1932

Abstract

The few percent of soil organic carbon (SOC) among mineral components form the interface of climate, plant growth, soil biological processes, physical transport infrastructure, and chemical transformations. We explore maps, models, myths, motivation, means of implementation, and modalities for transformation. Theories of place relate geographic variation in SOC to climate, soil types, land cover, and profile depth. Process-level theories of biophysical change and socioeconomic theories of induced change explain SOC transitions that follow from land use change when a declining curve is bent and recovery toward SOC saturation starts. While the desirability of recovering from SOC deficits has been mainstreamed into climate policy, the effectiveness of proposed measures taken remains contested. Process-level requirements for transitions at plot and landscape scales remain uncertain. Expectations of policy-induced SOC transitions have to align with national cross-sectoral C accounting and be managed realistically with land users (farmers) and commodity supply chains (private sector, consumers).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112621-083121
2023-11-13
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112621-083121.html?itemId=/content/journals/10.1146/annurev-environ-112621-083121&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Stoorvogel JJ, Bakkenes M, Brink BJ, Temme AJ. 2017. To what extent did we change our soils? A global comparison of natural and current conditions. Land Degrad. Dev 28:71982–91
    [Google Scholar]
  2. 2.
    Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J et al. 2020. Global carbon budget 2020. Earth Syst. Sci. Data 12:43269–340
    [Google Scholar]
  3. 3.
    Keenan TF, Williams CA. 2018. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43:219–43
    [Google Scholar]
  4. 4.
    Banwart SA, Noellemeyer E, Milne E, eds. 2015. Soil Carbon: Science, Management and Policy for Multiple Benefits: SCOPE Series Vol. 71 Wallingford, UK: CABI
  5. 5.
    Milne E, Banwart SA, Noellemeyer E, Abson DJ, Ballabio C et al. 2015. Soil carbon, multiple benefits. Environ. Dev. 13:33–38
    [Google Scholar]
  6. 6.
    Luo Y, Ahlström A, Allison SD, Batjes NH, Brovkin V et al. 2016. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycl. 30:140–56
    [Google Scholar]
  7. 7.
    Hairiah K, Fiantis D, Utami SR, Nurbaity A, Utami SNH et al. 2022. Hundred fifty years of soil security research in Indonesia: shifting topics, modes of research and gender balance. Soil Secur. 6:100049
    [Google Scholar]
  8. 8.
    Minasny B, Fiantis D, Mulyanto B, Sulaeman Y, Widyatmanti W. 2020. Global soil science research collaboration in the 21st century: time to end helicopter research. Geoderma 373:114299
    [Google Scholar]
  9. 9.
    Ingram J, Mills J, Dibari C, Ferrise R, Ghaley BB et al. 2016. Communicating soil carbon science to farmers: incorporating credibility, salience and legitimacy. J. Rural Stud. 48:115–28
    [Google Scholar]
  10. 10.
    Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D et al. 2017. Soil carbon 4 per mille. Geoderma 292:59–86
    [Google Scholar]
  11. 11.
    Vermeulen S, Bossio D, Lehmann J, Luu P, Paustian K et al. 2019. A global agenda for collective action on soil carbon. Nat. Sustain. 2:12–4
    [Google Scholar]
  12. 12.
    Rumpel C. 2022. Understanding and Fostering Soil Carbon Sequestration Sawston, UK: Burleigh Dodds
  13. 13.
    Schlesinger WH, Amundson R. 2019. Managing for soil carbon sequestration: Let's get realistic. Glob. Change Biol. 25:2386–89
    [Google Scholar]
  14. 14.
    Dignac MF, Derrien D, Barre P, Barot S, Cécillon L et al. 2017. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron. Sust. Dev. 37:214
    [Google Scholar]
  15. 15.
    Sulman BN, Moore JA, Abramoff R, Averill C, Kivlin S et al. 2018. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry 141:2109–23
    [Google Scholar]
  16. 16.
    Lal R. 2018. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Change Biol. 24:83285–301
    [Google Scholar]
  17. 17.
    Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G. 2017. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evolut. Syst. 48:1419–45
    [Google Scholar]
  18. 18.
    van Noordwijk M, Goverse T, Ballabio C, Banwart SA, Bhattacharyya T et al. 2015. Soil carbon transition curves: reversal of land degradation through management of soil organic matter for multiple benefits. Soil Carbon: Science, Management and Policy for Multiple Benefits: SCOPE Series Vol. 71 SA Banwart, E Noellemeyer, E Milne 26–46. Wallingford, UK: CABI
    [Google Scholar]
  19. 19.
    Dewi S, van Noordwijk M, Zulkarnain MT, Dwiputra A, Hyman G et al. 2017. Tropical forest-transition landscapes: a portfolio for studying people, tree crops and agro-ecological change in context. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 13:1312–29
    [Google Scholar]
  20. 20.
    van Noordwijk M, Ekadinata A, Leimona B, Catacutan D, Martini E et al. 2020. Agroforestry options for degraded landscapes in Southeast Asia. Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges - Vol. 1 JC Dagar, SR Gupta, D Teketay 307–47. Singapore: Springer
    [Google Scholar]
  21. 21.
    van Noordwijk M, Minang PA, Hairiah K. 2015. Swidden transitions in an era of climate change debate. Shifting Cultivation and Environmental Change: Indigenous People, Agriculture and Forest Conservation MF Cairns 261–80. Abingdon, UK: Routledge
    [Google Scholar]
  22. 22.
    Khasanah NM, van Noordwijk M, Ningsih H, Rahayu S. 2015. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia. Agric. Ecosyst. Environ. 211:195–206
    [Google Scholar]
  23. 23.
    Saputra DD, Sari RR, Hairiah K, Roshetko JM, Suprayogo D, van Noordwijk M. 2020. Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use?. Agrofor. Syst. 94:62261–76
    [Google Scholar]
  24. 24.
    Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Japan: IGES
  25. 25.
    Knotters M, Teuling K, Reijneveld A, Lesschen JP, Kuikman P. 2022. Changes in organic matter contents and carbon stocks in Dutch soils, 1998–2018. Geoderma 414:115751
    [Google Scholar]
  26. 26.
    van Noordwijk M, De Willigen P. 1987. Agricultural concepts of roots: from morphogenetic to functional equilibrium between root and shoot growth. Neth. J. Agric. Sci. 35:4487–96
    [Google Scholar]
  27. 27.
    Somarathna PDSN, Minasny B, Malone BP. 2017. More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon. Soil Sci. Soc. Am. J. 81:61413–26
    [Google Scholar]
  28. 28.
    Chen S, Arrouays D, Angers DA, Chenu C, Barré P et al. 2019. National estimation of soil organic carbon storage potential for arable soils: a data-driven approach coupled with carbon-landscape zones. Sci. Total Environ. 666:355–67
    [Google Scholar]
  29. 29.
    Nave LE, Domke GM, Hofmeister KL, Mishra U, Perry CH et al. 2018. Reforestation can sequester two petagrams of carbon in US topsoils in a century. PNAS 115:112776–81
    [Google Scholar]
  30. 30.
    Dwan K, Gamble C, Williamson PR, Kirkham JJ, Reporting Bias Group 2013. Systematic review of the empirical evidence of study publication bias and outcome reporting bias—an updated review. PLOS ONE 8:7e66844
    [Google Scholar]
  31. 31.
    Turner B, Devisscher T, Chabaneix N, Woroniecki S, Messier C, Seddon N. 2022. The role of nature-based solutions in supporting social-ecological resilience for climate change adaptation. Annu. Rev. Environ. Resour. 47:123–48
    [Google Scholar]
  32. 32.
    van Noordwijk M. 2021. Theories of Place, Change and Induced Change for Tree-Crop-Based Agroforestry Bogor, Indones.: World Agrofor.
  33. 33.
    Padarian J, Stockmann U, Minasny B, McBratney AB. 2022. Monitoring changes in global soil organic carbon stocks from space. Remote Sens. Environ. 281:113260
    [Google Scholar]
  34. 34.
    Hiederer R, Köchy M. 2011. Global Soil Organic Carbon Estimates and the Harmonized World Soil Database Sci. Tech. Rep. EUR 25225 EN, Pub. Off. Eur. Union Luxemb.:
  35. 35.
    Hugelius G, Bockheim JG, Camill P, Elberling B, Grosse G et al. 2013. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 5:2393–402
    [Google Scholar]
  36. 36.
    Wetlands Int., GEC (Glob. Environ. Cent.) 2022. Global Peatland Assessment Rep. Wetlands Int. Wagening., Neth.:
  37. 37.
    Silvianingsih YA, Hairiah K, Suprayogo D, van Noordwijk M. 2021. Kaleka agroforest in Central Kalimantan (Indonesia): soil quality, hydrological protection of adjacent peatlands, and sustainability. Land 10:8856
    [Google Scholar]
  38. 38.
    Sanderman J, Hengl T, Fiske G, Solvik K, Adame MF et al. 2018. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13:5055002
    [Google Scholar]
  39. 39.
    Eswaran H, Van Den Berg E, Reich P 1993. Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:1192–94
    [Google Scholar]
  40. 40.
    Batjes NH. 2016. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269:61–68
    [Google Scholar]
  41. 41.
    McBratney AB, Santos MM, Minasny B. 2003. On digital soil mapping. Geoderma 117:3–52
    [Google Scholar]
  42. 42.
    Keskin H, Grunwald S, Harris WG. 2019. Digital mapping of soil carbon fractions with machine learning. Geoderma 339:40–58
    [Google Scholar]
  43. 43.
    Grunwald S. 2022. Artificial intelligence and soil carbon modeling demystified: power, potentials, and perils. Carbon Footprints 1:15
    [Google Scholar]
  44. 44.
    Rasmussen C, Heckman K, Wieder WR, Keiluweit M, Lawrence CR et al. 2018. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137:3297–306
    [Google Scholar]
  45. 45.
    von Fromm SF, Hoyt AM, Acquah GE, Aynekulu E, Berhe AA et al. 2020. Continental-scale controls on soil organic carbon across sub-Saharan Africa. SOIL 7:1305–32
    [Google Scholar]
  46. 46.
    Li J, Nie M, Powell JR, Bissett A, Pendall E. 2020. Soil physico-chemical properties are critical for predicting carbon storage and nutrient availability across Australia. Environ. Res. Lett. 15:9094088
    [Google Scholar]
  47. 47.
    Wiese L, Ros I, Rozanov A, Boshoff A, de Clercq W, Seifert T 2016. An approach to soil carbon accounting and mapping using vertical distribution functions for known soil types. Geoderma 263:264–73
    [Google Scholar]
  48. 48.
    van Noordwijk M, Cerri C, Woomer PL, Nugroho K, Bernoux M. 1997. Soil carbon dynamics in the humid tropical forest zone. Geoderma 79:1–4187–225
    [Google Scholar]
  49. 49.
    Hairiah K, van Noordwijk M, Sari RR, Saputra DD, Suprayogo D et al. 2020. Soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agric. Ecosyst. Environ. 294:106879
    [Google Scholar]
  50. 50.
    Sun X-L, Minasny B, Wu Y-J, Wang H-L, Fan X-H, Zhang G-L. 2023. Soil organic carbon content increase in the east and south of China is accompanied by soil acidification. Sci. Total Environ. 857:Part 1159253
    [Google Scholar]
  51. 51.
    Song X, Liu M, Ju X, Gao B, Su F et al. 2018. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain. Environ. Sci. Technol. 52:2112504–13
    [Google Scholar]
  52. 52.
    Magalhães TM. 2023. Trees in agricultural landscapes maintain soil organic carbon following miombo woodland conversion to shifting cultivation. Geoderma 429:116241
    [Google Scholar]
  53. 53.
    Conant RT, Cerri CE, Osborne BB, Paustian K. 2017. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27:2662–68
    [Google Scholar]
  54. 54.
    Aynekulu E, Mekuria W, Tsegaye D, Feyissa K, Angassa A et al. 2017. Long-term livestock exclosure did not affect soil carbon in southern Ethiopian rangelands. Geoderma 307:1–7
    [Google Scholar]
  55. 55.
    Tenney FG, Waksman SA. 1929. Composition of natural organic materials and their decomposition in the soil: IV. The nature and rapidity of decomposition of the various organic complexes in different plant materials, under aerobic conditions. Soil Sci. 28:55–84
    [Google Scholar]
  56. 56.
    van Noordwijk M, Bayala J, Hairiah K, Lusiana B, Muthuri C et al. 2014. Agroforestry solutions for buffering climate variability and adapting to change. Climate Change Impact and Adaptation in Agricultural Systems J Fuhrer, PJ Gregory 216–32. Wallingford, UK: CABI
    [Google Scholar]
  57. 57.
    Koven CD, Hugelius G, Lawrence DM, Wieder WR. 2017. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7:11817–22
    [Google Scholar]
  58. 58.
    Deng L, Peng C, Kim DG, Li J, Liu Y et al. 2021. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. . Earth-Sci. Rev. 214:103501
    [Google Scholar]
  59. 59.
    Canarini A, Kiær LP, Dijkstra FA. 2017. Soil carbon loss regulated by drought intensity and available substrate: a meta-analysis. Soil Biol. Biochem. 112:90–99
    [Google Scholar]
  60. 60.
    Hairiah K, Sulistyani H, Suprayogo D, Widianto Purnomosidhi P et al. 2006. Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. For. Ecol. Manag. 224:45–57
    [Google Scholar]
  61. 61.
    Sari RR, Rozendaal D, Saputra DD, Hairiah K, Roshetko JM, van Noordwijk M. 2022. Balancing litterfall and decomposition in cacao agroforestry systems. Plant Soil 473:1251–71
    [Google Scholar]
  62. 62.
    Liu W, Luo Q, Lu H, Wu J, Duan W. 2017. The effect of litter layer on controlling surface runoff and erosion in rubber plantations on tropical mountain slopes, SW China. Catena 149:167–75
    [Google Scholar]
  63. 63.
    Kumar BM 2007. Litter dynamics in plantation and agroforestry systems of the tropics—a review of observations and methods. Ecological Basis of Agroforestry DR Batish, RK Kohli, S Jose, HP Singh 181–216. Boca Raton, FL: CRC Press
    [Google Scholar]
  64. 64.
    Souza SR, Veloso MDM, Espírito-Santo MM, Silva JO, Sánchez-Azofeifa A et al. 2019. Litterfall dynamics along a successional gradient in a Brazilian tropical dry forest. For. Ecosyst. 6:35
    [Google Scholar]
  65. 65.
    Saj S, Nijmeijer A, Nieboukaho J-DE, Lauri P-E, Harmand J-M 2021. Litterfall seasonal dynamics and leaf-litter turnover in cocoa agroforests established on past forest lands or savannah. Agrofor. Syst. 95:583–97
    [Google Scholar]
  66. 66.
    Liu J, Liu X, Song Q, Compson ZG, LeRoy CJ et al. 2020. Synergistic effects: a common theme in mixed-species litter decomposition. New Phytol. 227:757–65
    [Google Scholar]
  67. 67.
    Veen GF, Keiser AD, van der Putten WH, Wardle DA, Hart M. 2018. Variation in home-field advantage and ability in leaf litter decomposition across successional gradients. Funct. Ecol. 32:1563–74
    [Google Scholar]
  68. 68.
    Bailey VL, Pries CH, Lajtha K. 2019. What do we know about soil carbon destabilization?. Environ. Res. Lett. 14:8083004
    [Google Scholar]
  69. 69.
    Kooistra MJ, van Noordwijk M 1995. Soil architecture and distribution of organic matter. Structure and Organic Matter Storage in Agricultural Soils MR Carter, BA Stewart 15–56. Baton Rouge, FL: CRC Press
    [Google Scholar]
  70. 70.
    Averill C, Hawkes CV. 2016. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19:8937–47
    [Google Scholar]
  71. 71.
    Crowther TW, Todd-Brown KE, Rowe CW, Wieder WR, Carey JC et al. 2016. Quantifying global soil carbon losses in response to warming. Nature 540:7631104–8
    [Google Scholar]
  72. 72.
    Pries CEH, Castanha C, Porras RC, Torn MS. 2017. The whole-soil carbon flux in response to warming. Science 355:63321420–23
    [Google Scholar]
  73. 73.
    Xue K, Yuan MM, Shi ZJ, Qin Y, Deng YE et al. 2016. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6:6595–600
    [Google Scholar]
  74. 74.
    Wieder WR, Sulman BN, Hartman MD, Koven CD, Bradford MA. 2019. Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophys. Res. Lett. 46:2414486–95
    [Google Scholar]
  75. 75.
    Song Y, Zou Y, Wang G, Yu X. 2017. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis. Soil Biol. Biochem. 109:35–49
    [Google Scholar]
  76. 76.
    Walker TW, Kaiser C, Strasser F, Herbold CW, Leblans NI et al. 2018. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8:10885–89
    [Google Scholar]
  77. 77.
    Silvianingsih YA, van Noordwijk M, Suprayogo D, Hairiah K. 2022. Litter decomposition in wet rubber and fruit agroforests: below the threshold for tropical peat formation. Soil Syst. 6:119
    [Google Scholar]
  78. 78.
    Pellegrini AF, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP et al. 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553:7687194–98
    [Google Scholar]
  79. 79.
    Aynekulu E, Sileshi GW, Rosenstock TS, van Noordwijk M, Tsegaye D et al. 2021. No changes in soil organic carbon and nitrogen following long-term prescribed burning and livestock exclusion in the Sudan-savanna woodlands of Burkina Faso. Basic Appl. Ecol. 56:165–75
    [Google Scholar]
  80. 80.
    Weng ZH, Van Zwieten L, Singh BP, Tavakkoli E, Joseph S et al. 2017. Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat. Clim. Change 7:5371–76
    [Google Scholar]
  81. 81.
    Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L. 2011. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric. Ecosyst. Environ. 141:184–92
    [Google Scholar]
  82. 82.
    van Noordwijk M, Mulia R. 2002. Functional branch analysis as tool for fractal scaling above- and belowground trees for their additive and non-additive properties. Ecol. Model. 149:1–241–51
    [Google Scholar]
  83. 83.
    Berhongaray G, Cotrufo FM, Janssens IA, Ceulemans R. 2019. Below-ground carbon inputs contribute more than above-ground inputs to soil carbon accrual in a bioenergy poplar plantation. Plant Soil 434:363–78
    [Google Scholar]
  84. 84.
    Clemmensen K, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A et al. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–18
    [Google Scholar]
  85. 85.
    Naylor D, Sadler N, Bhattacharjee A, Graham EB, Anderton CR et al. 2020. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45:29–59
    [Google Scholar]
  86. 86.
    Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS. 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:2167–77
    [Google Scholar]
  87. 87.
    Birhane E, Gebretsadik KF, Taye G, Aynekulu E, Rannestad MM, Norgrove L. 2020. Effects of forest composition and disturbance on arbuscular mycorrhizae spore density, arbuscular mycorrhizae root colonization and soil carbon stocks in a dry Afromontane forest in northern Ethiopia. Diversity 12:4133
    [Google Scholar]
  88. 88.
    Parihar M, Rakshit A, Meena VS, Gupta VK, Rana K et al. 2020. The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch. Microbiol. 202:1581–96
    [Google Scholar]
  89. 89.
    Kravchenko AN, Guber AK, Razavi BS, Koestel J, Quigley MY et al. 2019. Microbial spatial footprint as a driver of soil carbon stabilization. Nat. Commun. 10:13121
    [Google Scholar]
  90. 90.
    Liang C, Schimel JP, Jastrow JD. 2017. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2:17105
    [Google Scholar]
  91. 91.
    Zak DR, Pellitier PT, Argiroff W, Castillo B, James TY et al. 2019. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol. 223:133–39
    [Google Scholar]
  92. 92.
    Keller AB, Brzostek ER, Craig ME, Fisher JB, Phillips RP. 2021. Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecol. Lett. 24:626–35
    [Google Scholar]
  93. 93.
    Chen W, Koide RT, Eissenstat DM. 2018. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. . J. Ecol. 106:148–56
    [Google Scholar]
  94. 94.
    Sokol NM, Bradford MA. 2021. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. GeoSci. 12:146–53
    [Google Scholar]
  95. 95.
    Witzgall K, Vidal A, Schubert DI, Höschen C, Schweizer SA et al. 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 12:4115
    [Google Scholar]
  96. 96.
    Whalen ED, Grandy AS, Sokol NW, Keiluweit M, Ernakovich J et al. 2022. Clarifying the evidence for microbial- and plant-derived soil organic matter, and the path toward a more quantitative understanding. Glob. Change Biol. 28:247167–85
    [Google Scholar]
  97. 97.
    Debnath N, Nath A, Sileshi GW, Nath AJ, Nandy S, Das AK. 2023. Determinants of phytolith occluded carbon in bamboo stands across forest types in the eastern Indian Himalayas. Sci. Total Environ. 857:Part 2159568
    [Google Scholar]
  98. 98.
    King AE, Congreves KA, Deen B, Dunfield KE, Voroney RP, Wagner-Riddle C. 2019. Quantifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biol. Biochem. 135:95–107
    [Google Scholar]
  99. 99.
    Cotrufo MF, Ranalli MG, Haddix ML, Six J, Lugato E. 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12:12989–94
    [Google Scholar]
  100. 100.
    Gentsch N, Wild B, Mikutta R, Čapek P, Diáková K et al. 2018. Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob. Change Biol. 24:83401–15
    [Google Scholar]
  101. 101.
    Nicoloso RS, Amado TJ, Rice CW. 2020. Assessing strategies to enhance soil carbon sequestration with the DSSAT-CENTURY model. Eur. J. Soil Sci. 71:61034–49
    [Google Scholar]
  102. 102.
    Johnston AE, Poulton PR. 2018. The importance of long-term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 69:1113–25
    [Google Scholar]
  103. 103.
    Mostovaya A, Hawkes JA, Koehler B, Dittmar T, Tranvik LJ. 2017. Emergence of the reactivity continuum of organic matter from kinetics of a multitude of individual molecular constituents. Environ. Sci. Technol. 51:2011571–79
    [Google Scholar]
  104. 104.
    Robertson AD, Paustian K, Ogle S, Wallenstein MD, Lugato E, Cotrufo MF. 2019. Unifying soil organic matter formation and persistence frameworks: the MEMS model. Biogeoscience 16:61225–48
    [Google Scholar]
  105. 105.
    Abramoff R, Xu X, Hartman M, O'Brien S, Feng W et al. 2018. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry 137:151–71
    [Google Scholar]
  106. 106.
    Dwivedi D, Riley WJ, Torn MS, Spycher N, Maggi F, Tang JY. 2017. Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biol. Biochem. 107:244–59
    [Google Scholar]
  107. 107.
    Barré P, Angers DA, Basile-Doelsch I, Bispo A, Cécillon L et al. 2017. Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?. Biogeosciences Preprint. https://doi.org/10.5194/bg-2017-395
    [Google Scholar]
  108. 108.
    Georgiou K, Jackson RB, Vindušková O, Abramoff RZ, Ahlström A et al. 2022. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 13:3797
    [Google Scholar]
  109. 109.
    El-Naggar A, Awad YM, Tang XY, Liu C, Niazi NK et al. 2018. Biochar influences soil carbon pools and facilitates interactions with soil: a field investigation. Land Degrad. Dev. 29:72162–71
    [Google Scholar]
  110. 110.
    Batjes NH. 2019. Technologically achievable soil organic carbon sequestration in world croplands and grasslands. Land Degrad. Dev. 30:125–32
    [Google Scholar]
  111. 111.
    Chenu C, Angers DA, Barré P, Derrien D, Arrouays D, Balesdent J. 2019. Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations. Soil Tillage Res 188:41–52
    [Google Scholar]
  112. 112.
    Fiantis D, Ginting FI, Nelson M, Minasny B. 2019. Volcanic ash, insecurity for the people but securing fertile soil for the future. Sustainability 11:113072
    [Google Scholar]
  113. 113.
    Minasny B, Fiantis D, Hairiah K, van Noordwijk M. 2021. Applying volcanic ash to croplands—the untapped natural solution. Soil Secur. 3:100006
    [Google Scholar]
  114. 114.
    Saputra DD, Sari RR, Hairiah K, Suprayogo D, van Noordwijk M. 2022. Recovery after volcanic ash deposition: vegetation effects on soil organic carbon, soil structure and infiltration rates. Plant Soil 474:163–79
    [Google Scholar]
  115. 115.
    Sanderman J, Berhe AA. 2017. The soil carbon erosion paradox. Nat. Clim. Change 7:5317–19
    [Google Scholar]
  116. 116.
    Marchand C. 2017. Soil carbon stocks and burial rates along a mangrove forest chronosequence (French Guiana). For. Ecol. Manag. 384:92–99
    [Google Scholar]
  117. 117.
    Wang Z, Hoffmann T, Six J, Kaplan JO, Govers G et al. 2017. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nat. Clim. Change 7:5345–49
    [Google Scholar]
  118. 118.
    Doetterl S, Berhe AA, Nadeu E, Wang Z, Sommer M, Fiener P. 2016. Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Sci. Rev. 154:102–22
    [Google Scholar]
  119. 119.
    Berhe AA, Barnes RT, Six J, Marín-Spiotta E. 2018. Role of soil erosion in biogeochemical cycling of essential elements: carbon, nitrogen, and phosphorus. Annu. Rev. Earth Planet. Sci. 46:521–48
    [Google Scholar]
  120. 120.
    Borrelli P, Panagos P, Lugato E, Alewell C, Ballabio C et al. 2018. Lateral carbon transfer from erosion in noncroplands matters. Glob. Change Biol. 24:83283–84
    [Google Scholar]
  121. 121.
    Liu C, Li Z, Berhe AA, Zeng G, Xiao H et al. 2019. Chemical characterization and source identification of organic matter in eroded sediments: role of land use and erosion intensity. Chem. Geol. 506:97–112
    [Google Scholar]
  122. 122.
    Lugato E, Smith P, Borrelli P, Panagos P, Ballabio C et al. 2018. Soil erosion is unlikely to drive a future carbon sink in Europe. Sci. Adv. 4:11eaau3523
    [Google Scholar]
  123. 123.
    Lohbeck M, Winowiecki LA, Aynekulu E, Okia K, Vågen T. 2017. Trait-based approaches for guiding the restoration of degraded agricultural landscapes in East Africa. J. Appl. Ecol. 55:159–68
    [Google Scholar]
  124. 124.
    Henneron L, Cros C, Picon-Cochard C, Rahimian V, Fontaine S. 2020. Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. J. Ecol. 108:2528–45
    [Google Scholar]
  125. 125.
    Chen X, Chen HY, Chen C, Ma Z, Searle EB et al. 2020. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol. Rev. 95:1167–83
    [Google Scholar]
  126. 126.
    Jarecki M, Grant B, Smith W, Deen B, Drury C et al. 2018. Long-term trends in corn yields and soil carbon under diversified crop rotations. J. Environ. Qual. 47:4635–43
    [Google Scholar]
  127. 127.
    Agnihotri R, Sharma MP, Prakash A, Ramesh A, Bhattacharjya S et al. 2022. Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: review of mechanisms and controls. Sci. Total Environ. 806:150571
    [Google Scholar]
  128. 128.
    Yang Y, Tilman D, Furey G, Lehman C. 2019. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10:718
    [Google Scholar]
  129. 129.
    Johnston AE, Poulton PR, Coleman K. 2009. Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. . Adv. Agron. 101:1–57
    [Google Scholar]
  130. 130.
    Terrer C, Phillips RP, Hungate BA, Rosende J, Pett-Ridge J et al. 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591:7851599–603
    [Google Scholar]
  131. 131.
    Kirkby CA, Richardson AE, Wade LJ, Conyers M, Kirkegaard JA. 2016. Inorganic nutrients increase humification efficiency and C-sequestration in an annually cropped soil. PLOS ONE 11:e0153698
    [Google Scholar]
  132. 132.
    van Groenigen JW, van Kessel C, Hungate BA, Oenema O, Powlson DS, van Groenigen KJ. 2017. Sequestering soil organic carbon: a nitrogen dilemma. Environ. Sci. Technol. 51:94738–39
    [Google Scholar]
  133. 133.
    Chen J, Luo Y, Van Groenigen KJ, Hungate BA, Cao J et al. 2018. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 4:8eaaq1689
    [Google Scholar]
  134. 134.
    Ye C, Chen D, Hall SJ, Pan S, Yan X et al. 2018. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecol. Lett. 21:81162–73
    [Google Scholar]
  135. 135.
    van Noordwijk M, Martikainen P, Bottner P, Cuevas E, Rouland C, Dhillion SS. 1998. Global change and root function. Glob. Change Biol. 4:7759–72
    [Google Scholar]
  136. 136.
    Crowther TW, Riggs C, Lind EM, Borer ET, Seabloom EW et al. 2019. Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecol. Lett. 22:6936–45
    [Google Scholar]
  137. 137.
    Gusli S, Sumeni S, Sabodin R, Muqfi IH, Nur M et al. 2020. Soil organic matter, mitigation of and adaptation to climate change in cocoa-based agroforestry systems. Land 9:9323
    [Google Scholar]
  138. 138.
    Minasny B, McBratney AB. 2018. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 69:139–47
    [Google Scholar]
  139. 139.
    Doerr SH, Shakesby RA, Dekker LW, Ritsema CJ. 2006. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci. 57:741–54
    [Google Scholar]
  140. 140.
    Siteur K, Mao J, Nierop KG, Rietkerk M, Dekker SC, Eppinga MB. 2016. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. . Ecosystems 19:1210–24
    [Google Scholar]
  141. 141.
    Müller K, Mason K, Strozzi AG, Simpson R, Komatsu T et al. 2018. Runoff and nutrient loss from a water-repellent soil. Geoderma 322:28–37
    [Google Scholar]
  142. 142.
    Lozano E, Jiménez-Pinilla P, Mataix-Solera J, Arcenegui V, Bárcenas GM et al. 2013. Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma 207:212–20
    [Google Scholar]
  143. 143.
    Rye CF, Smettem KRJ. 2017. The effect of water repellent soil surface layers on preferential flow and bare soil evaporation. Geoderma 289:142–49
    [Google Scholar]
  144. 144.
    Smettem KRJ, Rye C, Henry DJ, Sochacki SJ, Harper RJ. 2021. Soil water repellency and the five spheres of influence: a review of mechanisms, measurement and ecological implications. Sci. Total Environ. 787:147429
    [Google Scholar]
  145. 145.
    Hijbeek R, van Ittersum MK, ten Berge HFM, Gort G, Spiegel H, Whitmore AP. 2017. Do organic inputs matter—a meta-analysis of additional yield effects for arable crops in Europe. Plant Soil 411:293–303
    [Google Scholar]
  146. 146.
    Williams A, Hunter MC, Kammerer M, Kane DA, Jordan NR et al. 2016. Soil water holding capacity mitigates downside risk and volatility in U.S. rainfed maize: time to invest in soil organic matter?. PLOS ONE 11:8e0160974
    [Google Scholar]
  147. 147.
    Zhang W, Wang X, Lu T, Shi H, Zhao Y. 2020. Influences of soil properties and hydrological processes on soil carbon dynamics in the cropland of North China Plain. Agric. Ecosyst. Environ. 295:106886
    [Google Scholar]
  148. 148.
    Rabbi SM, Tighe MK, Warren CR, Zhou Y, Denton MD et al. 2021. High water availability in drought tolerant crops is driven by root engineering of the soil micro-habitat. Geoderma 383:114738
    [Google Scholar]
  149. 149.
    Iizumi T, Wagai R. 2019. Leveraging drought risk reduction for sustainable food, soil and climate via soil organic carbon sequestration. Sci. Rep. 9:19744
    [Google Scholar]
  150. 150.
    Qiao L, Wang X, Smith P, Fan J, Lu Y et al. 2022. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Change 12:574–80
    [Google Scholar]
  151. 151.
    Mithöfer D, van Noordwijk M, Leimona B, Cerutti PO. 2017. Certify and shift blame, or resolve issues? Environmentally and socially responsible global trade and production of timber and tree crops. Int. J. Biodivers. Sci. Ecosyst. Serv. Man. 13:72–85
    [Google Scholar]
  152. 152.
    van der Esch S, Sewell A, Bakkenes M, Berkhout E, Doelman JC et al. 2022. The global potential for land restoration: scenarios for the Global Land Outlook 2 Rep. 3898 PBL Neth. Environ. Asses. Agency The Hague, Neth.:
  153. 153.
    Manzoni S, Porporato A. 2009. Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol. Biochem. 41:71355–79
    [Google Scholar]
  154. 154.
    Smith P, Soussana JF, Angers D, Schipper L, Chenu C et al. 2020. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 26:1219–41
    [Google Scholar]
  155. 155.
    Hairiah K, Dewi S, Agus F, Velarde SJ, Ekadinata A et al. 2011. Measuring Carbon Stocks Across Land Use Systems: A Manual Bogor, Indones.: World Agrofor. Cent.
  156. 156.
    Milne E, Neufeldt H, Smalligan M, Rosenstock T, Bernoux M et al. 2012.. Methods for the quantification of emissions at the landscape level for developing countries in smallholder contexts Rep. 9, CGIAR Res. Program Clim. Change Agric. Food Secur. Cph., Den.:
  157. 157.
    Berazneva J, Conrad JM, Güereña DT, Lehmann J, Woolf D. 2019. Agricultural productivity and soil carbon dynamics: a bioeconomic model. Am. J. Agric. Econ. 101:41021–46
    [Google Scholar]
  158. 158.
    Schjønning P, Jensen JL, Bruun S, Jensen LS, Christensen BT et al. 2018. The role of soil organic matter for maintaining crop yields: evidence for a renewed conceptual basis. Adv. Agron. 150:35–37
    [Google Scholar]
  159. 159.
    Glenk K, Shrestha S, Topp CF, Sánchez B, Iglesias A et al. 2017. A farm level approach to explore farm gross margin effects of soil organic carbon management. Agric. Syst. 151:33–46
    [Google Scholar]
  160. 160.
    Mishra SK, Gautam S, Mishra U, Scown CD. 2021. Performance-based payments for soil carbon sequestration can enable a low-carbon bioeconomy. Environ. Sci. Technol. 55:85180–88
    [Google Scholar]
  161. 161.
    Stoddard I, Anderson K, Capstick S, Carton W, Depledge J et al. 2021. Three decades of climate mitigation: Why haven't we bent the global emissions curve?. Annu. Rev. Environ. Resour. 46:1653–89
    [Google Scholar]
  162. 162.
    Engel S, Muller A. 2016. Payments for environmental services to promote “climate-smart agriculture”? Potential and challenges. Agric. Econ. 47:173–84
    [Google Scholar]
  163. 163.
    van Noordwijk M, Pham TT, Leimona B, Duguma LA, Baral H et al. 2022. Carbon footprints, informed consumer decisions and shifts towards responsible agriculture, forestry, and other land uses?. Carbon Footprints 1:14
    [Google Scholar]
  164. 164.
    van Noordwijk M, Leimona B, Jindal R, Villamor GB, Vardhan M et al. 2012. Payments for environmental services: evolution toward efficient and fair incentives for multifunctional landscapes. Annu. Rev. Environ. Resour. 37:1389–420
    [Google Scholar]
  165. 165.
    van Noordwijk M. 2021. Agroforestry-based ecosystem services: reconciling values of humans and nature in sustainable development. Land 10:7699
    [Google Scholar]
  166. 166.
    Leimona B, van Noordwijk M, de Groot R, Leemans R. 2015. Fairly efficient, efficiently fair: lessons from designing and testing payment schemes for ecosystem services in Asia. Ecosyst. Serv. 12:16–28
    [Google Scholar]
  167. 167.
    Chen Y, Camps-Arbestain M, Shen Q, Singh B, Cayuela ML. 2018. The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutr. Cycl. Agroecosyst. 111:2–3103–25
    [Google Scholar]
  168. 168.
    Schomers S, Matzdorf B. 2013. Payments for ecosystem services: a review and comparison of developing and industrialized countries. Ecosyst. Serv. 6:16–30
    [Google Scholar]
  169. 169.
    Mattila TJ, Hagelberg E, Söderlund S, Joona J. 2022. How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans. Soil Tillage Res. 215:105204
    [Google Scholar]
  170. 170.
    Rumpel C, Chabbi A. 2021. Managing soil organic carbon for mitigating climate change and increasing food security. Agronomy 11:81553
    [Google Scholar]
  171. 171.
    Chabbi A, Lehmann J, Ciais P, Loescher HW, Cotrufo MF et al. 2017. Aligning agriculture and climate policy. Nat. Clim. Change 7:5307–9
    [Google Scholar]
  172. 172.
    Bruni E, Guenet B, Huang Y, Clivot H, Virto I et al. 2021. Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments. Biogeosciences 18:133981–4004
    [Google Scholar]
  173. 173.
    Wiesmeier M, Mayer S, Burmeister J, Hübner R, Kögel-Knabner I. 2020. Feasibility of the 4 per 1000 initiative in Bavaria: a reality check of agricultural soil management and carbon sequestration scenarios. Geoderma 369:114333
    [Google Scholar]
  174. 174.
    Corbeels M, Cardinael R, Naudin K, Guibert H, Torquebiau E. 2019. The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil Tillage Res. 188:16–26
    [Google Scholar]
  175. 175.
    Francaviglia R, Di Bene C, Farina R, Salvati L, Vicente-Vicente JL. 2019. Assessing “4 per 1000” soil organic carbon storage rates under Mediterranean climate: a comprehensive data analysis. Mitig. Adapt. Strateg. Glob. Change 24:5795–818
    [Google Scholar]
  176. 176.
    Lal R, Smith P, Jungkunst HF, Mitsch WJ, Lehmann J et al. 2018. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 73:6145A–52A
    [Google Scholar]
  177. 177.
    Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F et al. 2018. Negative emissions—Part 2: costs, potentials and side effects. Environ. Res. Lett. 13:6063002
    [Google Scholar]
  178. 178.
    Padarian J, Minasny B, McBratney A, Smith P. 2022. Soil carbon sequestration potential in global croplands. PeerJ 10:e13740
    [Google Scholar]
  179. 179.
    Zomer RJ, Bossio DA, Sommer R, Verchot LV. 2017. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7:15554
    [Google Scholar]
  180. 180.
    Li C, Frolking S, Butterbach-Bahl K. 2005. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim. Change 72:3321–38
    [Google Scholar]
  181. 181.
    Amundson R, Biardeau L. 2018. Soil carbon sequestration is an elusive climate mitigation tool. PNAS 115:4611652–56
    [Google Scholar]
  182. 182.
    Rumpel C, Amiraslani F, Chenu C, Garcia Cardenas M, Kaonga M et al. 2020. The 4p1000 initiative: opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio 49:1350–60
    [Google Scholar]
  183. 183.
    Bruni E, Guenet B, Clivot H, Kätterer T, Martin M et al. 2022. Defining quantitative targets for topsoil organic carbon stock increase in European croplands: case studies with exogenous organic matter inputs. Front. Environ. Sci. 10:824724
    [Google Scholar]
  184. 184.
    Amelung W, Bossio D, de Vries W, Kögel-Knabner I, Lehmann J et al. 2020. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11:5427
    [Google Scholar]
  185. 185.
    Gross A, Bromm T, Glaser B. 2021. Soil organic carbon sequestration after biochar application: a global meta-analysis. Agronomy 11:122474
    [Google Scholar]
  186. 186.
    Wiese L, Wollenberg E, Alcántara-Shivapatham V, Richards M, Shelton S et al. 2021. Countries’ commitments to soil organic carbon in Nationally Determined Contributions. Clim. Policy 21:81005–19
    [Google Scholar]
  187. 187.
    Bodle R. 2022. International soil governance. Soil Secur. 6:100037
    [Google Scholar]
  188. 188.
    Peake LR, Robb C. 2022.. The global standard bearers of soil governance. Soil Secur. 6:100055
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112621-083121
Loading
/content/journals/10.1146/annurev-environ-112621-083121
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error