1932

Abstract

Plastics are persistent and pervasive throughout the environment and have now been reported from the deepest parts of the ocean to the tops of the highest and most remote mountains. There is a body of information on the sources, degradation, and transport of plastics as well as a variety of research investigating the ecotoxicological and wider ecological consequences of plastic ingestion and accumulation. Such knowledge has been obtained with developments in field and laboratory methods for plastic identification and then well-publicized in the media and wider public communications. However, although there has been a large focus on plastic pollution within the past decade, there is plenty that we do not yet know. Even within the past five years, sources of microplastics (1 μm–5 mm) to the environment have been confirmed that had not previously been considered, for example, road paints and tire wear particles. Initial research focused on plastic in the marine environment, but understanding on the accumulation and impacts in terrestrial and freshwater environments is growing. There is a substantial lack of basic science focused on the efficiency of solutions aimed at mitigating plastic pollution. This review highlights some recent (past five years) research on plastics in the environment, including investigations in accumulation, sources, distribution, impacts, solutions and provides directions for future work.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112522-072642
2023-11-13
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112522-072642.html?itemId=/content/journals/10.1146/annurev-environ-112522-072642&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Borrelle SB, Ringma J, Lavender Law K, Monnahan CC, Lebreton L et al. 2020. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369:65091515–18
    [Google Scholar]
  2. 2.
    PlasticsEurope 2019. Plastics—the facts 2019: an analysis of European plastics production, demand and waste data Rep. PlasticsEurope Messe Düsseldorf, Frankfurt:
  3. 3.
    Andrady AL, Neal MA. 2009. Applications and societal benefits of plastics. Philos. Trans. R. Soc. Lond. B 364:15261977–84
    [Google Scholar]
  4. 4.
    Lau WWY, Shiran Y, Bailey RM, Cook E, Stuchtey MR et al. 2020. Evaluating scenarios toward zero plastic pollution. Science 369:65091455–61
    [Google Scholar]
  5. 5.
    Thompson R, Moore C, Andrady A, Gregory M, Takada H, Weisberg S. 2005. New directions in plastic debris. Science 310:57511117
    [Google Scholar]
  6. 6.
    SAPEA (Sci. Advice Policy Eur. Acad.) 2020. Biodegradability of plastics in the open environment SAPEA Berlin:
  7. 7.
    Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, Gerdts G. 2019. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5:8eaax1157
    [Google Scholar]
  8. 8.
    Napper IE, Davies BFRR, Clifford H, Elvin S, Koldewey HJ et al. 2020. Reaching new heights in plastic pollution—preliminary findings of microplastics on Mount Everest. ONE Earth 3:5621–30
    [Google Scholar]
  9. 9.
    Tekman MB, Krumpen T, Bergmann M. 2017. Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory. Deep Sea Res. I 120:88–99
    [Google Scholar]
  10. 10.
    Woodall LC, Sanchez-Vidal A, Canals M, Paterson GLJJ, Coppock R et al. 2014. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1:4140317
    [Google Scholar]
  11. 11.
    Allen S, Allen D, Phoenix VR, Le Roux G, Durántez Jiménez P et al. 2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12:5339–44
    [Google Scholar]
  12. 12.
    Wright SL, Ulke J, Font A, Chan KLA, Kelly FJ. 2020. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 136:105411
    [Google Scholar]
  13. 13.
    Dris R, Gasperi J, Rocher V, Tassin B. 2018. Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris Megacity: sampling methodological aspects and flux estimations. Sci. Total Environ. 618:157–64
    [Google Scholar]
  14. 14.
    UNEP (UN Environ. Progr.) 2022. Historic day in the campaign to beat plastic pollution: nations commit to develop a legally binding agreement Press Release, March 2. https://www.unep.org/news-and-stories/press-release/historic-day-campaign-beat-plastic-pollution-nations-commit-develop
  15. 15.
    Hartmann NB, Hüffer T, Thompson RC, Hassellöv M, Verschoor A et al. 2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53:31039–47
    [Google Scholar]
  16. 16.
    Laist DW. 1987. Overview of the biological effects of lost and discarded plastic debris in the marine environment. Mar. Pollut. Bull. 18:6 Suppl. B319–26
    [Google Scholar]
  17. 17.
    Pruter AT. 1987. Sources, quantities and distribution of persistent plastics in the marine environment. Mar. Pollut. Bull. 18:6 Suppl. B305–10
    [Google Scholar]
  18. 18.
    Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M et al. 2015. Plastic waste inputs from land into the ocean. Science 347:6223768–71
    [Google Scholar]
  19. 19.
    Boucher J, Friot D. 2017. Primary microplastics in the oceans: a global evaluation of sources IUCN Gland, Switz:.
  20. 20.
    Luo W, Su L, Craig NJ, Du F, Wu C, Shi H. 2019. Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters. Environ. Pollut. 246:174–82
    [Google Scholar]
  21. 21.
    Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. 2017. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586:127–41
    [Google Scholar]
  22. 22.
    Kühn S, van Franeker JA. 2020. Quantitative overview of marine debris ingested by marine megafauna. Mar. Pollut. Bull. 151:110858
    [Google Scholar]
  23. 23.
    Males J, Van Aelst P. 2020. Did the blue planet set the agenda for plastic pollution? An explorative study on the influence of a documentary on the public, media and political agendas. Environ. Commun. 15:40–54
    [Google Scholar]
  24. 24.
    Nelms SE, Duncan EM, Patel S, Badola R, Bhola S et al. 2020. Riverine plastic pollution from fisheries: insights from the Ganges River system. Sci. Total Environ. 756:143305
    [Google Scholar]
  25. 25.
    Napper IE, Wright LS, Barrett AC, Parker-Jurd FNFF, Thompson RC. 2022. Potential microplastic release from the maritime industry: abrasion of rope. Sci. Total Environ. 804:150155
    [Google Scholar]
  26. 26.
    Ryan PG, Moore CJ, van Franeker JA, Moloney CL. 2009. Monitoring the abundance of plastic debris in the marine environment. Philos. Trans. R. Soc. Lond. B 364:15261999–2012
    [Google Scholar]
  27. 27.
    Browne MA. 2015. Sources and pathways of microplastics to habitats. See Ref. 201 229–44.
  28. 28.
    Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ et al. 2004. Lost at sea: Where is all the plastic?. Science 304:5672838
    [Google Scholar]
  29. 29.
    Eo S, Hong SH, Song YK, Han GM, Shim WJ. 2019. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Res 160:228–37
    [Google Scholar]
  30. 30.
    Liu M, Lu S, Song Y, Lei L, Hu J et al. 2018. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 242:855–62
    [Google Scholar]
  31. 31.
    Napper IE, Baroth A, Barrett AC, Bhola S, Chowdhury GW et al. 2021. The abundance and characteristics of microplastics in surface water in the transboundary Ganges River. Environ. Pollut. 274:116348
    [Google Scholar]
  32. 32.
    Carpenter EJ, Smith KL. 1972. Plastics on the Sargasso sea surface. Science 175:271240–41
    [Google Scholar]
  33. 33.
    Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B et al. 2014. Plastic debris in the open ocean. PNAS 111:2810239–44
    [Google Scholar]
  34. 34.
    Browne MA, Galloway TS, Thompson RC. 2010. Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 44:93404–9
    [Google Scholar]
  35. 35.
    Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B et al. 2017. Nanoplastic in the North Atlantic subtropical gyre. Environ. Sci. Technol. 51:2313689–97
    [Google Scholar]
  36. 36.
    Gigault J, Pedrono B, Maxit B, Ter Halle A. 2016. Marine plastic litter: the unanalyzed nano-fraction. Environ. Sci. Nano. 3:2346–50
    [Google Scholar]
  37. 37.
    Shen M, Zhang Y, Zhu Y, Song B, Zeng G et al. 2019. Recent advances in toxicological research of nanoplastics in the environment: a review. Environ. Pollut. 252:511–21
    [Google Scholar]
  38. 38.
    Kumar M, Chen H, Sarsaiya S, Qin S, Liu H et al. 2021. Current research trends on micro- and nano-plastics as an emerging threat to global environment: a review. J. Hazard. Mater. 409:124967
    [Google Scholar]
  39. 39.
    Wong JKH, Lee KK, Tang KHD, Yap PS. 2020. Microplastics in the freshwater and terrestrial environments: prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 719:137512
    [Google Scholar]
  40. 40.
    Ostle C, Thompson RC, Broughton D, Gregory L, Wootton M, Johns DG. 2019. The rise in ocean plastics evidenced from a 60-year time series. Nat. Commun. 10:11622
    [Google Scholar]
  41. 41.
    Kasavan S, Yusoff S, Rahmat Fakri MF, Siron R 2021. Plastic pollution in water ecosystems: a bibliometric analysis from 2000 to 2020. J. Clean. Prod. 313:127946
    [Google Scholar]
  42. 42.
    McDermid KJ, McMullen TL. 2004. Quantitative analysis of small-plastic debris on beaches in the Hawaiian archipelago. Mar. Pollut. Bull. 48:7–8790–94
    [Google Scholar]
  43. 43.
    Otley H, Ingham R. 2003. Marine debris surveys at Volunteer Beach, Falkland Islands, during the summer of 2001/02. Mar. Pollut. Bull. 46:121534–39
    [Google Scholar]
  44. 44.
    Bläsing M, Amelung W. 2018. Plastics in soil: analytical methods and possible sources. Sci. Total Environ. 612:422–35
    [Google Scholar]
  45. 45.
    Dissanayake PD, Kim S, Sarkar B, Oleszczuk P, Sang MK et al. 2022. Effects of microplastics on the terrestrial environment: a critical review. Environ. Res. 209:112734
    [Google Scholar]
  46. 46.
    Critchell K, Bauer-Civiello A, Benham C, Berry K, Eagle L et al. 2019. Plastic pollution in the coastal environment: current challenges and future solutions. Coasts Estuar. Futur. 2019:595–609
    [Google Scholar]
  47. 47.
    Camins E, de Haan WP, Salvo VS, Canals M, Raffard A, Sanchez-Vidal A. 2020. Paddle surfing for science on microplastic pollution. Sci. Total Environ. 709:136178
    [Google Scholar]
  48. 48.
    Eriksen M, Lebreton LCMM, Carson HS, Thiel M, Moore CJ et al. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLOS ONE 9:12e111913
    [Google Scholar]
  49. 49.
    Balestri E, Menicagli V, Vallerini F, Lardicci C. 2017. Biodegradable plastic bags on the seafloor: A future threat for seagrass meadows?. Sci. Total Environ. 605–606:755–63
    [Google Scholar]
  50. 50.
    Courtene-Jones W, Quinn B, Ewins C, Gary SF, Narayanaswamy BE 2020. Microplastic accumulation in deep-sea sediments from the Rockall Trough. Mar. Pollut. Bull. 154:111092
    [Google Scholar]
  51. 51.
    Ho NHE, Not C. 2019. Selective accumulation of plastic debris at the breaking wave area of coastal waters. Environ. Pollut. 245:702–10
    [Google Scholar]
  52. 52.
    Chubarenko I, Bagaev A, Zobkov M, Esiukova E. 2016. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 108:1–2105–12
    [Google Scholar]
  53. 53.
    Ryan PG. 2015. Does size and buoyancy affect the long-distance transport of floating debris?. Environ. Res. Lett. 10:8084019
    [Google Scholar]
  54. 54.
    Semcesen PO, Wells MG. 2021. Biofilm growth on buoyant microplastics leads to changes in settling rates: implications for microplastic retention in the Great Lakes. Mar. Pollut. Bull. 170:112573
    [Google Scholar]
  55. 55.
    Leiser R, Wu GM, Neu TR, Wendt-Potthoff K. 2020. Biofouling, metal sorption and aggregation are related to sinking of microplastics in a stratified reservoir. Water Res 176:115748
    [Google Scholar]
  56. 56.
    Siegfried M, Koelmans AA, Besseling E, Kroeze C. 2017. Export of microplastics from land to sea. A modelling approach. Water Res 127:249–57
    [Google Scholar]
  57. 57.
    Schernewski G, Radtke H, Hauk R, Baresel C, Olshammar M, Oberbeckmann S. 2021. Urban microplastics emissions: effectiveness of retention measures and consequences for the Baltic Sea. Front. Mar. Sci 8:594415
    [Google Scholar]
  58. 58.
    Dris R, Gasperi J, Saad M, Mirande C, Tassin B. 2016. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?. Mar. Pollut. Bull. 104:1–2290–93
    [Google Scholar]
  59. 59.
    De Falco F, Cocca M, Avella M, Thompson RC. 2020. Microfibre release to water, via laundering, and to air, via everyday use: a comparison between polyester clothing with differing textile parameters. Environ. Sci. Technol. 54:63288–96
    [Google Scholar]
  60. 60.
    Szewc K, Graca B, Dołęga A. 2021. Atmospheric deposition of microplastics in the coastal zone: characteristics and relationship with meteorological factors. Sci. Total Environ. 761:143272
    [Google Scholar]
  61. 61.
    Abbasi S, Turner A. 2021. Dry and wet deposition of microplastics in a semi-arid region (Shiraz, Iran). Sci. Total Environ. 786:147358
    [Google Scholar]
  62. 62.
    Huang Y, Liu Q, Jia W, Yan C, Wang J. 2020. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 260:114096
    [Google Scholar]
  63. 63.
    Fuller S, Gautam A. 2016. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 50:115774–80
    [Google Scholar]
  64. 64.
    Mahon AM, O'Connell B, Healy MG, O'Connor I, Officer R et al. 2017. Microplastics in sewage sludge: effects of treatment. Environ. Sci. Technol. 51:2810–18
    [Google Scholar]
  65. 65.
    Nelms SE, Eyles L, Godley BJ, Richardson PB, Selley H et al. 2020. Investigating the distribution and regional occurrence of anthropogenic litter in English marine protected areas using 25 years of citizen-science beach clean data. Environ. Pollut. 263:Part B114365
    [Google Scholar]
  66. 66.
    Wright LS, Napper IE, Thompson RC. 2021. Potential microplastic release from beached fishing gear in Great Britain's region of highest fishing litter density. Mar. Pollut. Bull. 173:113115
    [Google Scholar]
  67. 67.
    Allen S, Allen D, Moss K, Le Roux G, Phoenix VR, Sonke JE 2020. Examination of the ocean as a source for atmospheric microplastics. PLOS ONE 15:5e0232746
    [Google Scholar]
  68. 68.
    Nelms S, Coombes C, Foster L, Galloway T, Godley B et al. 2017. Marine anthropogenic litter on British beaches: a 10-year nationwide assessment using citizen science data. Sci. Total Environ. 579:1399–409
    [Google Scholar]
  69. 69.
    Stanton T, Chico G, Carr E, Cook S, Gomes RL et al. 2022. Planet patrolling: a citizen science brand audit of anthropogenic litter in the context of national legislation and international policy. J. Hazard. Mater. 436:129118
    [Google Scholar]
  70. 70.
    Law KL. 2017. Plastics in the marine environment. Annu. Rev. Mar. Sci. 9:205–29
    [Google Scholar]
  71. 71.
    Jones JS, Guézou A, Medor S, Nickson C, Savage G et al. 2022. Microplastic distribution and composition on two Galápagos island beaches, Ecuador: verifying the use of citizen science derived data in long-term monitoring. Environ. Pollut. 311:120011
    [Google Scholar]
  72. 72.
    Lindeque PK, Cole M, Coppock RL, Lewis CN, Miller RZ et al. 2020. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ. Pollut. 265:Part A114721
    [Google Scholar]
  73. 73.
    Cai H, Chen M, Du F, Matthews S, Shi H. 2021. Separation and enrichment of nanoplastics in environmental water samples via ultracentrifugation. Water Res 203:117509
    [Google Scholar]
  74. 74.
    Goßmann I, Süßmuth R, Scholz-Böttcher BM. 2022. Plastic in the air?! Spider webs as spatial and temporal mirror for microplastics including tire wear particles in urban air. Sci. Total Environ. 832:155008
    [Google Scholar]
  75. 75.
    Patrício Silva AL, Prata JC, Walker TR, Campos D, Duarte AC et al. 2020. Rethinking and optimising plastic waste management under COVID-19 pandemic: policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci. Total Environ. 742:140565
    [Google Scholar]
  76. 76.
    Prata JC, Reis V, Paço A, Martins P, Cruz A et al. 2020. Effects of spatial and seasonal factors on the characteristics and carbonyl index of (micro)plastics in a sandy beach in Aveiro, Portugal. Sci. Total Environ. 709:135892
    [Google Scholar]
  77. 77.
    Dasgupta S, Sarraf M, Wheeler D. 2022. Plastic waste cleanup priorities to reduce marine pollution: a spatiotemporal analysis for Accra and Lagos with satellite data. Sci. Total Environ. 839:156319
    [Google Scholar]
  78. 78.
    Duncan EM, Davies A, Brooks A, Chowdhury GW, Godley BJ et al. 2020. Message in a bottle: open source technology to track the movement of plastic pollution. PLOS ONE 15:12e0242459
    [Google Scholar]
  79. 79.
    Conrad CC, Hilchey KG. 2010. A review of citizen science and community-based environmental monitoring: issues and opportunities. Environ. Monit. Assess. 176:1273–91
    [Google Scholar]
  80. 80.
    Kosmala M, Wiggins A, Swanson A, Simmons B. 2016. Assessing data quality in citizen science. Front. Ecol. Environ. 14:10551–60
    [Google Scholar]
  81. 81.
    Cohn JP. 2008. Citizen science: Can volunteers do real research?. Bioscience 58:3192–97
    [Google Scholar]
  82. 82.
    Buytaert W, Zulkafli Z, Grainger S, Acosta L, Alemie TC et al. 2014. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Front. Earth Sci. 2:26
    [Google Scholar]
  83. 83.
    Jambeck JR, Johnsen K. 2015. Citizen-based litter and marine debris data collection and mapping. Comput. Sci. Eng. 17:420–26
    [Google Scholar]
  84. 84.
    Yonkos LT, Friedel EA, Perez-Reyes AC, Ghosal S, Arthur CD. 2014. Microplastics in four estuarine rivers in the Chesapeake bay, U.S.A. Environ. Sci. Technol. 48:2414195–202
    [Google Scholar]
  85. 85.
    Li J, Liu H, Paul Chen J. 2018. Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res 137:362–74
    [Google Scholar]
  86. 86.
    Arias AH, Ronda AC, Oliva AL, Marcovecchio JE. 2019. Evidence of microplastic ingestion by fish from the Bahía Blanca Estuary in Argentina, South America. Bull. Environ. Contam. Toxicol. 102:6750–56
    [Google Scholar]
  87. 87.
    Courtene-Jones W, Quinn B, Murphy F, Gary SF, Narayanaswamy BE 2017. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Anal. Methods 9:91437–45
    [Google Scholar]
  88. 88.
    Alfonso MB, Takashima K, Yamaguchi S, Tanaka M, Isobe A. 2021. Microplastics on plankton samples: multiple digestion techniques assessment based on weight, size, and FTIR spectroscopy analyses. Mar. Pollut. Bull. 173:113027
    [Google Scholar]
  89. 89.
    Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. 2022. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163:107199
    [Google Scholar]
  90. 90.
    De Frond H, O'Brien AM, Rochman CM 2023. Representative subsampling methods for the chemical identification of microplastic particles in environmental samples. Chemosphere 310:136772
    [Google Scholar]
  91. 91.
    Shomura R, Godfrey M. 1990. Proceedings of the Second International Conference on Marine Debris, Honolulu, April 2–7
  92. 92.
    Xanthos D, Walker TR. 2017. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): a review. Mar. Pollut. Bull. 118:1–217–26
    [Google Scholar]
  93. 93.
    Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:7
    [Google Scholar]
  94. 94.
    Napper IE, Bakir A, Rowland SJ, Thompson RC. 2015. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar. Pollut. Bull. 99:1–2178–85
    [Google Scholar]
  95. 95.
    Parker-Jurd FNF, Napper IE, Abbott GD, Hann S, Wright SL, Thompson RC. 2020. Investigating the sources and pathways of synthetic fibre and vehicle tyre wear contamination into the marine environment Rep., Dep. Environ. Food Rural Aff., London:
  96. 96.
    Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, Lahive E. 2017. Large microplastic particles in sediments of tributaries of the River Thames, UK—abundance, sources and methods for effective quantification. Mar. Pollut. Bull. 114:1218–26
    [Google Scholar]
  97. 97.
    Napper IE, Wright LS, Barrett AC, Parker-Jurd FNF, Thompson RC. 2022. Potential microplastic release from the maritime industry: abrasion of rope. Sci. Total Environ. 804:150155
    [Google Scholar]
  98. 98.
    Auta HS, Emenike C, Fauziah S. 2017. Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ. Int. 102:165–76
    [Google Scholar]
  99. 99.
    Fiber Year Consult 2018. The Fiber Year 2018: World Survey on Textiles & Nonwovens Roggwil, Switz.: Fiber Year
  100. 100.
    Carr SA. 2017. Sources and dispersive modes of micro-fibers in the environment. Integr. Environ. Assess. Manag. 13:3466–69
    [Google Scholar]
  101. 101.
    De Falco F, Gullo MP, Gentile G, Di Pace E, Cocca M et al. 2018. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 236:916–25
    [Google Scholar]
  102. 102.
    Ammendolia J, Saturno J, Brooks AL, Jacobs S, Jambeck JR. 2021. An emerging source of plastic pollution: environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environ. Pollut. 269:116160
    [Google Scholar]
  103. 103.
    O'Reilly L. 2020. COVID-19 pandemic delays plastic straw and cotton bud ban by six months. Evening Standard April 15. https://www.standard.co.uk/news/health/cotton-bud-plastric-straw-ban-delay-coronavirus-a4415566.html
    [Google Scholar]
  104. 104.
    Thompson RC. 2015. Microplastics in the marine environment: sources, consequences and solutions. See Ref. 201 185–200
    [Google Scholar]
  105. 105.
    Andrady A. 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62:81596–1605
    [Google Scholar]
  106. 106.
    Andrady AL. 2017. The plastic in microplastics: a review. Mar. Pollut. Bull. 119:112–22
    [Google Scholar]
  107. 107.
    Aragaw TA. 2020. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 159:111517
    [Google Scholar]
  108. 108.
    Wilkes RA, Aristilde L. 2017. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. J. Appl. Microbiol. 123:3582–93
    [Google Scholar]
  109. 109.
    Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA et al. 2018. Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ. Sci. Pollut. Res. 25:87287–98
    [Google Scholar]
  110. 110.
    García-Muñoz P, Allé PH, Bertoloni C, Torres A, De La Orden MU et al. 2022. Photocatalytic degradation of polystyrene nanoplastics in water. A methodological study. J. Environ. Chem. Eng. 10:4108195
    [Google Scholar]
  111. 111.
    Napper IE, Thompson RC. 2019. Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environ. Sci. Technol. 53:94775–83
    [Google Scholar]
  112. 112.
    Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. 2019. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chemie Int. Ed. 58:150–62
    [Google Scholar]
  113. 113.
    Courtene-Jones W, De Falco F, Napper IE 2023. A review of biodegradable plastics from multidisciplinary perspectives. Plastic Pollution in the Global Ocean AA Horton 339–74. Singapore: World Sci.
    [Google Scholar]
  114. 114.
    O'Brine T, Thompson RC. 2010. Degradation of plastic carrier bags in the marine environment. Mar. Pollut. Bull. 60:122279–83
    [Google Scholar]
  115. 115.
    Zhang K, Hamidian AH, Tubić A, Zhang Y, Fang JKH et al. 2021. Understanding plastic degradation and microplastic formation in the environment: a review. Environ. Pollut. 274:116554
    [Google Scholar]
  116. 116.
    Khoironi A, Hadiyanto H, Anggoro S, Sudarno S. 2020. Evaluation of polypropylene plastic degradation and microplastic identification in sediments at Tambak Lorok coastal area, Semarang, Indonesia. Mar. Pollut. Bull. 151:110868
    [Google Scholar]
  117. 117.
    Huang D, Xu Y, Lei F, Yu X, Ouyang Z et al. 2021. Degradation of polyethylene plastic in soil and effects on microbial community composition. J. Hazard. Mater. 416:126173
    [Google Scholar]
  118. 118.
    Eerkes-Medrano D, Thompson RC, Aldridge DC. 2015. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82
    [Google Scholar]
  119. 119.
    Sintim HY, Bary AI, Hayes DG, Wadsworth LC, Anunciado MB et al. 2020. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci. Total Environ. 727:138668
    [Google Scholar]
  120. 120.
    Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P et al. 2012. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 84:2377–410
    [Google Scholar]
  121. 121.
    Laist DW 1997. Impacts of marine debris: entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records. Marine Debris—Sources, Impacts, and Solutions JM Coe, DB Rogers 99–135. New York: Springer
    [Google Scholar]
  122. 122.
    Blettler MCM, Mitchell C. 2021. Dangerous traps: macroplastic encounters affecting freshwater and terrestrial wildlife. Sci. Total Environ. 798:149317
    [Google Scholar]
  123. 123.
    Baulch S, Perry C. 2014. Evaluating the impacts of marine debris on cetaceans. Mar. Pollut. Bull. 80:1–2210–21
    [Google Scholar]
  124. 124.
    Lavers JL, Bond AL, Hutton I. 2014. Plastic ingestion by Flesh-footed Shearwaters (Puffinus carneipes): implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environ. Pollut. 187:124–29
    [Google Scholar]
  125. 125.
    Ogonowski M, Schür C, Jarsén Å, Gorokhova E. 2016. The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PLOS ONE 11:5e0155063
    [Google Scholar]
  126. 126.
    Ryan PG. 2016. Ingestion of plastics by marine organisms. Handb. Environ. Chem. 78:235–66
    [Google Scholar]
  127. 127.
    Scherer C, Brennholt N, Reifferscheid G, Wagner M. 2017. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep. 7:17006
    [Google Scholar]
  128. 128.
    O'Hanlon NJ, Bond AL, Lavers JL, Masden EA, James NA. 2019. Monitoring nest incorporation of anthropogenic debris by Northern Gannets across their range. Environ. Pollut. 255:113152
    [Google Scholar]
  129. 129.
    Puskic PS, Lavers JL, Adams LR, Grünenwald M, Hutton I, Bond AL. 2019. Uncovering the sub-lethal impacts of plastic ingestion by shearwaters using fatty acid analysis. Conserv. Physiol. 7:1coz017
    [Google Scholar]
  130. 130.
    Gallo F, Fossi C, Weber R, Santillo D, Sousa J et al. 2018. Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environ. Sci. Eur. 30:13
    [Google Scholar]
  131. 131.
    Lavers JL, Hutton I, Bond AL. 2019. Clinical pathology of plastic ingestion in marine birds and relationships with blood chemistry. Environ. Sci. Technol. 53:159224–31
    [Google Scholar]
  132. 132.
    Kiessling T, Gutow L Thiel M. 2015. Marine litter as habitat and dispersal vector. See Ref. 201 141–81
    [Google Scholar]
  133. 133.
    de Carvalho-Souza GF, Llope M, Tinôco MS, Medeiros DV, Maia-Nogueira R, Sampaio CLS. 2018. Marine litter disrupts ecological processes in reef systems. Mar. Pollut. Bull. 133:464–71
    [Google Scholar]
  134. 134.
    Lamb JB, Willis BL, Fiorenza EA, Couch CS, Howard R et al. 2018. Plastic waste associated with disease on coral reefs. Science 359:6374460–62
    [Google Scholar]
  135. 135.
    Turner A. 2018. Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test. Environ. Pollut. 236:1020–26
    [Google Scholar]
  136. 136.
    Brandon JA, Jones W, Ohman MD. 2019. Multidecadal increase in plastic particles in coastal ocean sediments. Sci. Adv. 5:9
    [Google Scholar]
  137. 137.
    MacLeod M, Arp HPH, Tekman MB, Jahnke A. 2021. The global threat from plastic pollution. Science 373:655061–65
    [Google Scholar]
  138. 138.
    Zhang YL, Kang SC, Gao TG. 2022. Microplastics have light-absorbing ability to enhance cryospheric melting. Adv. Clim. Chang. Res. 13:4455–58
    [Google Scholar]
  139. 139.
    Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C et al. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314:5800787–90
    [Google Scholar]
  140. 140.
    Naeem S, Chazdon R, Duffy JE, Prager C, Worm B. 2016. Biodiversity and human well-being: an essential link for sustainable development. Proc. Biol. Sci. 1844:28320162091
    [Google Scholar]
  141. 141.
    Ofiara DD, Seneca JJ. 2006. Biological effects and subsequent economic effects and losses from marine pollution and degradations in marine environments: implications from the literature. Mar. Pollut. Bull. 52:8844–64
    [Google Scholar]
  142. 142.
    Liquete C, Piroddi C, Drakou EG, Gurney L, Katsanevakis S et al. 2013. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLOS ONE 8:7e67737
    [Google Scholar]
  143. 143.
    Beaumont NJ, Aanesen M, Austen MC, Börger T, Clark JR et al. 2019. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142:189–95
    [Google Scholar]
  144. 144.
    McIlgorm A, Raubenheimer K, McIlgorm DE, Nichols R. 2022. The cost of marine litter damage to the global marine economy: insights from the Asia-Pacific into prevention and the cost of inaction. Mar. Pollut. Bull. 174:113167
    [Google Scholar]
  145. 145.
    Wyles KJ, Pahl S, Thomas K, Thompson RC. 2016. Factors that can undermine the psychological benefits of coastal environments. Environ. Behav. 48:91095–126
    [Google Scholar]
  146. 146.
    Schwabl P, Koppel S, Konigshofer P, Bucsics T, Trauner M et al. 2019. Detection of various microplastics in human stool: a prospective case series. Ann. Intern. Med. 171:7453–57
    [Google Scholar]
  147. 147.
    Fournier E, Etienne-Mesmin L, Grootaert C, Jelsbak L, Syberg K et al. 2021. Microplastics in the human digestive environment: a focus on the potential and challenges facing in vitro gut model development. J. Hazard. Mater. 415:125632
    [Google Scholar]
  148. 148.
    Ibrahim YS, Tuan Anuar S, Azmi AA, Wan Mohd Khalik WMA, Lehata S et al. 2021. Detection of microplastics in human colectomy specimens. JGH Open 5:1116–121
    [Google Scholar]
  149. 149.
    Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V et al. 2021. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 146:10627
    [Google Scholar]
  150. 150.
    Ragusa A, Notarstefano V, Svelato A, Belloni A, Gioacchini G et al. 2022. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers 14:132700
    [Google Scholar]
  151. 151.
    Kiessling T, Gutow L, Thiel M. 2015. Marine litter as habitat and dispersal vector. See Ref. 201 141–81
  152. 152.
    Blettler MCM, Abrial E, Khan FR, Sivri N, Espinola LA. 2018. Freshwater plastic pollution: recognizing research biases and identifying knowledge gaps. Water Res 143:416–24
    [Google Scholar]
  153. 153.
    Santos RG, Machovsky-Capuska GE, Andrades R. 2021. Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 373:655056–60
    [Google Scholar]
  154. 154.
    Huerta Lwanga E, Mendoza Vega J, Ku Quej V, de los Angeles Chi J, Sanchez del Cid L et al. 2017. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 7:14071
    [Google Scholar]
  155. 155.
    Turner A. 2018. Black plastics: linear and circular economies, hazardous additives and marine pollution. Environ. Int. 117:308–18
    [Google Scholar]
  156. 156.
    Wright SL, Kelly FJ. 2017. Plastic and human health: A micro issue?. Environ. Sci. Technol. 51:126634–47
    [Google Scholar]
  157. 157.
    Carbery M, O'Connor W, Palanisami T 2018. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ. Int. 115:400–9
    [Google Scholar]
  158. 158.
    Diana Z, Sawickij N, Rivera NA, Hsu-Kim H, Rittschof D. 2020. Plastic pellets trigger feeding responses in sea anemones. Aquat. Toxicol. 222:105447
    [Google Scholar]
  159. 159.
    Li HX, Getzinger GJ, Ferguson PL, Orihuela B, Zhu M, Rittschof D. 2016. Effects of toxic leachate from commercial plastics on larval survival and settlement of the barnacle Amphibalanus amphitrite. Environ. Sci. Technol. 50:2924–31
    [Google Scholar]
  160. 160.
    Zhu M, Chernick M, Rittschof D, Hinton DE. 2020. Chronic dietary exposure to polystyrene microplastics in maturing Japanese medaka (Oryzias latipes). Aquat. Toxicol. 220:105396
    [Google Scholar]
  161. 161.
    Al-Sid-Cheikh M, Rowland SJ, Stevenson K, Rouleau C, Henry TB, Thompson RC 2018. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environ. Sci. Technol. 52:2414480–86
    [Google Scholar]
  162. 162.
    Huang D, Tao J, Cheng M, Deng R, Chen S et al. 2021. Microplastics and nanoplastics in the environment: macroscopic transport and effects on creatures. J. Hazard. Mater. 407:124399
    [Google Scholar]
  163. 163.
    Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. 2008. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ. Health Perspect. 116:139–44
    [Google Scholar]
  164. 164.
    Rochester JR. 2013. Bisphenol A and human health: a review of the literature. Reprod. Toxicol. 42:132–55
    [Google Scholar]
  165. 165.
    Elhacham E, Ben-Uri L, Grozovski J, Bar-On YM, Milo R 2020. Global human-made mass exceeds all living biomass. Nature 588:7838442–44
    [Google Scholar]
  166. 166.
    Lavers JL, Rivers-Auty J, Bond AL. 2021. Plastic debris increases circadian temperature extremes in beach sediments. J. Hazard. Mater. 416:126140
    [Google Scholar]
  167. 167.
    Dodson GZ, Shotorban AK, Hatcher PG, Waggoner DC, Ghosal S, Noffke N. 2020. Microplastic fragment and fiber contamination of beach sediments from selected sites in Virginia and North Carolina, USA. Mar. Pollut. Bull. 151:110869
    [Google Scholar]
  168. 168.
    Courtene-Jones W, van Gennip S, Penicaud J, Penn E, Thompson RC 2022. Synthetic microplastic abundance and composition along a longitudinal gradient traversing the subtropical gyre in the North Atlantic Ocean. Mar. Pollut. Bull. 185:114371
    [Google Scholar]
  169. 169.
    Nematollahi MJ, Keshavarzi B, Mohit F, Moore F, Busquets R. 2022. Microplastic occurrence in urban and industrial soils of Ahvaz metropolis: a city with a sustained record of air pollution. Sci. Total Environ. 819:152051
    [Google Scholar]
  170. 170.
    De Ruijter VN, Redondo-Hasselerharm PE, Gouin T, Koelmans AA. 2020. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ. Sci. Technol. 54:1911692–705
    [Google Scholar]
  171. 171.
    Paul-Pont I, Lacroix C, González Fernández C, Hégaret H, Lambert C et al. 2016. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: toxicity and influence on fluoranthene bioaccumulation. Environ. Pollut. 216:724–37
    [Google Scholar]
  172. 172.
    Horton AA, Barnes DKA. 2020. Microplastic pollution in a rapidly changing world: implications for remote and vulnerable marine ecosystems. Sci. Total Environ. 738:140349
    [Google Scholar]
  173. 173.
    Beaumont NJ, Aanesen M, Austen MC, Börger T, Clark JR et al. 2019. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142:189–95
    [Google Scholar]
  174. 174.
    Thompson RC, Pahl S, Sembiring E. 2022. Plastics treaty—research must inform action. Nature 608:7923472
    [Google Scholar]
  175. 175.
    UN Gen. Assem. Resolut. 70/1. 2015. Transforming Our World: The 2030 Agenda for Sustainable Development Oct. 21U.N. Doc. A/RES/70/1. https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?OpenElement
  176. 176.
    European Commission 2015. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions Doc. COM/2015/0614, Eur. Comm., Bruss. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0614
  177. 177.
    European Commission 2022. Waste Framework Directive. European Commission https://environment.ec.europa.eu/topics/waste-and-recycling/waste-framework-directive_en
    [Google Scholar]
  178. 178.
    Andrady AL. 2005. Plastics in marine environment; a technical perspective Paper presented at the Proceeding of the Plastic Rivers to Sea Conference Algalita Marine Research Foundation Long Beach, California:
  179. 179.
    Convery F, McDonnell S, Ferreira S. 2007. The most popular tax in Europe? Lessons from the Irish plastic bags levy. Environ. Resour. Econ. 38:1–11
    [Google Scholar]
  180. 180.
    Jambeck J, Geyer R, Wilcox C, Siegler TR, Perryman M et al. 2015. Plastic waste inputs from land into the ocean. Science 347:6223768–71
    [Google Scholar]
  181. 181.
    Löhr A, Savelli H, Beunen R, Kalz M, Ragas A, Van Belleghem F. 2017. Solutions for global marine litter pollution. Curr. Op. Environ. Sustain. 28:190–99
    [Google Scholar]
  182. 182.
    Madigele PK, Mogomotsi GEJ, Kolobe M. 2017. Consumer willingness to pay for plastic bags levy and willingness to accept eco-friendly alternatives in Botswana. Chinese J. Popul. Resour. Environ. 15:3255–61
    [Google Scholar]
  183. 183.
    Otsyina HR, Nguhiu-Mwangi J, Mogoa EGM, Mbuthia PG, Ogara WO. 2018. Knowledge, attitude, and practices on usage, disposal, and effect of plastic bags on sheep and goats. Trop. Anim. Health Prod. 50:5997–1003
    [Google Scholar]
  184. 184.
    Matthews C, Moran F, Jaiswal AK. 2021. A review on European Union's strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 283:125263
    [Google Scholar]
  185. 185.
    Law KL, Starr N, Siegler TR, Jambeck JR, Mallos NJ, Leonard GH. 2020. The United States’ contribution of plastic waste to land and ocean. Sci. Adv. 6:44
    [Google Scholar]
  186. 186.
    Eurostat 2022. What are the main destinations of EU export of waste? Eurostat News May 25. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220525-1
  187. 187.
    Pandey RU, Surjan A, Kapshe M. 2018. Exploring linkages between sustainable consumption and prevailing green practices in reuse and recycling of household waste: case of Bhopal city in India. J. Clean. Prod. 173:49–59
    [Google Scholar]
  188. 188.
    Schmaltz E, Melvin EC, Diana Z, Gunady EF, Rittschof D et al. 2020. Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environ. Int. 144:106067
    [Google Scholar]
  189. 189.
    The Ocean Cleanup 2022. Research. The Ocean Cleanup https://theoceancleanup.com/research
    [Google Scholar]
  190. 190.
    Singh T. 2013. 19-Year-old student develops ocean cleanup array that could remove 7,250,000 tons of plastic from the world's oceans. INHABITAT March 26. https://inhabitat.com/19-year-old-student-develops-ocean-cleanup-array-that-could-remove-7250000-tons-of-plastic-from-the-worlds-oceans/
    [Google Scholar]
  191. 191.
    Slat B. 2021. First 100,000 KG removed from the great pacific garbage patch. The Ocean Cleanup July 25. https://theoceancleanup.com/updates/first-100000-kg-removed-from-the-great-pacific-garbage-patch/
    [Google Scholar]
  192. 192.
    The Ocean Cleanup. 2023. What will we do with the trash?. The Ocean Cleanup https://theoceancleanup.com/waste-management-and-recycling
    [Google Scholar]
  193. 193.
    Hohn S, Acevedo-Trejos E, Abrams JF, Fulgencio de Moura J, Spranz R, Merico A. 2020. The long-term legacy of plastic mass production. Sci. Total Environ. 746:141115
    [Google Scholar]
  194. 194.
    Parker-Jurd FNF, Smith NS, Gibson L, Nuojua S, Thompson RC. 2022. Evaluating the performance of the ‘Seabin’—a fixed point mechanical litter removal device for sheltered waters. Mar. Pollut. Bull. 184:114199
    [Google Scholar]
  195. 195.
    Barry J. 2012. The Politics of Actually Existing Unsustainability: Human Flourishing in a Climate-Changed, Carbon-Constrained World Oxford, UK: Oxford Univ. Press
  196. 196.
    Gardezi M, Arbuckle JG. 2018. Techno-optimism and farmers’ attitudes toward climate change adaptation. Environ. Behav. 52:182–105
    [Google Scholar]
  197. 197.
    Napper IE, Barrett AC, Thompson RC. 2020. The efficiency of devices intended to reduce microfibre release during clothes washing. Sci. Total Environ. 738:140412
    [Google Scholar]
  198. 198.
    Napper IE, Parker-Jurd FNF, Wright SL, Thompson RC. 2023. Examining the release of synthetic microfibres to the environment via two major pathways: atmospheric deposition and treated wastewater effluent. Sci. Total Environ. 857:159317
    [Google Scholar]
  199. 199.
    Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M et al. 2017. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 221:453–58
    [Google Scholar]
  200. 200.
    Siddiqui S, Hutton SJ, Dickens JM, Pedersen EI, Harper SL, Brander SM. 2023. Natural and synthetic microfibers alter growth and behavior in early life stages of estuarine organisms. Front. Mar. Sci. 9:2671
    [Google Scholar]
  201. 201.
    Bergmann M, Gutow L, Klages M, eds. 2015. Marine Anthropogenic Litter Cham, Switz: Springer
/content/journals/10.1146/annurev-environ-112522-072642
Loading
/content/journals/10.1146/annurev-environ-112522-072642
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error