1932

Abstract

Energy equity and justice have become priority considerations for policymakers, practitioners, and scholars alike. To ensure that energy equity is incorporated into actual decisions and analysis, it is necessary to design, use, and continually improve energy equity metrics. In this article, we review the literature and practices surrounding such metrics. We present a working definition for energy justice and equity, and connect them to both criteria for and frameworks of metrics. We then present a large sampling of energy equity metrics, including those focused on vulnerability, wealth creation, energy poverty, life cycle, and comparative country-level dynamics.We conclude with a discussion of the limitations, gaps, and trade-offs associated with these various metrics and their interactions thereof.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112621-063400
2023-11-13
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112621-063400.html?itemId=/content/journals/10.1146/annurev-environ-112621-063400&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tessum CW, Paolella DA, Chambliss SE, Apte JS, Hill JD, Marshall JD. 2021. PM2.5 polluters disproportionately and systemically affect people of color in the United States. Sci. Adv. 7:18eabf4491
    [Google Scholar]
  2. 2.
    Liu J, Clark LP, Bechle MJ, Hajat A, Kim S-Y et al. 2021. Disparities in air pollution exposure in the United States by race/ethnicity and income, 1990–2010. Environ. Health Perspect. 129:12127005
    [Google Scholar]
  3. 3.
    Cong S, Nock D, Qiu YL, Xing B. 2022. Unveiling hidden energy poverty using the energy equity gap. Nat. Commun. 13:12456
    [Google Scholar]
  4. 4.
    Memmott T, Carley S, Graff M, Konisky DM. 2021. Sociodemographic disparities in energy insecurity among low-income households before and during the COVID-19 pandemic. Nat. Energy 6:2186–93
    [Google Scholar]
  5. 5.
    Brown MA, Soni A, Lapsa MV, Southworth K, Cox M. 2020. High energy burden and low-income energy affordability: conclusions from a literature review. Prog. Energy 2:4042003
    [Google Scholar]
  6. 6.
    Dogan E, Madaleno M, Inglesi-Lotz R, Taskin D. 2022. Race and energy poverty: evidence from African-American households. Energy Econ. 108:105908
    [Google Scholar]
  7. 7.
    Drehobl A, Ross L, Ayala R. 2020. How high are household energy burdens? An assessment of national metropolitan energy burden across the United States. American Council For An Energy-Efficient Economy Rep. ACEEE Washington, DC:
  8. 8.
    Monyei CG, Jenkins K, Serestina V, Adewumi AO. 2018. Examining energy sufficiency and energy mobility in the global south through the energy justice framework. Energy Policy 119:68–76
    [Google Scholar]
  9. 9.
    Van-Hein Sackey C, Nock D. 2022. The need for agricultural productive uses in the national electrification plan of sub-Saharan African countries—a call to action for Ethiopia. Environ. Res. Infrastruct. Sustain. 2:2023001
    [Google Scholar]
  10. 10.
    Grimsby LK. 2011. Securing energy equity. Energy Policy 39:116912–13
    [Google Scholar]
  11. 11.
    Welton S, Eisen JB. 2019. Clean energy justice: charting an emerging agenda. Harv. Environ. Law Rev. 43:307–71
    [Google Scholar]
  12. 12.
    Carley S, Konisky DM. 2020. The justice and equity implications of the clean energy transition. Nat. Energy 5:8569–77
    [Google Scholar]
  13. 13.
    Jenkins K, McCauley D, Heffron R, Stephan H, Rehner R. 2016. Energy justice: a conceptual review. Energy Res. Soc. Sci. 11:174–82
    [Google Scholar]
  14. 14.
    Sovacool BK. 2021. Who are the victims of low-carbon transitions? Towards a political ecology of climate change mitigation. Energy Res. Soc. Sci. 73:101916
    [Google Scholar]
  15. 15.
    Allen RC. 2012. Backward into the future: the shift to coal and implications for the next energy transition. Energy Policy 50:17–23
    [Google Scholar]
  16. 16.
    Borenstein S, Davis LW. 2016. The distributional effects of US clean energy tax credits. Tax Policy Econ. 30:1191–234
    [Google Scholar]
  17. 17.
    Reames TG, Reiner MA, Stacey MB. 2018. An incandescent truth: disparities in energy-efficient lighting availability and prices in an urban U.S. county. Appl. Energy 218:95–103
    [Google Scholar]
  18. 18.
    Sunter DA, Castellanos S, Kammen DM. 2019. Disparities in rooftop photovoltaics deployment in the United States by race and ethnicity. Nat. Sustain 2:171–76
    [Google Scholar]
  19. 19.
    Baker E, Goldstein AP, Azevedo IM. 2021. A perspective on equity implications of net zero energy systems. Energy Clim. Change 2:100047
    [Google Scholar]
  20. 20.
    Emmerling J, Tavoni M. 2021. Representing inequalities in integrated assessment modeling of climate change. One Earth 4:2177–80
    [Google Scholar]
  21. 21.
    Bednar DJ, Reames TG. 2020. Recognition of and response to energy poverty in the United States. Nat. Energy 5:6432–39
    [Google Scholar]
  22. 22.
    Nussbaumer P, Bazilian M, Modi V. 2012. Measuring energy poverty: focusing on what matters. Renew. Sustain. Energy Rev. 16:1231–43
    [Google Scholar]
  23. 23.
    Romero-Lankao P, Nobler E. 2021. Energy Justice: Key Concepts and Metrics Relevant to EERE Transportation Projects Rep. Natl. Renew. Energy Lab.
  24. 24.
    Mohai P, Pellow D, Roberts JT. 2009. Environmental justice. Annu. Rev. Environ. Resour. 34:405–30
    [Google Scholar]
  25. 25.
    Bullard RD, Wright BH. 1987. Blacks and the environment. Humboldt J. Soc. Relat. 14:1/2165–84
    [Google Scholar]
  26. 26.
    MacGurty EM. 2009. Transforming Environmentalism: Warren County, PCBS, and the Origins of Environmental Justice New Brunswick, NJ: Rutgers Univ. Press
  27. 27.
    Graff M, Carley S, Pirog M. 2019. A review of the environmental policy literature from 2014 to 2017 with a closer look at the energy justice field. Policy Stud. J. 47:S1S17–44
    [Google Scholar]
  28. 28.
    Sicotte D. 2010. Some more polluted than others: unequal cumulative industrial hazard burdens in the Philadelphia MSA, USA. Local Environ. 15:8761–74
    [Google Scholar]
  29. 29.
    Walker G, Day R. 2012. Fuel poverty as injustice: integrating distribution, recognition and procedure in the struggle for affordable warmth. Energy Policy 49:69–75
    [Google Scholar]
  30. 30.
    Adger WN. 2006. Vulnerability. Glob. Environ. Change 16:3268–81
    [Google Scholar]
  31. 31.
    Gatto A, Busato F. 2020. Energy vulnerability around the world: the global energy vulnerability index (GEVI). J. Clean. Prod. 253:118691
    [Google Scholar]
  32. 32.
    Bouzarovski S. 2014. Energy poverty in the European Union: landscapes of vulnerability: energy poverty in the European Union. Wiley Interdiscip. Rev. Energy Environ. 3:3276–89
    [Google Scholar]
  33. 33.
    Sovacool BK, Hook A, Martiskainen M, Baker L. 2019. The whole systems energy injustice of four European low-carbon transitions. Glob. Environ. Change 58:101958
    [Google Scholar]
  34. 34.
    Gillard R, Snell C, Bevan M. 2017. Advancing an energy justice perspective of fuel poverty: household vulnerability and domestic retrofit policy in the United Kingdom. Energy Res. Soc. Sci. 29:53–61
    [Google Scholar]
  35. 35.
    Martiskainen M, Sovacool BK, Lacey-Barnacle M, Hopkins D, Jenkins KEH et al. 2021. New dimensions of vulnerability to energy and transport poverty. Joule 5:13–7
    [Google Scholar]
  36. 36.
    Nussbaum M, Sen A, eds. 1993. The Quality of Life Oxford, UK: Oxford Univ. Press
  37. 37.
    Carvallo J, Hsu FC, Shah Z, Taneja J. 2021. Frozen out in Texas: blackouts and inequity Field Note, Rockefeller Found. New York:
  38. 38.
    Kenney MA, Janetos AC, Gerst MD. 2020. A framework for national climate indicators. Clim. Change 163:41705–18
    [Google Scholar]
  39. 39.
    Feng S, Joung C 2010. Development overview of sustainable manufacturing metrics. Proceedings of the 17th CIRP International Conference on Life Cycle Engineering 2010, May 19–21, Hefei, China H-C Zhang, Z Liu, G Liu Hefei: Univ. Technol. Press
    [Google Scholar]
  40. 40.
    Mandle L, Shields-Estrada A, Chaplin-Kramer R, Mitchell MGE, Bremer LL et al. 2021. Increasing decision relevance of ecosystem service science. Nat. Sustain 4:2161–69
    [Google Scholar]
  41. 41.
    Jagannathan K, Jones AD, Ray I. 2021. The making of a metric: co-producing decision-relevant climate science. Bull. Am. Meteorol. Soc. 102:8E1579–90
    [Google Scholar]
  42. 42.
    Michener S, O'Neil R, Atcitty S, Jeffers B, Tarekegne B 2021. Energy storage for social equity roundtable report Rep. PNNL-31964 Pac. Northwest Natl. Lab., U.S. Dep. Energy Richland, WA: https://www.pnnl.gov/sites/default/files/media/file/Energy%20Storage%20for%20Social%20Equity%20Roundtable%20Report.pdf
  43. 43.
    Primc K, Dominko M, Slabe-Erker R. 2021. 30 years of energy and fuel poverty research: a retrospective analysis and future trends. J. Clean. Prod. 301:127003
    [Google Scholar]
  44. 44.
    Siebert J, Keeney RL. 2015. Creating more and better alternatives for decisions using objectives. Oper. Res. 63:51144–58
    [Google Scholar]
  45. 45.
    Keeney RL. 1992. Value-Focused Thinking: A Path to Creative Decisionmaking Cambridge, MA: Harvard Univ. Press
  46. 46.
    Baker E, Nock D, Levin T, Atarah SA, Afful-Dadzie A et al. 2021. Who is marginalized in energy justice? Amplifying community leader perspectives of energy transitions in Ghana. Energy Res. Soc. Sci. 73:101933
    [Google Scholar]
  47. 47.
    Haydt G, Leal V, Dias L. 2013. Uncovering the multiple objectives behind national energy efficiency planning. Energy Policy 54:230–39
    [Google Scholar]
  48. 48.
    Keeney RL, Renn O, von Winterfeldt D. 1987. Structuring West Germany's energy objectives. Energy Policy 15:4352–62
    [Google Scholar]
  49. 49.
    Tarekegne B, Pennell GR, Preziuso DC, O'Neil RS 2021. Review of energy equity metrics Rep. PNNL-32179 Pac. Northwest Natl. Lab., U.S. Dep. Energy Richland, WA: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-32179.pdf
  50. 50.
    Ford JC, Castellanos S, Nock D, Djokic D. 2022. Working group: metrics in energy equity for NSF Energy Equity 2021 Workshop Work. Pap. NSF Alexandria, VA:
  51. 51.
    Gorman MR, Dzombak DA. 2018. A review of sustainable mining and resource management: transitioning from the life cycle of the mine to the life cycle of the mineral. Resour. Conserv. Recycl. 137:281–91
    [Google Scholar]
  52. 52.
    Lu T, Gupta A, Jayal AD, Badurdeen F, Feng SC et al. 2011. A framework of product and process metrics for sustainable manufacturing. Advances in Sustainable Manufacturing G Seliger, MMK Khraisheh, IS Jawahir 333–38. Berlin, Heidelberg: Springer Berlin Heidelberg
    [Google Scholar]
  53. 53.
    OECD (Organ. Econ. Co-op. Dev.) 2023. OECD sustainable manufacturing indicators. Organisation for Economic Co-operation and Development https://www.oecd.org/innovation/green/toolkit/oecdsustainablemanufacturingindicators.htm
    [Google Scholar]
  54. 54.
    Litman T. 2022. Evaluating transportation equity: guidance for incorporating distributional impacts in transport planning Rep. Vic. Transp. Policy Inst. BC:
  55. 55.
    Van Dort L, Guthrie A, Fan Y, Baas G 2019. Advancing transportation equity: research and practice Rep. Univ. Minn. Twin Cities:
  56. 56.
    Karpouzoglou T, Dewulf A, Clark J. 2016. Advancing adaptive governance of social-ecological systems through theoretical multiplicity. Environ. Sci. Policy 57:1–9
    [Google Scholar]
  57. 57.
    MSEAS (Univ. Mich. Sch. Environ. Sustain.) 2022. Energy Equity Project Report Rep. MSEAS Ann Arbor, Mich.: https://energyequityproject.com/wp-content/uploads/2022/08/220174_EEP_Report_8302022.pdf
  58. 58.
    Bozeman JF, Nobler E, Nock D. 2022. A path toward systemic equity in life cycle assessment and decision-making: standardizing sociodemographic data practices. Environ. Eng. Sci. 39:9759–69
    [Google Scholar]
  59. 59.
    Ringquist EJ. 2005. Assessing evidence of environmental inequities: a meta-analysis. J. Policy Anal. Manag. 24:2223–47
    [Google Scholar]
  60. 60.
    U.S. Environ. Prot. Agency 2014. EJScreen: Environmental Justice Screening and Mapping Tool. United States Environmental Protection Agency. https://www.epa.gov/ejscreen
    [Google Scholar]
  61. 61.
    Konisky D, Gonzalez D, Leatherman K. 2021. Mapping for environmental justice: an analysis of state level tools Rep. Environ. Resil. Inst. Sch. Public Environ. Aff. Univ. Mich., Ann Arbor:
  62. 62.
    Lee C. 2020. Another game changer in the making? Lessons from states advancing environmental justice through mapping and cumulative impact strategies. Environ. Law Rep. 2021:10676
    [Google Scholar]
  63. 63.
    Carley S, Evans TP, Graff M, Konisky DM. 2018. A framework for evaluating geographic disparities in energy transition vulnerability. Nat. Energy 3:8621–27
    [Google Scholar]
  64. 64.
    Snyder BF. 2018. Vulnerability to decarbonization in hydrocarbon-intensive counties in the United States: a just transition to avoid post-industrial decay. Energy Res. Soc. Sci. 42:34–43
    [Google Scholar]
  65. 65.
    Raimi D. 2021. Mapping the US energy economy to inform transition planning Rep. 21–10 Resour. Future Washington, DC:
  66. 66.
    Raimi D, Carley S, Konisky D. 2022. Mapping county-level vulnerability to the energy transition in US fossil fuel communities. Sci. Rep. 12:115748
    [Google Scholar]
  67. 67.
    Pachauri S, Spreng D. 2011. Measuring and monitoring energy poverty. Energy Policy 39:127497–504
    [Google Scholar]
  68. 68.
    Li K, Lloyd B, Liang X-J, Wei Y-M. 2014. Energy poor or fuel poor: What are the differences?. Energy Policy 68:476–81
    [Google Scholar]
  69. 69.
    Hernández D, Yoon L, Simcock N. 2022. Basing “energy justice” on clear terms: assessing key terminology in pursuit of energy justice. Environ. Justice 15:3127–38
    [Google Scholar]
  70. 70.
    IEA (Int. Energy Agency) 2010.. Energy poverty: How to make modern energy access universal? Rep. World Energy Outlook Paris: https://iea.blob.core.windows.net/assets/fdbdd604-de2c-4977-8a3f-20f93e68e738/HowtoMakeModernEnergyAccessUniversal.pdf
  71. 71.
    Graff M, Carley S. 2020. COVID-19 assistance needs to target energy insecurity. Nat. Energy 5:5352–54
    [Google Scholar]
  72. 72.
    McGowan F. 2011. Putting energy insecurity into historical context: European responses to the energy crises of the 1970s and 2000s. Geopolitics 16:3486–511
    [Google Scholar]
  73. 73.
    State Local Solut. Cent., Off. State Community Energy Progr 2023. Low-Income Energy Affordability Data (LEAD) Tool. U.S. Department of Energy https://www.energy.gov/scep/slsc/lead-tool
    [Google Scholar]
  74. 74.
    U.S. Energy Inf. Adm 2023. Residential Energy Consumption Survey (RECS). U.S. Energy Information Administration https://www.eia.gov/consumption/residential
    [Google Scholar]
  75. 75.
    U.S. Census Bur 2023. American Housing Survey (AHS) https://www.census.gov/programs-surveys/ahs.html
  76. 76.
    U.S. Census Bur 2023. Measuring household experiences during the coronavirus pandemic. United States Census Bureau June 7. https://www.census.gov/data/experimental-data-products/household-pulse-survey.html
    [Google Scholar]
  77. 77.
    Berger T, Höltl A. 2019. Thermal insulation of rental residential housing: Do energy poor households benefit? A case study in Krems, Austria. Energy Policy 127:341–49
    [Google Scholar]
  78. 78.
    Iverson SA, Gettel A, Bezold CP, Goodin K, McKinney B et al. 2020. Heat-associated mortality in a hot climate: Maricopa County, Arizona, 2006–2016. Public Health Rep. 135:5631–39
    [Google Scholar]
  79. 79.
    McNamara W, Passell H, Montes M, Jeffers R, Gyuk I. 2022. Seeking energy equity through energy storage. Electr. J. 35:1107063
    [Google Scholar]
  80. 80.
    Semieniuk G, Holden PB, Mercure J-F, Salas P, Pollitt H et al. 2022. Stranded fossil-fuel assets translate to major losses for investors in advanced economies. Nat. Clim. Change 12:6532–38
    [Google Scholar]
  81. 81.
    Crago C, Rong R. 2022. Behavioral preferences and contract choice in the residential solar PV market SSRN Pap 4088542. https://ssrn.com/abstract=4088542
  82. 82.
    O'Shaughnessy E, Barbose G, Wiser R, Forrester S, Darghouth N. 2021. The impact of policies and business models on income equity in rooftop solar adoption. Nat. Energy 6:184–91
    [Google Scholar]
  83. 83.
    SJCOG (San Joaquin Council Gov.) 2011. 2011 Regional Transportation Plan: the future of mobility for San Joaquin County Rep. SJCOG San Joaquin, California: https://www.ca-ilg.org/sites/main/files/file-attachments/sjcog_rtp.pdf?1383894514
  84. 84.
    Guo S, Kontou E. 2021. Disparities and equity issues in electric vehicles rebate allocation. Energy Policy 154:112291
    [Google Scholar]
  85. 85.
    Fortier M-OP, Teron L, Reames TG, Munardy DT, Sullivan BM. 2019. Introduction to evaluating energy justice across the life cycle: a social life cycle assessment approach. Appl. Energy 236:211–19
    [Google Scholar]
  86. 86.
    Pac. Northwest Natl. Lab 2021. Metrics for an equitable and just energy system. Pacific Northwest National Laboratory https://www.pnnl.gov/sites/default/files/media/file/Metrics%20for%20Energy%20Equity_0.pdf
    [Google Scholar]
  87. 87.
    Better Buildings 2023. Better Buildings Initiative. United States Department of Energy https://betterbuildingssolutioncenter.energy.gov
    [Google Scholar]
  88. 88.
    Sovacool BK, Mukherjee I. 2011. Conceptualizing and measuring energy security: a synthesized approach. Energy 36:85343–55
    [Google Scholar]
  89. 89.
    Del Bene D, Scheidel A, Temper L. 2018. More dams, more violence? A global analysis on resistances and repression around conflictive dams through co-produced knowledge. Sustain. Sci. 13:3617–33
    [Google Scholar]
  90. 90.
    Sovacool BK, Hess DJ, Cantoni R, Lee D, Claire Brisbois M et al. 2022. Conflicted transitions: exploring the actors, tactics, and outcomes of social opposition against energy infrastructure. Glob. Environ. Change 73:102473
    [Google Scholar]
  91. 91.
    Petrie J, Cohen B, Stewart M. 2007. Decision support frameworks and metrics for sustainable development of minerals and metals. Clean Technol. Environ. Policy 9:2133–45
    [Google Scholar]
  92. 92.
    Sovacool BK, Ali SH, Bazilian M, Radley B, Nemery B et al. 2020. Sustainable minerals and metals for a low-carbon future. Science 367:647330–33
    [Google Scholar]
  93. 93.
    Lee J, Bazilian M, Sovacool B, Hund K, Jowitt SM et al. 2020. Reviewing the material and metal security of low-carbon energy transitions. Renew. Sustain. Energy Rev. 124:109789
    [Google Scholar]
  94. 94.
    Kogel JE, Trivedi N, Herpfer MA. 2014. Measuring sustainable development in industrial minerals mining. Int. J. Min. Miner. Eng. 5:14
    [Google Scholar]
  95. 95.
    Lee J, Bazilian M, Sovacool B, Greene S. 2020. Responsible or reckless? A critical review of the environmental and climate assessments of mineral supply chains. Environ. Res. Lett. 15:10103009
    [Google Scholar]
  96. 96.
    Sovacool BK. 2019. The precarious political economy of cobalt: balancing prosperity, poverty, and brutality in artisanal and industrial mining in the Democratic Republic of the Congo. Extr. Ind. Soc. 6:3915–39
    [Google Scholar]
  97. 97.
    Iacovidou E, Velis CA, Purnell P, Zwirner O, Brown A et al. 2017. Metrics for optimising the multi-dimensional value of resources recovered from waste in a circular economy: a critical review. J. Clean. Prod. 166:910–38
    [Google Scholar]
  98. 98.
    Reich-Weiser C, Vijayaraghavan A, Dornfeld DA. 2008. Metrics for sustainable manufacturing. Proceedings of the ASME 2008 International Manufacturing Science and Engineering Conference, Vol. 1327–35. New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  99. 99.
    Kim J, Ryu D, Sovacool BK. 2021. Critically assessing and projecting the frequency, severity, and cost of major energy accidents. Extr. Ind. Soc. 8:2100885
    [Google Scholar]
  100. 100.
    Sovacool BK, Kim J, Yang M. 2021. The hidden costs of energy and mobility: a global meta-analysis and research synthesis of electricity and transport externalities. Energy Res. Soc. Sci. 72:101885
    [Google Scholar]
  101. 101.
    Elia V, Gnoni MG, Tornese F. 2017. Measuring circular economy strategies through index methods: a critical analysis. J. Clean. Prod. 142:2741–51
    [Google Scholar]
  102. 102.
    World Energy Council 2021. World Energy Trilemma Index 2021 Rep. World Energy Council London: https://www.worldenergy.org/publications/entry/world-energy-trilemma-index-2021
  103. 103.
    Song L, Fu Y, Zhou P, Lai KK. 2017. Measuring national energy performance via Energy Trilemma Index: a stochastic multicriteria acceptability analysis. Energy Econ. 66:313–19
    [Google Scholar]
  104. 104.
    Heffron RJ, McCauley D, Sovacool BK. 2015. Resolving society's energy trilemma through the Energy Justice Metric. Energy Policy 87:168–76
    [Google Scholar]
  105. 105.
    Heffron RJ, McCauley D, de Rubens GZ. 2018. Balancing the energy trilemma through the Energy Justice Metric. Appl. Energy 229:1191–201
    [Google Scholar]
  106. 106.
    Sarkodie SA, Adams S. 2020. Electricity access, human development index, governance and income inequality in Sub-Saharan Africa. Energy Rep. 6:455–66
    [Google Scholar]
  107. 107.
    Hickel J. 2020. The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene. Ecol. Econ. 167:106331
    [Google Scholar]
  108. 108.
    Jacobson A, Milman AD, Kammen DM. 2005. Letting the (energy) Gini out of the bottle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity. Energy Policy 33:141825–32
    [Google Scholar]
  109. 109.
    Scheier E, Kittner N. 2022. A measurement strategy to address disparities across household energy burdens. Nat. Commun. 13:1288
    [Google Scholar]
  110. 110.
    Day R, Walker G, Simcock N. 2016. Conceptualising energy use and energy poverty using a capabilities framework. Energy Policy 93:255–64
    [Google Scholar]
  111. 111.
    Garg S, Attia B, Handler B, Bazilian M. 2022. Demand in the dark: estimating the true scale of unmet electricity demand in Sub-Saharan Africa. Electr. J. 35:8107189
    [Google Scholar]
  112. 112.
    Van-Hein Sackey C, Levin T, Nock D. 2022. Latent demand for electricity in sub-Saharan Africa: a review. Environ. Res. Infrastruct. Sustain. 2:2022002
    [Google Scholar]
  113. 113.
    Lou J, Qiu Y(L), Ku AL, Nock D, Xing B. 2021. Inequitable and heterogeneous impacts on electricity consumption from COVID-19 mitigation measures. iScience 24:11103231
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112621-063400
Loading
/content/journals/10.1146/annurev-environ-112621-063400
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error