1932

Abstract

Getting to net-zero-carbon cities while advancing well-being (W), health (H), social equity (E), and climate resilience (R) (referred to as the WHER outcomes) is critical for local and global sustainability. However, science is nascent on the linkages between zero-carbon pathways and WHER outcomes. This article presents a transboundary urban metabolism framework, rooted in seven key infrastructure and food provisioning systems, to connect urban decarbonization strategies with WHER outcomes. Applying the framework along with a literature review, we find the evidence for co-beneficial decarbonization to be strong for health; limited for well-being; uncertain for resilience; and requiring intentional design to advance equity, including distributional, procedural, and recognitional aspects. We describe the evidence base, identify key knowledge gaps, and delineate broad parameters of a new urban nexus science to enable zero-carbon urban transitions with WHER co-benefits. We highlight the need for fine-scale data encompassing all seven sectors across scales, along with multiple and multiscale climate risks, accompanied by next-generation multisector, multiscale, multioutcome nexus models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112621-063931
2023-11-13
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112621-063931.html?itemId=/content/journals/10.1146/annurev-environ-112621-063931&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    The World Bank 2022. Urban development. The World Bank https://www.worldbank.org/en/topic/urbandevelopment
    [Google Scholar]
  2. 2.
    UNDESA (U.N. Dep. Econ. Soc. Aff.) 2018. 68% of the world population projected to live in urban areas by 2050, says UN. United Nations News May 16. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
    [Google Scholar]
  3. 3.
    Ramaswami A. 2020. Unpacking the urban infrastructure nexus with environment, health, livability, well-being, and equity. One Earth 2:2120–24
    [Google Scholar]
  4. 4.
    U.N. Environ. Progr 2017. Cities. UN Environment Programme. https://www.unep.org/explore-topics/resource-efficiency/what-we-do/cities
    [Google Scholar]
  5. 5.
    Glaeser E. 2012. Triumph of the City: How Our Greatest Invention Makes Us Richer, Smarter, Greener, Healthier, and Happier London: Penguin
  6. 6.
    UNDESA (U.N. Dep. Econ. Soc. Aff.) 2020. World Social Report 2020: Inequality in a rapidly changing world. Rep. UNESDA New York:
  7. 7.
    Pant P, Lal RM, Guttikunda SK, Russell AG, Nagpure AS et al. 2019. Monitoring particulate matter in India: recent trends and future outlook. Air Qual. Atmos. Health 12:145–58
    [Google Scholar]
  8. 8.
    Nagpure AS, Tong K, Ramaswami A. 2022. Socially-differentiated urban metabolism methodology informs equity in coupled carbon-air pollution mitigation strategies: insights from three Indian cities. Environ. Res. Lett. 17:9094025
    [Google Scholar]
  9. 9.
    Nagpure AS, Ramaswami A, Russell A. 2015. Characterizing the spatial and temporal patterns of open burning of municipal solid waste (MSW) in Indian cities. Environ. Sci. Technol. 49:2112904–12
    [Google Scholar]
  10. 10.
    Clark LP, Tabory S, Tong K, Servadio JL, Kappler K et al. 2022. A data framework for assessing social inequality and equity in multi-sector social, ecological, infrastructural urban systems: focus on fine-spatial scales. J. Ind. Ecol. 26:1145–63
    [Google Scholar]
  11. 11.
    Va. Commonw. Univ. Cent. Soc. Health 2016. Mapping life expectancy. Virginia Commonwealth University https://societyhealth.vcu.edu/work/the-projects/mapping-life-expectancy.html
    [Google Scholar]
  12. 12.
    Seto KC, Dhakal S, Bigio A, Blanco H, Delgado GC et al. 2014. Human settlements, infrastructure and spatial planning. Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner et al.923–1000. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  13. 13.
    Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD et al., eds. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press 1132 pp.
  14. 14.
    Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T et al. 2009. Greenhouse gas emissions from global cities. Environ. Sci. Technol. 43:197297–302
    [Google Scholar]
  15. 15.
    Ramaswami A, Hillman T, Janson B, Reiner M, Thomas G. 2008. A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories. Environ. Sci. Technol. 42:176455–61
    [Google Scholar]
  16. 16.
    Ramaswami A, Tong K, Canadell JG, Jackson RB, Stokes E et al. 2021. Carbon analytics for net-zero emissions sustainable cities. Nat. Sustain. 4:6460–63
    [Google Scholar]
  17. 17.
    Chavez A, Ramaswami A. 2013. Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: mathematical relationships and policy relevance. Energy Policy 54:376–84
    [Google Scholar]
  18. 18.
    ICLEI–Local Gov. Sustain. USA 2019. U.S. Community Protocol for Accounting and Reporting of Greenhouse Gas Emissions Rep. ICLEI–Local Gov. Sustain. USA Denver:
  19. 19.
    Fong WK, Sotos M, Doust M, Schultz S, Marquez A et al. 2014. Global Protocol for Community-Scale Greenhouse Gas Emission Inventories Rep. World Resour. Inst., Washington, DC/C40 Cities Clim. Leadersh. Group, London/ICLEI–Local Gov. Sustain. Bonn, Ger.:
  20. 20.
    Ramaswami A, Russell AG, Culligan PJ, Sharma KR, Kumar E. 2016. Meta-principles for developing smart, sustainable, and healthy cities. Science 352:6288940–43
    [Google Scholar]
  21. 21.
    C40 (C40 Cities Clim. Leadersh. Group), Arup 2014. Working together: global aggregation of city climate commitments. https://www.arup.com/perspectives/publications/research/section/working-together-global-aggregation-of-city-climate-commitments
  22. 22.
    U.N. Clim. Change Conv 2022. Race to Zero campaign. United Nations Climate Change Convention https://racetozero.unfccc.int/system/race-to-zero/
    [Google Scholar]
  23. 23.
    Seto KC, Churkina G, Hsu A, Keller M, Newman PW et al. 2021. From low- to net-zero carbon cities: the next global agenda. Annu. Rev. Environ. Resour. 46:377–415
    [Google Scholar]
  24. 24.
    Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D et al. 2018. Net-zero emissions energy systems. Science 360:6396eaas9793
    [Google Scholar]
  25. 25.
    Azevedo I, Bataille C, Bistline J, Clarke L, Davis S. 2021. Net-zero emissions energy systems: what we know and do not know. Energy Clim. Change 2:100049
    [Google Scholar]
  26. 26.
    Shukla P, Dhar S, Pathak M, Mahadevia D, Garg A. 2015. Pathways to deep decarbonization in India Paris: SDSN, IDDRI https://ddpinitiative.org/wp-content/pdf/DDPP_IND.pdf
  27. 27.
    Teng F, Gu A, Yang X, Wang X, Liu Q et al. 2015. Pathways to deep decarbonization in China Paris: SDSN, IDDRI https://ddpinitiative.org/wp-content/pdf/DDPP_CHN.pdf
  28. 28.
    Altieri K, Trollip H, Caetano T, Hughes A, Merven B, Winkler H. 2015. Pathways to deep decarbonization in South Africa Paris: SDSN, IDDRI https://ddpinitiative.org/wp-content/pdf/DDPP_ZAF.pdf
  29. 29.
    Larson E, Greig C, Jenkins J, Mayfield E, Pascale A et al. 2021. Net-zero America: potential pathways, infrastructure, and impacts. Rep. Princeton Univ. Princeton, NJ:
  30. 30.
    Jenkins JD, Mayfield EN, Larson ED, Pacala SW, Greig C. 2021. Mission net-zero America: the nation-building path to a prosperous, net-zero emissions economy. Joule 5:112755–61
    [Google Scholar]
  31. 31.
    Hsu D, Andrews CJ, Han AT, Loh CG, Osland AC, Zegras CP. 2022. Planning the built environment and land use towards deep decarbonization of the United States. J. Plan. Lit. 38:3426–41. https://doi.org/10.1177/08854122221097977
    [Crossref] [Google Scholar]
  32. 32.
    Swilling M, Hajer M, Baynes T, Bergesen J, Labbé F et al. 2018. The weight of cities: resource requirements of future urbanization. Summary for policy makers Rep. Int. Resour. Panel, UNEP Nairobi, Kenya:
  33. 33.
    Ramaswami A, Tong K, Fang A, Lal RM, Nagpure AS et al. 2017. Urban cross-sector actions for carbon mitigation with local health co-benefits in China. Nat. Clim. Change 7:10736–42
    [Google Scholar]
  34. 34.
    Churkina G, Organschi A, Reyer CPO, Ruff A, Vinke K et al. 2020. Buildings as a global carbon sink. Nat. Sustain. 3:4269–76
    [Google Scholar]
  35. 35.
    Pauliuk S, Heeren N, Berrill P, Fishman T, Nistad A et al. 2021. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 12:15097
    [Google Scholar]
  36. 36.
    Teo HC, Zeng Y, Sarira TV, Fung TK, Zheng Q et al. 2021. Global urban reforestation can be an important natural climate solution. Environ. Res. Lett. 16:3034059
    [Google Scholar]
  37. 37.
    Ramaswami A. 2021. Multi-sector modeling for net-zero carbon and equitable cities: Implementation in Twin Cities, USA. AGU Fall Meet. Abstr. 2021:GC11B-03
    [Google Scholar]
  38. 38.
    City of New York 2019. One New York: The Plan for a Strong and Just City https://www.nyc.gov/html/onenyc/downloads/pdf/publications/OneNYC.pdf
  39. 39.
    American Heart Association 2020. American Heart Association's strategic policy agenda 2020–2022 Rep. Am. Heart Assoc., Advocacy Dep. Washington, DC: https://www.heart.org/-/media/Files/About-Us/Policy-Research/Policy-Reports/Strategic-Policy-Agenda2-pager–2020.pdf
  40. 40.
    Herrmann A, Lenzer B, Müller BS, Danquah I, Nadeau KC et al. 2022. Integrating planetary health into clinical guidelines to sustainably transform health care. Lancet Planet. Health 6:3e184–85
    [Google Scholar]
  41. 41.
    O'Neill DW, Fanning AL, Lamb WF, Steinberger JK. 2018. A good life for all within planetary boundaries. Nat. Sustain. 1:288–95
    [Google Scholar]
  42. 42.
    Chester MV. 2019. Sustainability and infrastructure challenges. Nat. Sustain. 2:4265–66
    [Google Scholar]
  43. 43.
    Rao ND, Min J. 2018. Decent living standards: material prerequisites for human wellbeing. Soc. Indic. Res. 138:1225–44
    [Google Scholar]
  44. 44.
    Ramaswami A. 2020. Unpacking the urban infrastructure nexus with environment, health, livability, well-being, and equity. One Earth 2:2120–24
    [Google Scholar]
  45. 45.
    Oswald Y, Owen A, Steinberger JK. 2020. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat. Energy 5:3231–39
    [Google Scholar]
  46. 46.
    UNEP (U.N. Environ. Progr.) 2019. First ever Cities Summit calls for integrated approach to urban infrastructure. United Nations Environment Programme March 27. https://www.unep.org/news-and-stories/story/first-ever-cities-summit-calls-integrated-approach-urban-infrastructure
    [Google Scholar]
  47. 47.
    Ramaswami A, Weible C, Main D, Heikkila T, Siddiki S et al. 2012. A social-ecological-infrastructural systems framework for interdisciplinary study of sustainable city systems: an integrative curriculum across seven major disciplines. J. Ind. Ecol. 16:6801–13
    [Google Scholar]
  48. 48.
    UNDESA (U.N. Dep. Econ. Soc. Aff., Popul. Div.) 2018. The World's Cities in 2018: data booklet Rep. U.N. New York: https://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2018_data_booklet.pdf
  49. 49.
    Nagpure AS, Reiner M, Ramaswami A. 2018. Resource requirements of inclusive urban development in India: insights from ten cities. Environ. Res. Lett. 13:2025010
    [Google Scholar]
  50. 50.
    Mitchell BC, Chakraborty J, Basu P. 2021. Social inequities in urban heat and greenspace: analyzing climate justice in Delhi, India. Int. J. Environ. Res. Public Health 18:94800
    [Google Scholar]
  51. 51.
    Boyer D, Sarkar J, Ramaswami A. 2019. Diets, food miles, and environmental sustainability of urban food systems: analysis of nine Indian cities. Earth's Future 7:8911–22
    [Google Scholar]
  52. 52.
    Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C et al., eds. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge Univ. Press
  53. 53.
    UNSD (U.N. Stat. Div.) 2022. Sustainable Development Goals. Goal 11: Make cities inclusive, safe, resilient and sustainable United Nations New York: https://www.un.org/sustainabledevelopment/cities/
    [Google Scholar]
  54. 54.
    UN-HABITAT (U.N. Hum. Settl. Progr.) 2010. State of the World's Cities 2010/2011—cities for all: bridging the urban divide Rep. UN-HABITAT Nairobi:
  55. 55.
    Capone D, Cumming O, Nichols D, Brown J. 2020. Water and sanitation in urban America, 2017–2019. Am. J. Public Health 110:101567–72
    [Google Scholar]
  56. 56.
    Ramaswami A, Russell AG, Culligan PJ, Sharma KR, Kumar E. 2016. Meta-principles for developing smart, sustainable, and healthy cities. Science 352:6288940–43
    [Google Scholar]
  57. 57.
    Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R et al. 2018. The Lancet Commission on pollution and health. Lancet North Am. Ed. 391:10119462–512
    [Google Scholar]
  58. 58.
    Dye C. 2008. Health and urban living. Science 319:5864766–69
    [Google Scholar]
  59. 59.
    Ritchie H, Rosado P, Roser M. 2019. Natural disasters. OurWorldInData.org https://ourworldindata.org/natural-disasters
    [Google Scholar]
  60. 60.
    WHO (World Health Organ.) 2011. Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe Bonn, Ger.: WHO
  61. 61.
    Weinberger KR, Harris D, Spangler KR, Zanobetti A, Wellenius GA. 2020. Estimating the number of excess deaths attributable to heat in 297 United States counties. Environ. Epidemiol. 4:3e096
    [Google Scholar]
  62. 62.
    Fan Y, Das KV, Chen Q. 2011. Neighborhood green, social support, physical activity, and stress: assessing the cumulative impact. Health Place 17:61202–11
    [Google Scholar]
  63. 63.
    Tuholske C, Caylor K, Funk C, Verdin A, Sweeney S et al. 2021. Global urban population exposure to extreme heat. PNAS 118:41e2024792118
    [Google Scholar]
  64. 64.
    Varquez ACG, Kanda M. 2018. Global urban climatology: a meta-analysis of air temperature trends (1960–2009). npj Clim. Atmos Sci. 1:32
    [Google Scholar]
  65. 65.
    Vargas Zeppetello LR, Raftery AE, Battisti DS. 2022. Probabilistic projections of increased heat stress driven by climate change. Commun. Earth Environ. 3:1183
    [Google Scholar]
  66. 66.
    Cao W, Zhou Y, Güneralp B, Li X, Zhao K, Zhang H. 2022. Increasing global urban exposure to flooding: an analysis of long-term annual dynamics. Sci. Total Environ. 817:153012
    [Google Scholar]
  67. 67.
    Smith AB, Katz RW. 2013. US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Nat. Hazards 67:2387–410
    [Google Scholar]
  68. 68.
    Studholme J, Fedorov AV, Gulev SK, Emanuel K, Hodges K. 2022. Poleward expansion of tropical cyclone latitudes in warming climates. Nat. Geosci. 15:114–28
    [Google Scholar]
  69. 69.
    Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM et al. 2018. Rapid growth of the US wildland-urban interface raises wildfire risk. PNAS 115:133314–19
    [Google Scholar]
  70. 70.
    Wiedmann T, Chen G, Owen A, Lenzen M, Doust M et al. 2021. Three-scope carbon emission inventories of global cities. J. Ind. Ecol. 25:3735–50
    [Google Scholar]
  71. 71.
    Tong K, Fang A, Boyer D, Hu Y, Cui S et al. 2016. Greenhouse gas emissions from key infrastructure sectors in larger and smaller Chinese cities: method development and benchmarking. Carbon Manag 7:1–227–39
    [Google Scholar]
  72. 72.
    Lin J, Hu Y, Cui S, Kang J, Ramaswami A. 2015. Tracking urban carbon footprints from production and consumption perspectives. Environ. Res. Lett. 10:5054001
    [Google Scholar]
  73. 73.
    Milnar M, Ramaswami A. 2021. Database update: impact of urban expansion and in situ greenery on community-wide carbon emissions: method development and insights from 11 US cities. Environ. Sci. Technol. 55:85597–600
    [Google Scholar]
  74. 74.
    Markolf SA, Matthews HS, Azevedo IL, Hendrickson C. 2017. An integrated approach for estimating greenhouse gas emissions from 100 U.S. metropolitan areas. Environ. Res. Lett. 12:2024003
    [Google Scholar]
  75. 75.
    Markolf SA, Matthews HS, Azevedo IML, Hendrickson C. 2018. The implications of scope and boundary choice on the establishment and success of metropolitan greenhouse gas reduction targets in the United States. Environ. Res. Lett. 13:12124015
    [Google Scholar]
  76. 76.
    Creutzig F, Niamir L, Bai X, Callaghan M, Cullen J et al. 2022. Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nat. Clim. Change 12:136–46
    [Google Scholar]
  77. 77.
    Argonne Natl. Lab 2021. GREET: the greenhouse gases, regulated emissions, and energy use in technologies model Factsheet, Argonne Natl. Lab. Lemont, IL.: https://www.anl.gov/sites/www/files/2020-10/GREET_Impact_Sheet.pdf
  78. 78.
    Cropp J, Lee A, Castor S. 2014. Evaluating results for LEED buildings in an energy efficiency program. Proceedings of the 2014 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA3–6374 https://www.aceee.org/files/proceedings/2014/data/papers/3-368.pdf
    [Google Scholar]
  79. 79.
    Azevedo I, Davidson MR, Jenkins JD, Karplus VJ, Victor DG. 2020. The paths to net zero: how technology can save the planet. Foreign Aff 99:318–27
    [Google Scholar]
  80. 80.
    Lu L, Guest JS, Peters CA, Zhu X, Rau GH, Ren ZJ. 2018. Wastewater treatment for carbon capture and utilization. Nat. Sustain. 1:12750–58
    [Google Scholar]
  81. 81.
    Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E. 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 178:229–36
    [Google Scholar]
  82. 82.
    Ewing R, Cervero R. 2010. Travel and the built environment. J. Am. Plan. Assoc. 76:3265–94
    [Google Scholar]
  83. 83.
    Ramaswami A, Tabory S, McFarlane AA, Pelton RE. 2018. Sustainable urban infrastructure transitions in the ASEAN region: a resource perspective. U.N. Environ. Progr. Int. Resour. Panel DTI/2184/PA UNEP 190. https://wedocs.unep.org/handle/20.500.11822/31582
  84. 84.
    ESMAP (Energy Sector Manag. Assis. Progr.) 2014. Planning energy efficient and livable cities Mayoral Guidance Note 6 ESMAP, World Bank Washington, DC:
  85. 85.
    Global Platform for Sustainable Cities 2020. A Review of Integrated Urban Planning Tools for Greenhouse Gas Mitigation. Washington, DC: World Bank https://doi.org/doi:10.1596/33784
    [Crossref]
  86. 86.
    Fagnant DJ, Kockelman KM. 2014. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp. Res. C. 40:1–13
    [Google Scholar]
  87. 87.
    Chertow MR. 2000. Industrial symbiosis: literature and taxonomy. Annu. Rev. Energy Environ. 25:313–37
    [Google Scholar]
  88. 88.
    Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S et al. 2019. The technological and economic prospects for CO2 utilization and removal. Nature 575:778187–97
    [Google Scholar]
  89. 89.
    Keeler BL, Hamel P, McPhearson T, Hamann MH, Donahue ML et al. 2019. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2:129–38
    [Google Scholar]
  90. 90.
    Smith IA, Dearborn VK, Hutyra LR. 2019. Live fast, die young: accelerated growth, mortality, and turnover in street trees. PLOS ONE 14:5e0215846
    [Google Scholar]
  91. 91.
    World Health Organ. Reg. Off. East. Mediterr 1995. Constitution of the World Health Organization. https://apps.who.int/iris/handle/10665/121457
  92. 92.
    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K et al. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet North Am. Ed. 380:98592224–60
    [Google Scholar]
  93. 93.
    IHME (Inst. Health Metr. Eval.) 2022. Global burden of disease (GBD). Institute for Health Metrics and Evaluation. https://www.healthdata.org/research-analysis/gbd
    [Google Scholar]
  94. 94.
    Ramaswami A, Nagpure A. 2023. The urban burden of disease pre-COVID: unpacking infrastructure, food supply and environmental risk factors across cities in India. Nat. Sustain. 136:104265
    [Google Scholar]
  95. 95.
    CDC-PLACES 2022. PLACES: Local Data for Better Health. Centers for Disease Control and Prevention. https://www.cdc.gov/places/index.html
    [Google Scholar]
  96. 96.
    Tessum CW, Apte JS, Goodkind AL, Muller NZ, Mullins KA et al. 2019. Inequity in consumption of goods and services adds to racial-ethnic disparities in air pollution exposure. PNAS 116:136001–6
    [Google Scholar]
  97. 97.
    Wilkinson R, Marmot M, WHO (World Health Organ.) 2003. Social Determinants of Health—The Solid Facts Copenhagen: WHO., 2nd ed..
  98. 98.
    Ostro B. 2004. Outdoor Air Pollution: Assessing the Environmental Burden of Disease at National and Local Levels Geneva: World Health Organ.
  99. 99.
    IHME (Inst. Health Metr. Eval.) 2019. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) results. Seattle, United States. Institute for Health Metrics and Evaluation https://vizhub.healthdata.org/gbd-compare/
    [Google Scholar]
  100. 100.
    UNDRR (U.N. Off. Disaster Risk Reduct.) 2021. Disaster losses & statistics. United Nations Office for Disaster Risk Reduction https://www.preventionweb.net/understanding-disaster-risk/disaster-losses-and-statistics
    [Google Scholar]
  101. 101.
    Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M et al. 2020. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet North Am. Ed. 396:102581204–22
    [Google Scholar]
  102. 102.
    Gidlöf-Gunnarsson A, Öhrström E. 2007. Noise and well-being in urban residential environments: the potential role of perceived availability to nearby green areas. Landsc. Urban Plan. 83:2–3115–26
    [Google Scholar]
  103. 103.
    Halperin D. 2014. Environmental noise and sleep disturbances: A threat to health?. Sleep Sci 7:4209–12
    [Google Scholar]
  104. 104.
    Feng K, Ouyang M, Lin N. 2022. Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate. Nat. Commun. 13:4421
    [Google Scholar]
  105. 105.
    Shukla K, Seppanen C, Naess B, Chang C, Cooley D et al. 2022. ZIP code-level estimation of air quality and health risk due to particulate matter pollution in New York City. Environ. Sci. Technol. 56:117119–30
    [Google Scholar]
  106. 106.
    Liu J, Clark LP, Bechle MJ, Hajat A, Kim S-Y et al. 2021. Disparities in air pollution exposure in the United States by race/ethnicity and income, 1990–2010. Environ. Health Perspect. 129:12127005
    [Google Scholar]
  107. 107.
    Feng C, Jiao J. 2021. Predicting and mapping neighborhood-scale health outcomes: a machine learning approach. Comput. Environ. Urban Syst. 85:101562
    [Google Scholar]
  108. 108.
    Southerland VA, Brauer M, Mohegh A, Hammer MS, van Donkelaar A et al. 2022. Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: estimates from global datasets. Lancet Planet. Health 6:2e139–46
    [Google Scholar]
  109. 109.
    CDC (Cent. Disease Control Prev.) 2022. Adult physical inactivity prevalence maps by race/ethnicity. CDC, Atlanta. https://www.cdc.gov/physicalactivity/data/inactivity-prevalence-maps/index.html
  110. 110.
    Lee SH, Moore L, Park S, Harris D, Blanck H. 2022. Adults meeting fruit and vegetable intake recommendations—United States, 2019. MMWR Wkly. 71:11–9
    [Google Scholar]
  111. 111.
    Shiels MS, Haque AT, Berrington de González A, Freedman ND. 2022. Leading causes of death in the US during the COVID-19 pandemic, March 2020 to October 2021. JAMA Intern. Med 182:8883–86
    [Google Scholar]
  112. 112.
    RGI (Regist. Gen. Census Comm. India) 2022. Report on Medical Certification of Cause of Death Rep. Off. Regist. Gen., India. Gov. India, Minist. Home Aff., Vital Stat. Div. R.K. Puram, New Delhi: https://censusindia.gov.in/nada/index.php/catalog/42681/download/46350/Annual_Report_on_MCCD_2020.pdf
  113. 113.
    Aleta A, Martín-Corral D, Bakker MA, Pastore y Piontti A, Ajelli M et al. 2022. Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas. PNAS 119:26e2112182119
    [Google Scholar]
  114. 114.
    Chang S, Pierson E, Koh PW, Gerardin J, Redbird B et al. 2021. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589:784082–87
    [Google Scholar]
  115. 115.
    Zhang X, Sun Z, Ashcroft T, Dozier M, Ostrishko K et al. 2022. Compact cities and the Covid-19 pandemic: systematic review of the associations between transmission of Covid-19 or other respiratory viruses and population density or other features of neighbourhood design. Health Place 76:102827
    [Google Scholar]
  116. 116.
    Pandey B, Gu J, Ramaswami A. 2022. Characterizing COVID-19 waves in urban and rural districts of India. npj Urban Sustain 2:126
    [Google Scholar]
  117. 117.
    Bertozzi AL, Franco E, Mohler G, Short MB, Sledge D. 2020. The challenges of modeling and forecasting the spread of COVID-19. PNAS 117:2916732–38
    [Google Scholar]
  118. 118.
    Durand M. 2015. The OECD better life initiative: How's Life? and the measurement of well-being. Rev. Income Wealth 61:14–17
    [Google Scholar]
  119. 119.
    Helliwell JF, Barrington-Leigh CP. 2010. Measuring and understanding subjective well-being. Can. J. Econ. 43:3729–53
    [Google Scholar]
  120. 120.
    Kahneman D, Deaton A. 2010. High income improves evaluation of life but not emotional well-being. PNAS 107:3816489–93
    [Google Scholar]
  121. 121.
    ONS (Off. Natl. Stat.) 2018. Personal well-being user guidance. Office for National Statistics https://www.ons.gov.uk/peoplepopulationandcommunity/wellbeing/methodologies/personalwellbeingsurveyuserguide
    [Google Scholar]
  122. 122.
    Helliwell JF, Layard R, Sachs JD, De Neve JE, Aknin LB, Wang S. 2022. World Happiness Report 2022 Rep. Sustain. Dev. Solut. Netw. New York:
  123. 123.
    Cervero R, Kockelman K. 1997. Travel demand and the 3Ds: density, diversity, and design. Transp. Res. D. 2:3199–219
    [Google Scholar]
  124. 124.
    Rodier C. 2009. Review of international modeling literature: Transit, land use, and auto pricing strategies to reduce vehicle miles traveled and greenhouse gas emissions. Transp. Res. Rec. 2132:11–12
    [Google Scholar]
  125. 125.
    Nieuwenhuijsen MJ. 2020. Urban and transport planning pathways to carbon neutral, liveable and healthy cities; a review of the current evidence. Environ. Int. 140:105661
    [Google Scholar]
  126. 126.
    National Research Council 2009. Driving and the built environment: the effects of compact development on motorized travel, energy use, and CO2 emissions. Spec. Rep. 298. Washington, DC: The Natl. Acad. Press https://doi.org/10.17226/12747
    [Crossref]
  127. 127.
    Rich DQ, Kipen HM, Huang W, Wang G, Wang Y et al. 2012. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA 307:192068–78
    [Google Scholar]
  128. 128.
    Wang M, Zhu T, Zheng J, Zhang RY, Zhang SQ et al. 2009. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics. Atmos. Chem. Phys. 9:218247–63
    [Google Scholar]
  129. 129.
    Chen J, Wang B, Huang S, Song M. 2020. The influence of increased population density in China on air pollution. Sci. Total Environ. 735:139456
    [Google Scholar]
  130. 130.
    Carozzi F, Roth S. 2020. Dirty density: air quality and the density of American cities. J. Environ. Econ. Manag. 118:102767
    [Google Scholar]
  131. 131.
    Blanco MN, Gassett A, Gould T, Doubleday A, Slager DL et al. 2022. Characterization of annual average traffic-related air pollution concentrations in the Greater Seattle Area from a year-long mobile monitoring campaign. Environ. Sci. Technol. 56:1611460–72
    [Google Scholar]
  132. 132.
    Miller DJ, Actkinson B, Padilla L, Griffin RJ, Moore K et al. 2020. Characterizing elevated urban air pollutant spatial patterns with mobile monitoring in Houston, Texas. Environ. Sci. Technol. 54:42133–42
    [Google Scholar]
  133. 133.
    Lessler J, Grabowski MK, Grantz KH, Badillo-Goicoechea E, Metcalf CJE et al. 2021. Household COVID-19 risk and in-person schooling. Science 372:65461092–97
    [Google Scholar]
  134. 134.
    Stevenson M, Thompson J, de Sá TH, Ewing R, Mohan D et al. 2016. Land use, transport, and population health: estimating the health benefits of compact cities. Lancet North Am. Ed. 388:100622925–35
    [Google Scholar]
  135. 135.
    Ewing R, Park K, Sabouri S, Lyons T, Kim K et al. 2020. Reducing vehicle miles traveled (VMT), encouraging walk trips, and facilitating efficient trip chains through polycentric development Rep., NITC-RR-1217 Natl. Inst. Transp. Commun., Portland State Univ.
  136. 136.
    Tao T, Wu X, Cao J, Fan Y, Das K, Ramaswami A. 2020. Exploring the nonlinear relationship between the built environment and active travel in the Twin Cities. J. Plan. Educ. Res. 43:3637–52. https://doi.org/10.1177/0739456X20915765
    [Crossref] [Google Scholar]
  137. 137.
    Jiang Y, Gu P, Chen Y, He D, Mao Q. 2017. Influence of land use and street characteristics on car ownership and use: evidence from Jinan, China. Transp. Res. D. 52:518–34
    [Google Scholar]
  138. 138.
    Litman TA. 2021. Understanding transport demands and elasticities: how prices and other factors affect travel behavior Rep. Victoria Transp. Policy Inst. Victoria, British Columbia: https://www.vtpi.org/elasticities.pdf
  139. 139.
    del Pozo Cruz B, Ahmadi MN, Lee I-M, Stamatakis E. 2022. Prospective associations of daily step counts and intensity with cancer and cardiovascular disease incidence and mortality and all-cause mortality. JAMA Intern. Med 182:111139–48
    [Google Scholar]
  140. 140.
    Howell NA, Tu JV, Moineddin R, Chu A, Booth GL. 2019. Association between neighborhood walkability and predicted 10-year cardiovascular disease risk: the CANHEART (Cardiovascular Health in Ambulatory Care Research Team) Cohort. J. Am. Heart Assoc. 8:21e013146
    [Google Scholar]
  141. 141.
    Pucher J, Buehler R, Bassett DR, Dannenberg AL. 2010. Walking and cycling to health: a comparative analysis of city, state, and international data. Am. J. Public Health 100:101986–92
    [Google Scholar]
  142. 142.
    Glazier RH, Creatore MI, Weyman JT, Fazli G, Matheson FI et al. 2014. Density, destinations or both? A comparison of measures of walkability in relation to transportation behaviors, obesity and diabetes in Toronto, Canada. PLOS ONE 9:1e85295
    [Google Scholar]
  143. 143.
    Buehler R, Pucher J. 2020. The growing gap in pedestrian and cyclist fatality rates between the United States and the United Kingdom, Germany, Denmark, and the Netherlands, 1990–2018. Transp. Rev. 41:148–72
    [Google Scholar]
  144. 144.
    Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O et al. 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet North Am. Ed. 374:97051930–43
    [Google Scholar]
  145. 145.
    Singh V, Singh S, Biswal A, Kesarkar AP, Mor S, Ravindra K. 2020. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 266:115368
    [Google Scholar]
  146. 146.
    Berman JD, Ebisu K. 2020. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 739:139864
    [Google Scholar]
  147. 147.
    Choma EF, Evans JS, Hammitt JK, Gómez-Ibáñez JA, Spengler JD. 2020. Assessing the health impacts of electric vehicles through air pollution in the United States. Environ. Int 144:106015
    [Google Scholar]
  148. 148.
    Dedoussi IC, Eastham SD, Monier E, Barrett SRH. 2020. Premature mortality related to United States cross-state air pollution. Nature 578:7794261–65
    [Google Scholar]
  149. 149.
    Anenberg SC, Miller J, Henze DK, Minjares R, Achakulwisut P. 2019. The global burden of transportation tailpipe emissions on air pollution-related mortality in 2010 and 2015. Environ. Res. Lett 14:9094012
    [Google Scholar]
  150. 150.
    Hankey S, Lindsey G, Marshall JD. 2017. Population-level exposure to particulate air pollution during active travel: planning for low-exposure, health-promoting cities. Environ. Health Perspect. 125:4527–34
    [Google Scholar]
  151. 151.
    Apte JS, Kirchstetter TW, Reich AH, Deshpande SJ, Kaushik G et al. 2011. Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India. Atmos. Environ. 45:264470–80
    [Google Scholar]
  152. 152.
    Gillingham KT, Huang P, Buehler C, Peccia J, Gentner DR. 2021. The climate and health benefits from intensive building energy efficiency improvements. Sci. Adv. 7:34eabg0947
    [Google Scholar]
  153. 153.
    Wilkinson RG, Pickett K. 2009. The Spirit Level: Why More Equal Societies Almost Always Do Better, Vol. 6 London: Allen Lane
  154. 154.
    Thomson H, Thomas S, Sellstrom E, Petticrew M. 2009. The health impacts of housing improvement: a systematic review of intervention studies from 1887 to 2007. Am. J. Public Health 99:Suppl. 3S681–92
    [Google Scholar]
  155. 155.
    Milner J, Shrubsole C, Das P, Jones B, Ridley I et al. 2014. Home energy efficiency and radon related risk of lung cancer: modelling study. BMJ 348:f7493
    [Google Scholar]
  156. 156.
    Sen S, Khazanovich L. 2021. Limited application of reflective surfaces can mitigate urban heat pollution. Nat. Commun. 12:13491
    [Google Scholar]
  157. 157.
    Wang T, Jiang Z, Zhao B, Gu Y, Liou K-N et al. 2020. Health co-benefits of achieving sustainable net-zero greenhouse gas emissions in California. Nat. Sustain. 3:8597–605
    [Google Scholar]
  158. 158.
    Shindell D, Ru M, Zhang Y, Seltzer K, Faluvegi G et al. 2021. Temporal and spatial distribution of health, labor, and crop benefits of climate change mitigation in the United States. PNAS 118:46e2104061118
    [Google Scholar]
  159. 159.
    Peters DR, Schnell JL, Kinney PL, Naik V, Horton DE. 2020. Public health and climate benefits and trade-offs of U.S. vehicle electrification. GeoHealth 4:10e2020GH000275
    [Google Scholar]
  160. 160.
    Liang X, Zhang S, Wu Y, Xing J, He X et al. 2019. Air quality and health benefits from fleet electrification in China. Nat. Sustain. 2:10962–71
    [Google Scholar]
  161. 161.
    Gan WQ, Davies HW, Koehoorn M, Brauer M. 2012. Association of long-term exposure to community noise and traffic-related air pollution with coronary heart disease mortality. Am. J. Epidemiol. 175:9898–906
    [Google Scholar]
  162. 162.
    Kaunda RB. 2020. Potential environmental impacts of lithium mining. J. Energy Nat. Resour. Law 38:3237–44
    [Google Scholar]
  163. 163.
    Lal RM, Tibrewal K, Venkataraman C, Tong K, Fang A et al. 2022. Impact of circular, waste-heat reuse pathways on PM2.5-air quality, CO2 emissions, and human health in India: comparison with material exchange potential. Environ. Sci. Technol. 56:139773–83
    [Google Scholar]
  164. 164.
    Tian J, Liu W, Lai B, Li X, Chen L. 2014. Study of the performance of eco-industrial park development in China. J. Clean. Prod. 64:486–94
    [Google Scholar]
  165. 165.
    Kapdan IK, Kargi F. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38:5569–82
    [Google Scholar]
  166. 166.
    Megía PJ, Vizcaíno AJ, Calles JA, Carrero A. 2021. Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review. Energy Fuels 35:2016403–15
    [Google Scholar]
  167. 167.
    James P, Banay RF, Hart JE, Laden F. 2015. A review of the health benefits of greenness. Curr. Epidemiol. Rep. 2:2131–42
    [Google Scholar]
  168. 168.
    Pataki DE, Alberti M, Cadenasso ML, Felson AJ, McDonnell MJ et al. 2021. The benefits and limits of urban tree planting for environmental and human health. Front. Ecol. Evol. 9:603757
    [Google Scholar]
  169. 169.
    Aerts R, Honnay O, Van Nieuwenhuyse A. 2018. Biodiversity and human health: mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 127:15–22
    [Google Scholar]
  170. 170.
    Remme RP, Frumkin H, Guerry AD, King AC, Mandle L et al. 2021. An ecosystem service perspective on urban nature, physical activity, and health. PNAS 118:22e2018472118
    [Google Scholar]
  171. 171.
    Allan K, Phillips AR. 2021. Comparative cradle-to-grave life cycle assessment of low and mid-rise mass timber buildings with equivalent structural steel alternatives. Sustainability 13:63401
    [Google Scholar]
  172. 172.
    Cramm JM, Van Dijk HM, Nieboer AP. 2013. The importance of neighborhood social cohesion and social capital for the well being of older adults in the community. Gerontologist 53:1142–52
    [Google Scholar]
  173. 173.
    Gandelman N, Piani G, Ferre Z. 2012. Neighborhood determinants of quality of life. J. Happiness Stud. 13:3547–63
    [Google Scholar]
  174. 174.
    Liu Y, Dijst M, Geertman S. 2017. The subjective well-being of older adults in Shanghai: the role of residential environment and individual resources. Urban Stud 54:71692–714
    [Google Scholar]
  175. 175.
    Menec VH, Nowicki S. 2014. Examining the relationship between communities’ ‘age-friendliness’ and life satisfaction and self-perceived health in rural Manitoba, Canada.. Rural Remote Health 14:1159–72
    [Google Scholar]
  176. 176.
    Morrison PS. 2011. Local expressions of subjective well-being: the New Zealand experience. Reg. Stud. 45:81039–58
    [Google Scholar]
  177. 177.
    Rehdanz K, Maddison D. 2008. Local environmental quality and life-satisfaction in Germany. Ecol. Econ. 64:4787–97
    [Google Scholar]
  178. 178.
    Mouratidis K. 2019. Compact city, urban sprawl, and subjective well-being. Cities 92:261–72
    [Google Scholar]
  179. 179.
    Dittmann J, Goebel J. 2010. Your house, your car, your education: the socioeconomic situation of the neighborhood and its impact on life satisfaction in Germany. Soc. Indic. Res. 96:3497–513
    [Google Scholar]
  180. 180.
    Ettema D, Schekkerman M. 2016. How do spatial characteristics influence well-being and mental health? Comparing the effect of objective and subjective characteristics at different spatial scales. Travel Behav. Soc. 5:56–67
    [Google Scholar]
  181. 181.
    Ma J, Dong G, Chen Y, Zhang W. 2018. Does satisfactory neighbourhood environment lead to a satisfying life? An investigation of the association between neighbourhood environment and life satisfaction in Beijing. Cities 74:229–39
    [Google Scholar]
  182. 182.
    Shields MA, Wheatley Price S, Wooden M 2009. Life satisfaction and the economic and social characteristics of neighbourhoods. J. Popul. Econ. 22:2421–43
    [Google Scholar]
  183. 183.
    Fisher KJ, Li F. 2004. A community-based walking trial to improve neighborhood quality of life in older adults: a multilevel analysis. Ann. Behav. Med. 28:3186–94
    [Google Scholar]
  184. 184.
    Mueller N, Rojas-Rueda D, Cole-Hunter T, De Nazelle A, Dons E et al. 2015. Health impact assessment of active transportation: a systematic review. Prev. Med. 76:103–14
    [Google Scholar]
  185. 185.
    Singleton PA. 2019. Walking (and cycling) to well-being: modal and other determinants of subjective well-being during the commute. Travel Behav. Soc. 16:249–61
    [Google Scholar]
  186. 186.
    Lu Y, Xiao Y, Ye Y. 2017. Urban density, diversity and design: Is more always better for walking? A study from Hong Kong. Prev. Med 103:S99–103
    [Google Scholar]
  187. 187.
    Cao XJ. 2016. How does neighborhood design affect life satisfaction? Evidence from Twin Cities. Travel Behav. Soc 5:68–76
    [Google Scholar]
  188. 188.
    Cohen MA. 2008. The effect of crime on life satisfaction. J. Legal. Stud. 37:S2S325–53
    [Google Scholar]
  189. 189.
    Cramm JM, Nieboer AP. 2014. Neighborhood attributes security and solidarity promote the well-being of community-dwelling older people in the Netherlands. Geriatr. Gerontol. Int. 14:3681–88
    [Google Scholar]
  190. 190.
    Orru K, Orru H, Maasikmets M, Hendrikson R, Ainsaar M. 2016. Well-being and environmental quality: Does pollution affect life satisfaction?. Qual. Life Res. 25:3699–705
    [Google Scholar]
  191. 191.
    Ruiz C, Hernández-Fernaud E, Rolo-González G, Hernández B. 2019. Neighborhoods’ evaluation: influence on well-being variables. Front. Psychol 10:1736
    [Google Scholar]
  192. 192.
    Marselle MR, Irvine KN, Lorenzo-Arribas A, Warber SL. 2015. Moving beyond green: exploring the relationship of environment type and indicators of perceived environmental quality on emotional well-being following group walks. Int. J. Environ. Res. Public Health 12:1106–30
    [Google Scholar]
  193. 193.
    Oktay D, Rustemli A. 2011. The quality of urban life and neighborhood satisfaction in Famagusta, Northern Cyprus. Investigating Quality of Urban Life R Marans, R Stimson 233–49. Dordrecht, Neth.: Springer
    [Google Scholar]
  194. 194.
    Vemuri AW, Grove JM, Wilson MA, Burch WR Jr. 2011. A tale of two scales: evaluating the relationship among life satisfaction, social capital, income, and the natural environment at individual and neighborhood levels in metropolitan Baltimore. Malnutr. Environ. Behav. New Perspect. 43:13–25
    [Google Scholar]
  195. 195.
    Coombes E, Jones AP, Hillsdon M. 2010. The relationship of physical activity and overweight to objectively measured green space accessibility and use. Soc. Sci. Med. 70:6816–22
    [Google Scholar]
  196. 196.
    Richardson EA, Pearce J, Mitchell R, Kingham S. 2013. Role of physical activity in the relationship between urban green space and health. Public Health 127:4318–24
    [Google Scholar]
  197. 197.
    Ambrose G, Das K, Fan Y, Ramaswami A 2020. Is gardening associated with greater happiness of urban residents? A multi-activity, dynamic assessment in the Twin-Cities region, USA. Landsc. Urban Plan. 198:103776
    [Google Scholar]
  198. 198.
    Ambrose G, Das K, Fan Y, Ramaswami A. 2023. Comparing happiness associated with household and community gardening: implications for food action planning. Landsc. Urban Plan. 230:104593
    [Google Scholar]
  199. 199.
    Davis JN, Ventura EE, Cook LT, Gyllenhammer LE, Gatto NM. 2011. LA Sprouts: a gardening, nutrition, and cooking intervention for Latino youth improves diet and reduces obesity. J. Am. Diet. Assoc. 111:81224–30
    [Google Scholar]
  200. 200.
    Kunpeuk W, Spence W, Phulkerd S, Suphanchaimat R, Pitayarangsarit S. 2020. The impact of gardening on nutrition and physical health outcomes: a systematic review and meta-analysis. Health Promot. Int. 35:2397–408
    [Google Scholar]
  201. 201.
    Das K, Ramaswami A. 2022. Who gardens and how in urban USA: informing social equity in urban agriculture action plans. Front. Sustain. Food Syst. 6:923079
    [Google Scholar]
  202. 202.
    Orsini F, Kahane R, Nono-Womdim R, Gianquinto G. 2013. Urban agriculture in the developing world: a review. Agron. Sustain. Dev. 33:4695–720
    [Google Scholar]
  203. 203.
    Meerow S, Newell JP, Stults M. 2016. Defining urban resilience: A review. Landsc. Urban Plan. 147:38–49
    [Google Scholar]
  204. 204.
    Doorn N, Gardoni P, Murphy C. 2019. A multidisciplinary definition and evaluation of resilience: the role of social justice in defining resilience. Sustain. Resil. Infrastruct. 4:3112–23
    [Google Scholar]
  205. 205.
    Norris FH, Stevens SP, Pfefferbaum B, Wyche KF, Pfefferbaum RL. 2008. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. Am. J. Commun. Psychol. 41:1127–50
    [Google Scholar]
  206. 206.
    Birkmann J, Buckle P, Jaeger J, Pelling M, Setiadi N et al. 2010. Extreme events and disasters: a window of opportunity for change? Analysis of organizational, institutional and political changes, formal and informal responses after mega-disasters. Nat. Hazards 55:3637–55
    [Google Scholar]
  207. 207.
    Panteli M, Mancarella P, Trakas DN, Kyriakides E, Hatziargyriou ND. 2017. Metrics and quantification of operational and infrastructure resilience in power systems. IEEE Trans. Power Syst. 32:64732–42
    [Google Scholar]
  208. 208.
    Sun W, Bocchini P, Davison BD. 2020. Resilience metrics and measurement methods for transportation infrastructure: the state of the art. Sustain. Resil. Infrastruct. 5:3168–99
    [Google Scholar]
  209. 209.
    Wang L, Xue X, Zhou X. 2020. A new approach for measuring the resilience of transport infrastructure networks. Complex 2020:e7952309
    [Google Scholar]
  210. 210.
    Turnquist M, Vugrin E. 2013. Design for resilience in infrastructure distribution networks. Environ. Syst. Decis. 33:1104–20
    [Google Scholar]
  211. 211.
    Sajjad M, Lin N, Chan JCL. 2020. Spatial heterogeneities of current and future hurricane flood risk along the U.S. Atlantic and Gulf coasts. Sci. Total Environ. 713:136704
    [Google Scholar]
  212. 212.
    De Sherbinin A, Schiller A, Pulsipher A. 2007. The vulnerability of global cities to climate hazards. Environ. Urban. 19:139–64
    [Google Scholar]
  213. 213.
    Savills 2022. Impacts: the future of global real estate Issue 5, 2022 London: https://www.savills.com/impacts/Impacts3_pdfs/SavillsImpacts2022.pdf
  214. 214.
    Shi L, Moser S. 2021. Transformative climate adaptation in the United States: trends and prospects. Science 372:6549eabc8054
    [Google Scholar]
  215. 215.
    McWethy DB, Schoennagel T, Higuera PE, Krawchuk M, Harvey BJ et al. 2019. Rethinking resilience to wildfire. Nat. Sustain. 2:9797–804
    [Google Scholar]
  216. 216.
    Cushman SA, McGarigal K. 2019. Metrics and models for quantifying ecological resilience at landscape scales. Front. Ecol. Evol. 7:440
    [Google Scholar]
  217. 217.
    Altieri MA, Nicholls CI, Henao A, Lana MA. 2015. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 35:3869–90
    [Google Scholar]
  218. 218.
    Sharifi A. 2019. Resilient urban forms: a macro-scale analysis. Cities 85:1–14
    [Google Scholar]
  219. 219.
    Brown MA, Soni A. 2019. Expert perceptions of enhancing grid resilience with electric vehicles in the United States. Energy Res. Soc. Sci. 57:101241
    [Google Scholar]
  220. 220.
    Elmqvist T, Andersson E, Frantzeskaki N, McPhearson T, Olsson P et al. 2019. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2:4267–73
    [Google Scholar]
  221. 221.
    Sekovski I, Armaroli C, Calabrese L, Mancini F, Stecchi F, Perini L. 2015. Coupling scenarios of urban growth and flood hazards along the Emilia-Romagna coast (Italy). Nat. Hazards Earth Syst. Sci. 15:102331–46
    [Google Scholar]
  222. 222.
    Nasiri NA, Al-Awadhi T, Hereher M, Ahsan R, AlRubkhi AG. 2020. Changing urban ecology a challenge for coastal urban resilience: a study on muscat. Environ. Urban. ASIA 11:110–28
    [Google Scholar]
  223. 224.
    Duy PN, Chapman L, Tight M, Linh PN, Thuong LV. 2017. Increasing vulnerability to floods in new development areas: evidence from Ho Chi Minh City. Int. J. Clim. Change Strateg. Manag. 10:1197–212
    [Google Scholar]
  224. 225.
    Antolini F, Tate E, Dalzell B, Young N, Johnson K, Hawthorne PL. 2020. Flood risk reduction from agricultural best management practices. J. Am. Water Resour. Assoc. 56:1161–79
    [Google Scholar]
  225. 226.
    Lim HK, Kain J-H. 2016. Compact cities are complex, intense and diverse but: Can we design such emergent urban properties?. Urban Plan. 1:195–113
    [Google Scholar]
  226. 227.
    Taha H. 1997. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build. 25:299–103
    [Google Scholar]
  227. 228.
    Ichinose T, Shimodozono K, Hanaki K. 1999. Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 33:243897–909
    [Google Scholar]
  228. 229.
    Yang B, Yang X, Leung LR, Zhong S, Qian Y et al. 2019. Modeling the impacts of urbanization on summer thermal comfort: the role of urban land use and anthropogenic heat. J. Geophys. Res. 124:136681–97
    [Google Scholar]
  229. 230.
    Zhao L, Oleson K, Bou-Zeid E, Krayenhoff ES, Bray A et al. 2021. Global multi-model projections of local urban climates. Nat. Clim. Change 11:2152–57
    [Google Scholar]
  230. 231.
    Gunawardena KR, Wells MJ, Kershaw T. 2017. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 584–585:1040–55
    [Google Scholar]
  231. 232.
    Luo X, Vahmani P, Hong T, Jones A. 2020. City-scale building anthropogenic heating during heat waves. Atmosphere 11:111206
    [Google Scholar]
  232. 233.
    Alhazmi M, Sailor DJ, Anand J. 2022. A new perspective for understanding actual anthropogenic heat emissions from buildings. Energy Build. 258:111860
    [Google Scholar]
  233. 234.
    Mussetti G, Davin EL, Schwaab J, Acero JA, Ivanchev J et al. 2022. Do electric vehicles mitigate urban heat? The case of a tropical city. Front. Environ. Sci. 10:810342
    [Google Scholar]
  234. 235.
    Adelia AS, Ivanchev J, Resende Santos LG, Kayanan DR, Fonseca JA, Nevat I 2020. Microscale assessment of the anthropogenic heat mitigation strategies Rep. ETH Zurich:
  235. 236.
    Yang J, Bou-Zeid E. 2018. Should cities embrace their heat islands as shields from extreme cold?. J. Appl. Meteorol. Climatol. 57:61309–20
    [Google Scholar]
  236. 237.
    Feng J, Khan A, Doan Q-V, Gao K, Santamouris M. 2021. The heat mitigation potential and climatic impact of super-cool broadband radiative coolers on a city scale. Cell Rep. Phys. Sci. 2:7100485
    [Google Scholar]
  237. 238.
    Baniassadi A, Sailor DJ, Ban-Weiss GA. 2019. Potential energy and climate benefits of super-cool materials as a rooftop strategy. Urban Clim. 29:100495
    [Google Scholar]
  238. 239.
    IEA (Intl. Energy Agency) 2020. Power systems in transition: challenges and opportunities ahead for electricity security Rep. IEA Paris: https://www.iea.org/reports/power-systems-in-transition ; https://iea.blob.core.windows.net/assets/cd69028a-da78-4b47-b1bf-7520cdb20d70/Power_systems_in_transition.pdf
  239. 240.
    Cox SL, Hotchkiss EL, Bilello DE, Watson AC, Holm A. 2017. Bridging climate change resilience and mitigation in the electricity sector through renewable energy and energy efficiency: emerging climate change and development topics for energy sector transformation Rep., NREL/TP-6A20–67040 Natl. Renew. Energy Lab. Golden, CO:
  240. 241.
    Dyson M, Li BX. 2020. Reimagining grid resilience: a framework for addressing catastrophic threats to the US electricity grid in an era of transformational change Rep. Basalt, CO: Rocky Mount. Inst.
  241. 242.
    PNNL (Pac. Northwest Natl. Lab.) 2021. Modeling tomorrow's power grid to enable decarbonization and resilience Rep. PNNL-SA-169163. https://www.pnnl.gov/labobjectives/ModelingForUtilities.pdf
  242. 243.
    Le Xie CS. 2021. Building a resilient, carbon-neutral electric grid requires energy ‘superhighways.. The Hill July 9. https://thehill.com/opinion/energy-environment/562268-building-a-resilient-carbon-neutral-electric-grid-requires-energy/
    [Google Scholar]
  243. 244.
    Crespo del Granado P, van Nieuwkoop R, Kardakos E, Schaffner C. 2018. Modelling the energy transition: a nexus of energy system and economic models. Energy Strateg. Rev. 20:229–35
    [Google Scholar]
  244. 245.
    Lund H, Werner S, Wiltshire R, Svendsen S, Thorsen JE et al. 2014. 4th Generation District Heating (4GDH): integrating smart thermal grids into future sustainable energy systems. Energy 68:1–11
    [Google Scholar]
  245. 246.
    Hussain A, Bui V-H, Kim H-M. 2019. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Appl. Energy 240:56–72
    [Google Scholar]
  246. 247.
    Wang Y, Rousis AO, Strbac G. 2020. On microgrids and resilience: a comprehensive review on modeling and operational strategies. Renewable Sustainable Energy Rev. 134:110313
    [Google Scholar]
  247. 248.
    Lagrange A, de Simón-Martín M, González-Martínez A, Bracco S, Rosales-Asensio E. 2020. Sustainable microgrids with energy storage as a means to increase power resilience in critical facilities: an application to a hospital. Int. J. Electr. Power Energy Syst. 119:105865
    [Google Scholar]
  248. 249.
    Ebadat-Parast M, Nazari MH, Hosseinian SH. 2022. Distribution system resilience enhancement through resilience-oriented optimal scheduling of multi-microgrids considering normal and emergency conditions interlink utilizing multi-objective programming. Sustain. Cities Soc. 76:103467
    [Google Scholar]
  249. 250.
    Uddin K, Dubarry M, Glick MB. 2018. The viability of vehicle-to-grid operations from a battery technology and policy perspective. Energy Policy 113:342–47
    [Google Scholar]
  250. 251.
    Feng K, Lin N, Xian S, Chester MV. 2020. Can we evacuate from hurricanes with electric vehicles?. Transp. Res. D. 86:102458
    [Google Scholar]
  251. 252.
    Campbell RJ, Lowry S. 2012. Weather-related power outages and electric system resiliency Rep. Congr. Res. Serv.
  252. 253.
    Parent JR, Meyer TH, Volin JC, Fahey RT, Witharana C. 2019. An analysis of enhanced tree trimming effectiveness on reducing power outages. J. Environ. Manag. 241:397–406
    [Google Scholar]
  253. 254.
    Barrow CJ. 2012. Biochar: potential for countering land degradation and for improving agriculture. Appl. Geogr. 34:21–28
    [Google Scholar]
  254. 255.
    Gomez M, Mejia A, Ruddell BL, Rushforth RR. 2021. Supply chain diversity buffers cities against food shocks. Nature 595:7866250–54
    [Google Scholar]
  255. 256.
    Parker T, Svantemark M. 2019. Resilience by industrial symbiosis? A discussion on risk, opportunities and challenges for food production in the perspective of the food-energy-water nexus. Bioremediation 2:17
    [Google Scholar]
  256. 257.
    Medina Camarena KS, Wübbelmann T, Förster K. 2022. What is the contribution of urban trees to mitigate pluvial flooding?. Hydrology 9:6108
    [Google Scholar]
  257. 258.
    Fairchild TP, Bennett WG, Smith G, Day B, Skov MW et al. 2021. Coastal wetlands mitigate storm flooding and associated costs in estuaries. Environ. Res. Lett. 16:7074034
    [Google Scholar]
  258. 259.
    Narayan S, Beck MW, Wilson P, Thomas CJ, Guerrero A et al. 2017. The value of coastal wetlands for flood damage reduction in the Northeastern USA. Sci. Rep. 7:9463
    [Google Scholar]
  259. 260.
    Rehak B. 2021. China's “Sponge Cities. .” Reduce Flooding – Now! https://reduceflooding.com/2021/07/31/chinas-sponge-cities/
    [Google Scholar]
  260. 261.
    Barbour E, Parra D, Awwad Z, González MC. 2018. Community energy storage: A smart choice for the smart grid?. Appl. Energy 212:489–97
    [Google Scholar]
  261. 262.
    Cabiyo B, Fried JS, Collins BM, Stewart W, Wong J, Sanchez DL. 2021. Innovative wood use can enable carbon-beneficial forest management in California. PNAS 118:49e2019073118
    [Google Scholar]
  262. 263.
    Braveman P. 2014. What are health disparities and health equity? We need to be clear. Public Health Rep. 129:5–8
    [Google Scholar]
  263. 264.
    Dempsey N, Bramley G, Power S, Brown C. 2011. The social dimension of sustainable development: defining urban social sustainability. Sustain. Dev. 19:5289–300
    [Google Scholar]
  264. 265.
    Tong K, Ramaswami A, Xu C(K), Feiock R, Schmitz P, Ohlsen M. 2021. Measuring social equity in urban energy use and interventions using fine-scale data. PNAS 118:24e2023554118
    [Google Scholar]
  265. 266.
    Hughes S, Hoffmann M. 2020. Just urban transitions: toward a research agenda. WIREs Clim. Change 11:3e640
    [Google Scholar]
  266. 267.
    Bozeman JF, Nobler E, Nock D. 2022. A path toward systemic equity in life cycle assessment and decision-making: standardizing sociodemographic data practices. Environ. Eng. Sci. 39:9759–69
    [Google Scholar]
  267. 268.
    Broto VC, Westman L, Huang P. 2021. Reparative innovation for urban climate adaptation. J. Br. Acad. 9:s9205–18
    [Google Scholar]
  268. 269.
    Romero-Lankao P, Nobler E. 2021. Energy justice: key concepts and metrics relevant to EERE transportation projects Rep., NREL/TP-5400-80206 Natl. Renew. Energy Lab.
  269. 270.
    Rawls J. 2020. A theory of justice: Revised Edition Cambridge, MA: Harvard Univ. Press
  270. 271.
    Pandey B, Brelsford C, Seto KC. 2022. Infrastructure inequality is a characteristic of urbanization. PNAS 119:15e2119890119
    [Google Scholar]
  271. 272.
    Mahadevia D, Bhatia N, Bhonsale B. 2014. Slum rehabilitation schemes (SRS) across Ahmedabad: role of an external agency CUE Work. Pap. 27, November 2014. https://cept.ac.in/UserFiles/File/CUE/Working%20Papers/Revised%20New/27CUEWP%2027_Slum%20Rehabilitation%20Schemes%20%28SRS%29%20across%20Ahmedabad%20-%20Role%20of%20an%20External%20Agency.compressed.pdf
  272. 273.
    Nutkiewicz A, Mastrucci A, Rao ND, Jain RK. 2022. Cool roofs can mitigate cooling energy demand for informal settlement dwellers. Renew. Sustain. Energy Rev. 159:112183
    [Google Scholar]
  273. 274.
    Census of India 2011. Census of India. Census of India 2011 https://censusindia.gov.in/census.website
    [Google Scholar]
  274. 275.
    Pandey B, Ramaswami A. 2022. Quantifying tree cover across all urban areas in India Presented at AGU Fall Meet. Chicago, IL: Dec. 12–16. https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1185671
  275. 277.
    City of Minneapolis 2022. Inclusionary zoning requirements. Community Planning & Economic Development (CPED). https://www2.minneapolismn.gov/government/projects/cped/inclusionary-zoning/
    [Google Scholar]
  276. 278.
    Lamb WF, Wiedmann T, Pongratz J, Andrew R, Crippa M et al. 2021. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 16:7073005
    [Google Scholar]
  277. 279.
    DOE (Dep. Energy) 2021. Energy Justice Dashboard (Beta). Office of Economic Impact and Diversity https://www.energy.gov/diversity/energy-justice-dashboard-beta
    [Google Scholar]
  278. 280.
    Vega-Perkins J, Newell JP, Keoleian G. 2023. Mapping electric vehicle impacts: greenhouse gas emissions, fuel costs, and energy justice in the United States. Environ. Res. Lett. 18:1014027
    [Google Scholar]
  279. 281.
    Schwarz K, Fragkias M, Boone CG, Zhou W, McHale M et al. 2015. Trees grow on money: urban tree canopy cover and environmental justice. PLOS ONE 10:4e0122051 https://doi.org/10.1371/journal.pone.0122051
    [Crossref] [Google Scholar]
  280. 282.
    Riedman E, Roman LA, Pearsall H, Maslin M, Ifill T, Dentice D. 2022. Why don't people plant trees? Uncovering barriers to participation in urban tree planting initiatives. Urban For. Urban Green. 73:127597
    [Google Scholar]
  281. 283.
    Conway TM, Yuan AY, Roman LA, Heckert M, Pearsall H et al. 2022. Who participates in green infrastructure initiatives and why? Comparing participants and non-participants in Philadelphia's GI programs. J. Environ. Policy Plan. 25:3327–41. https://doi.org/10.1080/1523908X.2022.2128310
    [Google Scholar]
  282. 284.
    Rothfusz LP. 1990. The heat index “equation” (or, more than you ever wanted to know about heat index) NWS Tech. Attach. SR 90-23 Fort Worth, TX: http://www.srh.noaa.gov/images/ffc/pdf/ta_htindx.PDF
  283. 285.
    Nicholls RJ, Hanson S, Herweijer C, Patmore N, Hallegatte S et al. 2007.. Ranking of the world's cities most exposed to coastal flooding today and in the future. Exec. Summ. OECD. https://www.oecd.org/env/cc/39721444.pdf
  284. 286.
    UNDESA (U.N. Dept. Econ. Soc. Aff.) 2018. World Urbanization Prospects 2018. United Nations Department of Economic and Social Affairs. Population Dynamics. https://population.un.org/wup/Download/
    [Google Scholar]
  285. 287.
    Gallup Inc. 2009. Understanding how Gallup uses the Cantril Scale. Gallup.com. https://news.gallup.com/poll/122453/Understanding-Gallup-Uses-Cantril-Scale.aspx .
    [Google Scholar]
  286. 288.
    Climate Watch 2022. Climate Watch historical GHG emissions. World Resources Institute https://www.climatewatchdata.org/ghg-emissions
    [Google Scholar]
  287. 289.
    Ritchie H, Roser M, Rosado P. 2020. CO2 and greenhouse gas emissions. OurWorldInData.org. https://ourworldindata.org/co2-and-greenhouse-gas-emissions
    [Google Scholar]
  288. 290.
    Hasanbeigi A. 2021. Global cement industry's GHG emissions. Global Efficiency Intelligence https://www.globalefficiencyintel.com/new-blog/2021/global-cement-industry-ghg-emissions
    [Google Scholar]
  289. 291.
    FAO (Food Agricul. Org. U.N.) 2023. QUASTAT. FAO's Global Information System on Water and Agriculture. Food and Agriculture Organization of the United Nations. https://tableau.apps.fao.org/views/ReviewDashboard-v1/country_dashboard?%3Adisplay_count=n&%3Aembed=y&%3AisGuestRedirectFromVizportal=y&%3Aorigin=viz_share_link&%3AshowAppBanner=false&%3AshowVizHome=n
    [Google Scholar]
  290. 292.
    Pomponi F, Stephan A. 2021. Water, energy, and carbon dioxide footprints of the construction sector: a case study on developed and developing economies. Water Res. 194:116935
    [Google Scholar]
  291. 293.
    IHME (Inst. Health Metr. Eval.) 2019. Global Burden of Disease Study 2019. Results Institute for Health Metrics and Evaluation. http://ghdx.healthdata.org/gbd-results-tool
    [Google Scholar]
  292. 294.
    World Health Organization (WHO) 2018. Global status report on road safety 2018 World Health Organization Geneva:
/content/journals/10.1146/annurev-environ-112621-063931
Loading
/content/journals/10.1146/annurev-environ-112621-063931
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error