    Kelly RP, Erickson AL, Mease LA, Battista W, Kittinger JN, Fujita R. 2015. Embracing thresholds for better environmental management. Philos. Trans. R. Soc. B. 370:165920130276
    [Google Scholar]
  11. 11.
    Foley MM, Martone RG, Fox MD, Kappel CV, Mease LA et al. 2015. Using ecological thresholds to inform resource management: current options and future possibilities. Front. Mar. Sci. 2:951–12
    [Google Scholar]
  12. 12.
    Newton AC. 2021. Ecosystem Collapse and Recovery Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  13. 13.
    Rockström J, Steffen W, Noone K, Persson Å, Chapin FS et al. 2009. A safe operating space for humanity. Nature 461:7263472–75
    [Google Scholar]
  14. 14.
    Lade SJ, Steffen W, de Vries W, Carpenter SR, Donges JF et al. 2020. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3:2119–28
    [Google Scholar]
  15. 15.
    Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I et al. 2006. Ecological thresholds: The key to successful environmental management or an important concept with no practical application?. Ecosystems 9:1–13
    [Google Scholar]
  16. 16.
    Dodds WK, Clements WH, Gido K, Hilderbrand RH, King RS. 2010. Thresholds, breakpoints, and nonlinearity in freshwaters as related to management. J. North Am. Benthol. Soc. 29:3988–97
    [Google Scholar]
  17. 17.
    Banks-Leite C, Larrosa C, Carrasco LR, Tambosi LR, Milner-Gulland EJ. 2021. The suggestion that landscapes should contain 40% of forest cover lacks evidence and is problematic. Ecol. Lett. 24:51112–13
    [Google Scholar]
  18. 18.
    Johnson CJ. 2013. Identifying ecological thresholds for regulating human activity: Effective conservation or wishful thinking?. Biol. Conserv. 168:57–65
    [Google Scholar]
  19. 19.
    Turner MG, Calder WJ, Cumming GS, Hughes TP, Jentsch A et al. 2020. Climate change, ecosystems and abrupt change: science priorities. Philos. Trans. R. Soc. B. 375:179420190105
    [Google Scholar]
  20. 20.
    Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C et al. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314:5800787–90
    [Google Scholar]
  21. 21.
    Daan N, Gislason H, Pope JG, Rice JC. 2011. Apocalypse in world fisheries? The reports of their death are greatly exaggerated. ICES J. Mar. Sci. 68:71375–78
    [Google Scholar]
  22. 22.
    Pauly D, Hilborn R, Branch TA. 2013. Fisheries: Does catch reflect abundance?. Nature 494:7437303–6
    [Google Scholar]
  23. 23.
    Arroyo-Rodríguez V, Fahrig L, Tabarelli M, Watling JI, Tischendorf L et al. 2020. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23:91404–20
    [Google Scholar]
  24. 24.
    Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:6856591–96
    [Google Scholar]
  25. 25.
    Simkin SM, Allen EB, Bowman WD, Clark CM, Belnap J et al. 2016. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. PNAS 113:154086–91
    [Google Scholar]
  26. 26.
    Nogué S, Santos AMC, Birks HJB, Björck S, Castilla-Beltrán A et al. 2021. The human dimension of biodiversity changes on islands. Science 372:6541488–91
    [Google Scholar]
  27. 27.
    Biggs R, Peterson GD, Rocha JC. 2018. The Regime Shifts Database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. 23:39
    [Google Scholar]
  28. 28.
    Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR et al. 2009. Early-warning signals for critical transitions. Nature 461:726053–59
    [Google Scholar]
  29. 29.
    Brook BW, Ellis EC, Perring MP, Mackay AW, Blomqvist L. 2013. Does the terrestrial biosphere have planetary tipping points?. Trends Ecol. Evol. 28:7396–401
    [Google Scholar]
  30. 30.
    Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W et al. 2012. Anticipating critical transitions. Science 338:6105344–48
    [Google Scholar]
  31. 31.
    Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T et al. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35:557–81
    [Google Scholar]
  32. 32.
    Mace GM, Reyers B, Alkemade R, Biggs R, Chapin FS III et al. 2014. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28:289–97
    [Google Scholar]
  33. 33.
    Burns DA, Blett T, Haeuber R, Pardo LH. 2008. Critical loads as a policy tool for protecting ecosystems from the effects of air pollutants. Front. Ecol. Environ. 6:3156–59
    [Google Scholar]
  34. 34.
    Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G et al. 2001. Ecological meltdown in predator-free forest fragments. Science 294:55481923–26
    [Google Scholar]
  35. 35.
    Lindenmayer DB, Luck G. 2005. Synthesis: thresholds in conservation and management. Biol. Conserv. 124:3351–54
    [Google Scholar]
  36. 36.
    Suding KN, Hobbs RJ. 2009. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24:5271–79
    [Google Scholar]
  37. 37.
    Hilker FM, Liz E 2020. Threshold harvesting as a conservation or exploitation strategy in population management. Theoret. Ecol. 13:519–536
    [Google Scholar]
  38. 38.
    Hutchings JA, Reynolds JD. 2004. Marine fish population collapses: consequences for recovery and extinction risk. Bioscience 54:4297–309
    [Google Scholar]
  39. 39.
    Frank KT, Petrie B, Choi JS, Leggett WC. 2005. Trophic cascades in a formerly cod-dominated ecosystem. Science 308:57281621–23
    [Google Scholar]
  40. 40.
    Silva WTAF, Bottagisio E, Härkönen T, Galatius A, Olsen MT, Harding KC. 2021. Risk for overexploiting a seemingly stable seal population: influence of multiple stressors and hunting. Ecosphere 12:1e03343
    [Google Scholar]
  41. 41.
    Houk P, Cuetos-Bueno J, Kerr AM, McCann K. 2018. Linking fishing pressure with ecosystem thresholds and food web stability on coral reefs. Ecol. Monogr. 88:1109–19
    [Google Scholar]
  42. 42.
    Fahrig L. 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34:487–515
    [Google Scholar]
  43. 43.
    Fahrig L, Watling JI, Arnillas CA, Arroyo-Rodríguez V, Jörger-Hickfang T et al. 2021. Resolving the SLOSS dilemma for biodiversity conservation: a research agenda. Biol. Rev. 97:199–104
    [Google Scholar]
  44. 44.
    Kremen C. 2015. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. N. Y. Acad. Sci. 1355:152–76
    [Google Scholar]
  45. 45.
    Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J et al. 2014. Land sparing versus land sharing: moving forward. Conserv. Lett. 7:3149–57
    [Google Scholar]
  46. 46.
    Chen K, Olden JD. 2020. Threshold responses of riverine fish communities to land use conversion across regions of the world. Glob. Change Biol. 26:94952–65
    [Google Scholar]
  47. 47.
    Felipe-Lucia MR, Soliveres S, Penone C, Fischer M, Ammer C et al. 2020. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. PNAS 117:4528140–49
    [Google Scholar]
  48. 48.
    Wies G, Arzeta SN, Ramos MM. 2021. Critical ecological thresholds for conservation of tropical rainforest in Human Modified Landscapes. Biol. Conserv. 255:109023
    [Google Scholar]
  49. 49.
    Hughes BB, Eby R, Van Dyke E, Tinker MT, Marks CI et al. 2013. Recovery of a top predator mediates negative eutrophic effects on seagrass. PNAS 110:3815313–18
    [Google Scholar]
  50. 50.
    Burkholder JAM, Tomasko DA, Touchette BW. 2007. Seagrasses and eutrophication. J. Exp. Mar. Bio. Ecol. 350:1–246–72
    [Google Scholar]
  51. 51.
    Kelly MG, Phillips G, Teixeira H, Várbíró G, Salas Herrero F et al. 2022. Establishing ecologically-relevant nutrient thresholds: a tool-kit with guidance on its use. Sci. Total Environ. 807:Pt. 3150977
    [Google Scholar]
  52. 52.
    Payne RJ, Dise NB, Stevens CJ, Gowing DJ, others. 2013. Impact of nitrogen deposition at the species level. PNAS 110:3984–87
    [Google Scholar]
  53. 53.
    Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT et al. 2011. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol. Appl. 21:83049–82
    [Google Scholar]
  54. 54.
    Wilkins K, Clark C, Aherne J. 2022. Ecological thresholds under atmospheric nitrogen deposition for 1200 herbaceous species and 24 communities across the US. Glob. Change Biol. 28:72381–95
    [Google Scholar]
  55. 55.
    Lovett GM. 2013. Critical issues for critical loads. PNAS 110:3808–9
    [Google Scholar]
  56. 56.
    Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V et al. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14:7702–8
    [Google Scholar]
  57. 57.
    Reynolds SA, Aldridge DC. 2021. Global impacts of invasive species on the tipping points of shallow lakes. Glob. Change Biol. 27:36129–38
    [Google Scholar]
  58. 58.
    Taylor CM, Hastings A. 2005. Allee effects in biological invasions. Ecol. Lett. 8:8895–908
    [Google Scholar]
  59. 59.
    Crandall R, Knight TM. 2015. Positive frequency dependence undermines the success of restoration using historical disturbance regimes. Ecol. Lett. 18:9883–91
    [Google Scholar]
  60. 60.
    Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15:4365–77
    [Google Scholar]
  61. 61.
    Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD et al. 2017. Global warming and recurrent mass bleaching of corals. Nature 543:7645373–77
    [Google Scholar]
  62. 62.
    Montoya JM, Donohue I, Pimm SL. 2018. Planetary boundaries for biodiversity: implausible science, pernicious policies. Trends Ecol. Evol. 33:271–73
    [Google Scholar]
  63. 63.
    Banks-Leite C, Pardini R, Tambosi LR, Pearse WD, Bueno AA et al. 2014. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345:62001041–45
    [Google Scholar]
  64. 64.
    Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105:186668–72
    [Google Scholar]
  65. 65.
    Bonachela JA, Burrows MT, Pinsky ML. 2021. Shape of species climate response curves affects community response to climate change. Ecol. Lett. 24:4708–18
    [Google Scholar]
  66. 66.
    Dodson SI, Arnott SE, Cottingham KL. 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81:102662–79
    [Google Scholar]
  67. 67.
    Callaghan CT, Bino G, Major RE, Martin JM, Lyons MB, Kingsford RT. 2019. Heterogeneous urban green areas are bird diversity hotspots: insights using continental-scale citizen science data. Landsc. Ecol. 34:61231–46
    [Google Scholar]
  68. 68.
    Yuan ZY, Jiao F, Li YH, Kallenbach RL. 2016. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6:11–8
    [Google Scholar]
  69. 69.
    Beisner BE, Haydon DT, Cuddington K. 2003. Alternative stable states in ecology. Front. Ecol. Environ. 1:7376–82
    [Google Scholar]
  70. 70.
    Fukami T, Nakajima M. 2011. Community assembly: Alternative stable states or alternative transient states?. Ecol. Lett. 14:10973–84
    [Google Scholar]
  71. 71.
    Staver AC, Archibald S, Levin SA 2011. The global extent and determinants of savanna and forest as alternative biome states. Science 334:6053230–32
    [Google Scholar]
  72. 72.
    Mumby PJ, Hastings A, Edwards HJ. 2007. Thresholds and the resilience of Caribbean coral reefs. Nature 450:716698–101
    [Google Scholar]
  73. 73.
    Chen N, Yu K, Jia R, Teng J, Zhao C. 2020. Biocrust as one of multiple stable states in global drylands. Sci. Adv. 6:39eaay3763
    [Google Scholar]
  74. 74.
    Rocha JC, Peterson G, Bodin Ö, Levin S 2018. Cascading regime shifts within and across scales. Science 362:64211379–83
    [Google Scholar]
  75. 75.
    Barry D, Hartigan JA. 1993. A Bayesian analysis for change point problems. J. Am. Stat. Assoc. 88:421309–19
    [Google Scholar]
  76. 76.
    Ficetola GF, Denoël M. 2009. Ecological thresholds: an assessment of methods to identify abrupt changes in species–habitat relationships. Ecography 32:61075–84
    [Google Scholar]
  77. 77.
    Leisch F, Hornik K, Kuan C-M. 2000. Monitoring structural changes with the generalized fluctuation test. Econom. Theory. 16:6835–54
    [Google Scholar]
  78. 78.
    Toms JD, Lesperance ML. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:82034–41
    [Google Scholar]
  79. 79.
    Yin D, Leroux SJ, He F. 2017. Methods and models for identifying thresholds of habitat loss. Ecography 40:1131–43
    [Google Scholar]
  80. 80.
    Samhouri JF, Andrews KS, Fay G, Harvey CJ, Hazen EL et al. 2017. Defining ecosystem thresholds for human activities and environmental pressures in the California Current. Ecosphere 8:6e01860
    [Google Scholar]
  81. 81.
    Su H, Wang R, Feng Y, Li Y, Li Y et al. 2021. Long-term empirical evidence, early warning signals and multiple drivers of regime shifts in a lake ecosystem. J. Ecol. 109:93182–94
    [Google Scholar]
  82. 82.
    Poikane S, Várbíró G, Kelly MG, Birk S, Phillips G. 2021. Estimating river nutrient concentrations consistent with good ecological condition: more stringent nutrient thresholds needed. Ecol. Indic. 121:107017
    [Google Scholar]
  83. 83.
    Bestelmeyer BT, Ellison AM, Fraser WR, Gorman KB, Holbrook SJ et al. 2011. Analysis of abrupt transitions in ecological systems. Ecosphere 2:121–26
    [Google Scholar]
  84. 84.
    Litzow MA, Hunsicker ME. 2016. Early warning signals, nonlinearity, and signs of hysteresis in real ecosystems. Ecosphere 7:12e01614
    [Google Scholar]
  85. 85.
    Schmitt RJ, Holbrook SJ, Davis SL, Brooks AJ, Adam TC. 2019. Experimental support for alternative attractors on coral reefs. PNAS 116:104372–81
    [Google Scholar]
  86. 86.
    Boettiger C, Hastings A. 2012. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9:752527–39
    [Google Scholar]
  87. 87.
    Levin SA. 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73:61943–67
    [Google Scholar]
  88. 88.
    Allen TF, Starr T. 1982. Hierarchy: Perspectives for Ecological Complexity Chicago: Univ. Chicago Press
    [Google Scholar]
  89. 89.
    Chave J. 2013. The problem of pattern and scale in ecology: What have we learned in 20 years?. Ecol. Lett. 16:4–16
    [Google Scholar]
  90. 90.
    Wu J, Li H 2006. Concepts of scale and scaling. Scaling and Uncertainty Analysis in Ecology: Methods and Applications J Wu, KB Jones, H Li, OL Loucks 3–15 Dordrecht, Neth: Springer
    [Google Scholar]
  91. 91.
    Jackson HB, Fahrig L. 2012. What size is a biologically relevant landscape?. Landsc. Ecol. 27:7929–41
    [Google Scholar]
  92. 92.
    Chandler R, Hepinstall-Cymerman J. 2016. Estimating the spatial scales of landscape effects on abundance. Landsc. Ecol. 31:61383–94
    [Google Scholar]
  93. 93.
    Baker ME, King RS. 2010. A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods Ecol. Evol. 1:125–37
    [Google Scholar]
  94. 94.
    With KA, Crist TO. 1995. Critical thresholds in species’ responses to landscape structure. Ecology 76:82446–59
    [Google Scholar]
  95. 95.
    Aspin TWH, Khamis K, Matthews TJ, Milner AM, O'Callaghan MJ et al. 2019. Extreme drought pushes stream invertebrate communities over functional thresholds. Glob. Change Biol. 25:1230–44
    [Google Scholar]
  96. 96.
    Trisos CH, Merow C, Pigot AL. 2020. The projected timing of abrupt ecological disruption from climate change. Nature 580:7804496–501
    [Google Scholar]
  97. 97.
    Carstensen J, Telford RJ, Birks HJB. 2013. Diatom flickering prior to regime shift. Nature 498:7455E11–12
    [Google Scholar]
  98. 98.
    Taranu ZE, Carpenter SR, Frossard V, Jenny J-P, Thomas Z et al. 2018. Can we detect ecosystem critical transitions and signals of changing resilience from paleo-ecological records?. Ecosphere 9:10e02438
    [Google Scholar]
  99. 99.
    Anderson L, Wahl DB, Bhattacharya T. 2022. Understanding rates of change: a case study using fossil pollen records from California to assess the potential for and challenges to a regional data synthesis. Quat. Int 621:2636
    [Google Scholar]
  100. 100.
    Doncaster CP, Alonso Chávez V, Viguier C, Wang R, Zhang E et al. 2016. Early warning of critical transitions in biodiversity from compositional disorder. Ecology 97:113079–90
    [Google Scholar]
  101. 101.
    Mottl O, Grytes J-A, Seddon AWR, Steinbauer MJ, Bhatta KP et al. 2021. Rate-of-change analysis in palaeoecology revisited: a new approach. Rev. Palaeobot. Palynol. 293:104483
    [Google Scholar]
  102. 102.
    Holland JD, Bert DG, Fahrig L. 2004. Determining the spatial scale of species’ response to habitat. Bioscience 54:3227–33
    [Google Scholar]
  103. 103.
    Lechner AM, Langford WT, Jones SD, Bekessy SA, Gordon A 2012. Investigating species–environment relationships at multiple scales: differentiating between intrinsic scale and the modifiable areal unit problem. Ecol. Complex. 11:91–102
    [Google Scholar]
  104. 104.
    Kupsch D, Vendras E, Ocampo-Ariza C, Batáry P, Motombi FN et al. 2019. High critical forest habitat thresholds of native bird communities in Afrotropical agroforestry landscapes. Biol. Conserv. 230:20–28
    [Google Scholar]
  105. 105.
    Eigenbrod F, Hecnar SJ, Fahrig L. 2011. Sub-optimal study design has major impacts on landscape-scale inference. Biol. Conserv. 144:1298–305
    [Google Scholar]
  106. 106.
    Viana DS, Granados JE, Fandos P, Pérez JM, Cano-Manuel FJ et al. 2018. Linking seasonal home range size with habitat selection and movement in a mountain ungulate. Mov. Ecol. 6:11–11
    [Google Scholar]
  107. 107.
    Ridding LE, Newton AC, Keith SA, Walls RM, Diaz A et al. 2021. Inconsistent detection of extinction debts using different methods. Ecography 44:133–43
    [Google Scholar]
  108. 108.
    Daily JP, Hitt NP, Smith DR, Snyder CD. 2012. Experimental and environmental factors affect spurious detection of ecological thresholds. Ecology 93:117–23
    [Google Scholar]
  109. 109.
    Bruel R, White ER. 2021. Sampling requirements and approaches to detect ecosystem shifts. Ecol. Indic. 121:107096
    [Google Scholar]
  110. 110.
    Spake R, Bellamy C, Graham L, Watts K, Wilson T et al. 2019. An analytical framework for spatially targeted management of natural capital. Nat. Sustain. 2:290–97
    [Google Scholar]
  111. 111.
    Durant JM, Ono K, Stenseth NC, Langangen Ø. 2020. Nonlinearity in interspecific interactions in response to climate change: cod and haddock as an example. Glob. Change Biol. 26:105554–63
    [Google Scholar]
  112. 112.
    Xiao X, White EP, Hooten MB, Durham SL. 2011. On the use of log-transformation versus nonlinear regression for analyzing biological power laws. Ecology 92:101887–94
    [Google Scholar]
  113. 113.
    Andersen T, Carstensen J, Hernandez-Garcia E, Duarte CM. 2009. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol. 24:149–57
    [Google Scholar]
  114. 114.
    Thomson JR, Kimmerer WJ, Brown LR, Newman KB, Mac Nally R et al. 2010. Bayesian change point analysis of abundance trends for pelagic fishes in the upper San Francisco Estuary. Ecol. Appl. 20:51431–48
    [Google Scholar]
  115. 115.
    Simmonds JS, van Rensburg BJ, Maron M. 2017. Non-random patterns of vegetation clearing and potential biases in studies of habitat area effects. Landsc. Ecol. 32:4729–43
    [Google Scholar]
  116. 116.
    Ferraro PJ, Sanchirico JN, Smith MD. 2019. Causal inference in coupled human and natural systems. PNAS 116:125311–18
    [Google Scholar]
  117. 117.
    Stuart EA. 2010. Matching methods for causal inference: a review and a look forward. Stat. Sci. 25:11–21
    [Google Scholar]
  118. 118.
    Grace JB, Irvine KM. 2020. Scientist's guide to developing explanatory statistical models using causal analysis principles. Ecology 101:4e02962
    [Google Scholar]
  119. 119.
    Griffen BD, Belgrad BA, Cannizzo ZJ, Knotts ER, Hancock ER. 2016. Rethinking our approach to multiple stressor studies in marine environments. Mar. Ecol. Prog. Ser. 543:273–81
    [Google Scholar]
  120. 120.
    Thompson PL, Guzman LM, De Meester L, Horváth Z, Ptacnik R et al. 2020. A process-based metacommunity framework linking local and regional scale community ecology. Ecol. Lett. 23:91314–29
    [Google Scholar]
  121. 121.
    Morse CC, Huryn AD, Cronan C. 2003. Impervious surface area as a predictor of the effects of urbanization on stream insect communities in Maine, USA. Environ. Monit. Assess. 89:195–127
    [Google Scholar]
  122. 122.
    Dornelas M, Gotelli NJ, Shimadzu H, Moyes F, Magurran AE, McGill BJ. 2019. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22:5847–54
    [Google Scholar]
  123. 123.
    Chase JM, Biro EG, Ryberg WA, Smith KG. 2009. Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecol. Lett. 12:111210–18
    [Google Scholar]
  124. 124.
    Chase JM. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:59841388–91
    [Google Scholar]
  125. 125.
    Chase JM, McGill BJ, Thompson PL, Antão LH, Bates AE et al. 2019. Species richness change across spatial scales. Oikos 128:81079–91
    [Google Scholar]
  126. 126.
    Bull JW, Gordon A, Law EA, Suttle KB, Milner-Gulland EJ. 2014. Importance of baseline specification in evaluating conservation interventions and achieving no net loss of biodiversity. Conserv. Biol. 28:3799–809
    [Google Scholar]
  127. 127.
    Watson SCL, Grandfield FGC, Herbert RJH, Newton AC. 2018. Detecting ecological thresholds and tipping points in the natural capital assets of a protected coastal ecosystem. Estuar. Coast. Shelf Sci. 215:112–23
    [Google Scholar]
  128. 128.
    Mace GM, Hails RS, Cryle P, Harlow J, Clarke SJ. 2015. Towards a risk register for natural capital. J. Appl. Ecol. 52:3641–53
    [Google Scholar]
  129. 129.
    Simmonds JS, van Rensburg BJ, Tulloch AIT, Maron M. 2019. Landscape-specific thresholds in the relationship between species richness and natural land cover. J. Appl. Ecol. 56:41019–29
    [Google Scholar]
  130. 130.
    Winter A-M, Richter A, Eikeset AM. 2020. Implications of Allee effects for fisheries management in a changing climate: evidence from Atlantic cod. Ecol. Appl. 30:1e01994
    [Google Scholar]
  131. 131.
    Spake R, Bellamy C, Gill R, Watts K, Wilson T et al. 2020. Forest damage by deer depends on cross-scale interactions between climate, deer density and landscape structure. J. Appl. Ecol. 57:1376–90
    [Google Scholar]
  132. 132.
    Brudvig LA, Barak RS, Bauer JT, Caughlin TT, Laughlin DC et al. 2017. Interpreting variation to advance predictive restoration science. J. Appl. Ecol. 54:41018–27
    [Google Scholar]
  133. 133.
    Kéfi S, Holmgren M, Scheffer M. 2016. When can positive interactions cause alternative stable states in ecosystems?. Funct. Ecol. 30:188–97
    [Google Scholar]
  134. 134.
    Wiens JA, Hobbs RJ. 2015. Integrating conservation and restoration in a changing world. Bioscience 65:3302–12
    [Google Scholar]
  135. 135.
    Hobbs RJ, Higgs E, Harris JA. 2009. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24:11599–605
    [Google Scholar]
  136. 136.
    Gardner CJ, Bullock JM. 2021. In the climate emergency, conservation must become survival ecology. Front. Conserv. Sci. 2:659912
    [Google Scholar]
  137. 137.
    Huggett AJ. 2005. The concept and utility of ‘ecological thresholds’ in biodiversity conservation. Biol. Conserv. 124:3301–10
    [Google Scholar]
  138. 138.
    Melo I, Ochoa-Quintero JM, de Oliveira Roque F, Dalsgaard B. 2018. A review of threshold responses of birds to landscape changes across the world. J. Field Ornithol. 89:4303–14
    [Google Scholar]
  139. 139.
    Lade SJ, Wang-Erlandsson L, Staal A, Rocha JC. 2021. Empirical pressure-response relations can benefit assessment of safe operating spaces. Nat. Ecol. Evol. 5:1078–79
    [Google Scholar]
  140. 140.
    Ladouceur E, Shackelford N, Bouazza K, Brudvig L, Bucharova A et al. 2022. Knowledge sharing for shared success in the decade on ecosystem restoration. Ecol. Solut. Evid. 3:1e12117
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112420-015910
Loading
/content/journals/10.1146/annurev-environ-112420-015910
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error