1932

Abstract

Brine contains cations such as K+, Ca2+, Na+, Mg2+, Li+, B3+, Rb2+, and Cs2+, as well as anions such as SO2−, Cl, HCO, CO2−, NO, Br, and I, which are valuable elements. Brines are widely distributed in salt lakes in the world's three enormous plateaus and beyond and are classified into three types: sulfate-, chloride-, and carbonate-type brines. Sulfate-type brine forms in salt lakes, whereas carbonate-type brine results from magmatic and hydrothermal activity. Chloride-type brine forms in deep basins due to the reduction and transformation of buried brine. Li in brine plays a critical role in clean energy transitions, and K in brine is important for potash production. Recently, new techniques for extracting Li from brine have been developed, and the large-scale, comprehensive development pattern of brines has formed the basis for a recycling economic model, which contributes to the efficient use of brines for potash and LiCO development and CO emission reduction. This article reviews the genesis of brines and highlights new utilization techniques, trends, and sustainable development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112621-094745
2023-11-13
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-112621-094745.html?itemId=/content/journals/10.1146/annurev-environ-112621-094745&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Li G. 2018. Investigation on the current situation of wooden derricks in Zigong. Res. Salt Ind. Hist. 4:76–81 ( in Chinese with English abstract )
    [Google Scholar]
  2. 2.
    Valyashko MG. 1965. Geochemical Formation Rules of Potash Deposition transl. F Li et al Beijing: China Ind. in Chinese )
  3. 3.
    Eugster HP, Hardie LA. 1978. Saline lakes. Lakes: Chemistry, Geology, Physics A Lerman 237–93. New York: Springer
    [Google Scholar]
  4. 4.
    Fritz P, Frape SK. 1982. Saline groundwaters in the Canadian Shield—a first overview. Chem. Geol. 36:179–90
    [Google Scholar]
  5. 5.
    Edmunds WM, Andrews JN, Burgess WG, Kay RLF, Lee DJ. 1984. The evolution of saline and thermal groundwaters in the Carnmenellis granite. Mineral. Mag. 48:407–24
    [Google Scholar]
  6. 6.
    Katz A, Starinsky A, Marion GM. 2011. Saline waters in basement rocks of the Kaapvaal Craton, South Africa. Chem. Geol. 289:163–70
    [Google Scholar]
  7. 7.
    Hartmann M, Scholten JC, Stoffers P, Wehner F. 1998. Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar. Geol. 144:311–30
    [Google Scholar]
  8. 8.
    Cita MB, Kastens KA, McCoy FW, Aghib F, Cambi A et al. 1985. Gypsum precipitation from cold brines in an anoxic basin in the eastern Mediterranean. Nature 314:152–54
    [Google Scholar]
  9. 9.
    Zheng MP, Xiang J, Wei XJ, Zheng Y. 1989. Salt Lake in Qinghai-Tibet Plateau Beijing: Sci. Technol. in Chinese with English abstract )
  10. 10.
    Yuan JQ, Yang Q, Sun DP, Huo CY, Cai KQ et al. 1995. The Formation Conditions of the Potash Deposits in Qarhan Saline Lake, Qaidam Basin, China Beijing: Geol. Publ. House in Chinese with English abstract )
  11. 11.
    Wang ML, Yang ZC, Liu CL, Xie ZC, Jiao PC, Li CH. 1997. Potash Deposits and Their Exploitation Prospects of Salt Lakes of Northern Qaidam Basin Beijing: Geol. Publ. House in Chinese with English abstract )
  12. 12.
    Zheng XY, Zhang MG, Xu C, Li BX. 2002. A Chronicle of the Salt Lakes of China Beijing: Science in Chinese )
  13. 13.
    Yu JQ, Gao CL, Cheng AY, Liu Y, Zhang L, He XH. 2013. Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China. Ore Geol. Rev. 50:171–83
    [Google Scholar]
  14. 14.
    López Steinmetz RL, Salvi S, García MG, Arnold YP, Béziat D et al. 2018. Northern Puna plateau-scale survey of Li brine-type deposits in the Andes of NW Argentina. J. Geochem. Explor. 190:26–38
    [Google Scholar]
  15. 15.
    López Steinmetz RL, Salvi S. 2021. Brine grades in Andean salars: When basin size matters: a review of the lithium triangle. Earth-Sci. Rev. 217:103615
    [Google Scholar]
  16. 16.
    Munk LA, Hynek SA, Bradley DC, Boutt D, Labay K, Jochens H. 2016. Lithium brines: a global perspective. Rev. Econ. Geol. 18:339–65
    [Google Scholar]
  17. 17.
    Orris GJ. 2011. Deposit model for closed-basin potash-bearing brines Open-File Rep. 2011–1283 US Geol. Surv., US Dep. Inter. Washington, DC:
  18. 18.
    Bradly D, Munk LA, Jochens H, Hynek S, Labay K. 2013. A preliminary deposits model for lithium brines Open-file Rep. 2013–1006 US Geol. Surv., US Dep. Inter. Washington, DC:
  19. 19.
    Zak I, Bentor YK. 1968. Some new data on the salt deposits of the Dead Sea area, Israel. Geology of Saline Deposits: Proceedings of the Hanover Symposium G Richter-Bernburg Paris: UNESCO
    [Google Scholar]
  20. 20.
    Wang ML, Liu CL, Jiao PC, Han WT, Song SS et al. 2001. Saline Lake Potash Resources in the Lop Nur Beijing: Geol. Publ. House in Chinese with English abstract )
  21. 21.
    Liu CL, Jiao PC, Wang ML, Yan H, Chen YZ et al. 2020. The Forming Conditions and Mineralization Regularity of Potash Deposits in Lop Nur Salt Lakes Beijing: Science in Chinese )
  22. 22.
    Wang SJ. 2017. Probing of green development model of salt lakes in Qinghai province. J. Salt Sci. Chem. Ind. 46:1243 in Chinese )The short piece outlines the green development model of Qarhan salt lake brine.
    [Google Scholar]
  23. 23.
    Minist. Nat. Resour 2020. Specifications for salt mineral exploration Stand. DZ/T0212, 2020-04-30 Minist. Nat. Resour. China: in Chinese )
  24. 24.
    Minist. Land Resour. China 2003. Mineral Resources Handbook Beijing: Minist. Land Resour. China in Chinese )
  25. 25.
    Ericksen GE. 1981. Geology and origin of the Chilean nitrate deposit Geol. Surv. Prof. Pap. 1188 US Gov. Print. Off. Washington, DC:
  26. 26.
    Ge W, Liu B, Qiu B, Song W, Cai K, Fu Q. 2010. Geological characteristics and resource potential of K-rich nitrate salt lake minerogenetic belt in southern margin of east Tianshan, Xinjiang. Miner. Depos. 29:4640–48 ( in Chinese with English abstract )
    [Google Scholar]
  27. 27.
    Chen YZ, Liu CL, Jiao PC, Han JM. 2008. Preliminary researches on nitrate formation by metal-catalyst photochemical reaction in arid region of Xinjiang. Miner. Depos. 28:5713–17 ( in Chinese with English abstract )
    [Google Scholar]
  28. 28.
    Qin Y, Li Y, Bao H, Liu F, Hou K et al. 2012. Massive atmospheric nitrate accumulation in a continental interior desert, northwestern China. Geology 40:7623–26
    [Google Scholar]
  29. 29.
    Reich M, Bao H. 2018. Nitrate deposits of the Atacama desert: a marker of long-term hyperaridity. Elements 14:4251–25
    [Google Scholar]
  30. 30.
    Bentor YK. 1961. Some geochemical aspects of the Dead Sea and the question of its age. Geochim. Cosmochim. Acta 25:239–60
    [Google Scholar]
  31. 31.
    Alipour S, Onlaghi KM. 2018. Mineralogy and geochemistry of major, trace and rare earth elements in sediments of the hypersaline Urmia salt lake, Iran. Acta Geol. Sin. 92:41384–95
    [Google Scholar]
  32. 32.
    Bryant RG, Sellwood BW, Millington AC, Drake NA. 1994. Marine-like potash evaporite formation on a continental playa: case study from Chott el Djerid, southern Tunisia. Sediment. Geol. 90:269–91
    [Google Scholar]
  33. 33.
    Eugster HP. 1986. Lake Magadi, Kenya: A model for rift valley hydrochemistry and sedimentation?. Sedimentation in the African Rifts LE Frostick, R Renaut, I Reid, JJ Tiercelin 177–89. Geol. Soc. Spec. Pap London: Geol. Soc. Can.
    [Google Scholar]
  34. 34.
    Lowenstein TK, Hardie LA, Timofeeff MN, Demicco RV. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology 31:10857–60
    [Google Scholar]
  35. 35.
    Alexeev SV, Alexeeva LP, Vakhromeev AG. 2020. Brines of the Siberian Platform (Russia): geochemistry and processing prospects. Appl. Geochem. 117:104588
    [Google Scholar]
  36. 36.
    Gao XX. 1998. Oilfield Water in the Bearing-Oil and Natural Gas Basins of China Beijing: Pet. Ind. Publ. House in Chinese )
  37. 37.
    Cai CF, Franks SG, Aagaard P. 2001. Origin and migration of brines form Paleozoic strata in Central Tarim, China: constraints from 87Sr/86Sr, δD, δ18O and water chemistry. Appl. Geochem. 16:1269–84
    [Google Scholar]
  38. 38.
    Zhou X, Jiang CL, Zhao JB, Cao Q, Han JJ, Wang XC. 2015. Occurrence and resource evaluation of the subsurface high-K brines in the Pingluoba brine-bearing structure in western Sichuan Basin. Environ. Earth Sci. 73:8565–74
    [Google Scholar]
  39. 39.
    Liu CL, Yu XC, Zhao YJ, Wang JY, Wang LC et al. 2016. A tentative discussion on regional metallogenic background and mineralization mechanism of subterranean brines rich in potassium and lithium in South China block. Miner. Depos. 35:1119–43 ( in Chinese with English abstract )
    [Google Scholar]
  40. 40.
    Zhang ZH, Zhao SJ, Xing XC, Liu XP. 2019. Result of general prospecting and potential analysis of brine resources in the west of Wuqiangxian County, Hebei Province. Contrib. Geol. Mineral Resour. Res. 34:2326–30 ( in Chinese with English abstract )
    [Google Scholar]
  41. 41.
    Stober I, Bucher K. 1999. Origin of salinity of deep groundwater in crystalline rocks. Terra Nova 11:4181–85
    [Google Scholar]
  42. 42.
    Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D. 1989. Groundwater chemistry and water-rock interactions at Stripa. Geochim. Cosmochim. Acta 53:l727–40
    [Google Scholar]
  43. 43.
    Lahermo PW, Lampen PH. 1987. Brackish and saline groundwaters in Finland. Saline Water and Gases in Crystalline Rocks P Fritz, SK Frape 103–11. Geol. Assoc. Can. Spec. Pap. 33 St. Johns: Geol. Assoc. Can.
    [Google Scholar]
  44. 44.
    Edmunds WM, Kay RLF, McCartney RA. 1985. Origin of saline groundwaters in the Carnmenellis granite: natural processes and reaction during hot dry rock reservoir circulation. Chem. Geol. 49:287–301
    [Google Scholar]
  45. 45.
    Khaska M, Le Gal La Salle C, Videau G, Flinois JS, Frape S et al. 2015. Deep water circulation at the northern Pyrenean thrust: implication of high temperature water-rock interaction process on the mineralization of major spring water in an overthrust area. Chem. Geol. 419:114–31
    [Google Scholar]
  46. 46.
    Vovk IF. 1987. Radiolytic salt enrichment and brines in the crystalline basement of the East European Platform. Saline Water and Gases in Crystalline Rocks P Fritz, SK Frape 197–210. Geol. Assoc. Canada Spec. Pap. 33 Toronto: Geol. Assoc. Can.
    [Google Scholar]
  47. 47.
    David AR. 1972. Red Sea hot brine area: revisited. Sciences 175:1455–57
    [Google Scholar]
  48. 48.
    Pautot G, Guennoc P, Contelle A, Lyberis N. 1984. Discovery of a large brine deep in the northern Red Sea. Nature 310:133–36
    [Google Scholar]
  49. 49.
    Zierenberg RA, Shanks WC III 1986. Isotopic constraints on the origin of the Atlantis II, Suakin and Valdivia brines, Red Sea. Geochim. Cosmochim. Acta 50:2205–14
    [Google Scholar]
  50. 50.
    Winckler G, Aeschbach-Hertig W, Kipfer R, Botz R, Rübel AP et al. 2001. Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth Planet. Sci. Lett. 184:671–83
    [Google Scholar]
  51. 51.
    Walther J. 1903. Die entstehung von salz und gyps dutch topographische oder klimatische ursachen. . Centralbl. Mineral. Geol. Paläontol. 1903:211–17
    [Google Scholar]
  52. 52.
    KJ. 1972. Origin of saline giants: a critical review after the discovery of the Mediterranean evaporite. Earth-Sci. Rev. 8:371–96
    [Google Scholar]
  53. 53.
    Matray JM, Fontes JC. 1990. Origin of the oil-field brines in the Paris basin. Geology 18:501–4
    [Google Scholar]
  54. 54.
    Hardie LA. 1991. On the significance of evaporites. Annu. Rev. Earth Planet. Sci. 19:131–68
    [Google Scholar]
  55. 55.
    Kloppmann W, Négrel P, Casanova J, Klinge H, Schelkes K, Guerrot C. 2001. Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochim. Cosmochim. Acta 65:224087–101
    [Google Scholar]
  56. 56.
    Lowenstein TK, Risacher F. 2009. Closed basin brine evolution and the influence of Ca–Cl inflow waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquat. Geochem. 15:71–94
    [Google Scholar]
  57. 57.
    Birkle P, García BM, Padrón CMM. 2009. Origin and evolution of formation water at the Jujo-Tecominoacán Oil Reservoir, Gulf of Mexico. Part 1: chemical evolution and water-rock interaction. Appl. Geochem. 24:543–54
    [Google Scholar]
  58. 58.
    Rosenthal E. 1997. Thermomineral waters of Ca-chloride composition: review of diagnostics and of brine evolution. Environ. Geol. 32:245–50
    [Google Scholar]
  59. 59.
    Langella A, Cappelletti P, Gennaro RD. 2001. Zeolites in closed hydrologic systems. Rev. Mineral. Geochem. 45:1235–60
    [Google Scholar]
  60. 60.
    Chernet T, Travi Y, Valles V. 2001. Mechanism of degradation of the quality of natural water in the lakes region of the Ethiopian rift valley. Water Res. 35:122819–32
    [Google Scholar]
  61. 61.
    Sala D, Grossi V, Agogué H, Leboulanger C, Jézéquel D et al. 2022. Influence of aphotic haloclines and euxinia on organic biomarkers and microbial communities in a thalassohaline and alkaline volcanic crater lake. Geobiology 20:2292–309
    [Google Scholar]
  62. 62.
    Lowenstein TK, Hardie LA. 1985. Criteria for the recognition of salt-pan evaporites. Sedimentology 32:627–44
    [Google Scholar]
  63. 63.
    Yan JP, Hinderer M, Einsele G. 2002. Geochemical evolution of closed-basin lakes: general model and application to lakes Qinghai and Turkana. Sediment. Geol. 148:1–2105–22
    [Google Scholar]
  64. 64.
    Hardie LA, Eugster HP. 1970. The evolution of closed-basin brines. Mineral. Soc. Am. Spec. Pap. 3:273–90
    [Google Scholar]
  65. 65.
    Jones BF, Deocampo DM. 2003. Geochemistry of saline lakes. Treatise Geochem 5:393–424
    [Google Scholar]
  66. 66.
    Gopinath S, Srinivasamoorthy K, Prakash R. 2014. Hydrochemical investigations for identification of groundwater salinization sources in Nagapattinam and Karaikal regions, Southern India. EnviroGeoChimica Acta 1:2153–60
    [Google Scholar]
  67. 67.
    Morán-Ramírez J, Ledesma-Ruiz R, Mahlknecht J, Ramos-Leal JA. 2016. Rock–water interactions and pollution processes in the volcanic aquifer system of Guadalajara, Mexico, using inverse geochemical modeling. Appl. Geochem. 68:79–94
    [Google Scholar]
  68. 68.
    Elango L, Kannan R. 2007. Rock–water interaction and its control on chemical composition of groundwater. Dev. Environ. Sci. 5:229–43
    [Google Scholar]
  69. 69.
    Walter J, Chesnaux R, Cloutier V, Gaboury D. 2017. The influence of water/rock – water/clay interactions and mixing in the salinization processes of groundwater. J. Hydrol. 13:168–88
    [Google Scholar]
  70. 70.
    Singh P, Mukherjee S. 2020. Chemical signature detection of groundwater and geothermal waters for evidence of crustal deformation along fault zones. J. Hydrol. 582:124459
    [Google Scholar]
  71. 71.
    Allbed A, Kumar L. 2013. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Adv. Remote Sens. 2:4373–85
    [Google Scholar]
  72. 72.
    Li P, Wu J, Qian H. 2016. Regulation of secondary soil salinization in semi-arid regions: a simulation research in the Nanshantaizi area along the Silk Road, northwest China. Environ. Earth Sci. 75:8698
    [Google Scholar]
  73. 73.
    Etikala B, Adimalla N, Madhav S, Somagouni SG, Keshava Kiran Kumar PL. 2021. Salinity problems in groundwater and management strategies in arid and semi-arid regions. Groundwater Geochemistry: Pollution and Remediation Methods S Madhav, P Singh 42–56. Hoboken, NJ: John Wiley & Sons. , 1st ed..
    [Google Scholar]
  74. 74.
    Pauloo RA, Fogg GE, Guo Z, Harter T. 2021. Anthropogenic basin closure and groundwater salinization (ABCSAL). J. Hydrol. 593:125787
    [Google Scholar]
  75. 75.
    Herczeg AL, Lyons WB. 1991. A chemical model for the evolution of Australian sodium chloride lake basins. Palaeogeogr. Palaeoclimatol. Palaeoecol. 84:1–443–53
    [Google Scholar]
  76. 76.
    Wood WW, Sanford WE. 1990. Ground-water control of evaporite deposition. Econ. Geol. 85:61226–35
    [Google Scholar]
  77. 77.
    Spencer RJ, Eugster HP, Jones BF. 1985. Geochemistry of Great Salt Lake, Utah II: Pleistocene-Holocene evolution. Geochim. Cosmochim. Acta 49:3739–47
    [Google Scholar]
  78. 78.
    Boschetti T, De Felice V, Celico F. 2013. The Pozzo del sale groundwaters (Irpinia, Southern Apennines, Italy): origin and mechanisms of salinization. Aquat. Geochem. 19:303–22
    [Google Scholar]
  79. 79.
    Eissa MA. 2018. Application of multi-isotopes and geochemical modeling for delineating recharge and salinization sources in Dahab basin aquifers (South Sinai, Egypt). Hydrology 5:341
    [Google Scholar]
  80. 80.
    Prommer H, Post V. 2010. A reactive multicomponent model for saturated porous media Users Man Version 2.10, PHT3D
  81. 81.
    Merchán D, Auqué LF, Acero P, Gimeno MJ, Causapé J. 2015. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence. Sci. Total Environ. 502:330–43
    [Google Scholar]
  82. 82.
    Bo Y, Liu CL, Jiao PC, Chen YZ, Cao YT. 2013. Hydrochemical characteristics and controlling factors for waters’ chemical composition in the Tarim Basin, Western China. Geochemistry 73:343–56
    [Google Scholar]
  83. 83.
    Liseroudi MH, Ardakani OH, Sanei H, Pedersen PK, Stern RA, Wood JM. 2020. Origin of sulfate-rich fluids in the Early Triassic Montney Formation, Western Canadian Sedimentary Basin. Mar. Pet. Geol. 114:104236
    [Google Scholar]
  84. 84.
    Risacher F, Alonso H, Salazar C. 2003. The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Sci. Rev. 63:249–93
    [Google Scholar]
  85. 85.
    China CEC Eng. Corp., Salt Geol. Surv. Party China's Salt Corp 2019. The detailed exploration report of salt resources in Lake Katwe Surv. Rep. Aug., Uganda (in Chinese )
  86. 86.
    Lowenstein TK, Dolginko LAC, García-Veigas J. 2016. Influence of magmatic- hydrothermal activity on brine evolution in closed basins: Searles lake, California. GSA Bull. 128:9/101555–68
    [Google Scholar]
  87. 87.
    Lowenstein TK, Jagniecki EA, Carroll AR, Smith ME, Renaut RW, Owen RB. 2017. The Green River salt mystery: What was the source of the hyperalkaline lake waters?. Earth-Sci. Rev. 173:295–306
    [Google Scholar]
  88. 88.
    Liu CL. 1987. Sedimentary facies indicators and depositional environment of the second member of Hetaoyuan formation of Anpeng alkaline deposits, Henan province Masters Thesis Postgrad. Dep., Chin. Acad. Geol. Sci. Beijing:
  89. 89.
    Frape SK, Fritz P, McNutt RH. 1984. Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim. Cosmochim. Acta 48:1617–27
    [Google Scholar]
  90. 90.
    Zhang H, Jiao PC, Liu CL, Yan H, Zhang FK et al. 2021. Discovery of the Ca-Cl type brine in deep aquifers and implications for the shallow giant glauberite deposits in the Lop Nur playa, Tarim Basin, NW China. China Geol. 4:2364–66
    [Google Scholar]
  91. 91.
    Bottomley DJ, Clark ID, Battye N, Kotzer T. 2005. Geochemical and isotopic evidence for a genetic link between Canadian Shield brines, dolomitization in the Western Canada sedimentary basin, and Devonian calcium-chloridic seawater. Can. J. Earth Sci. 42:2059–71
    [Google Scholar]
  92. 92.
    Nordstrom DK, Lindblom S, Donahoe RJ, Barton CC. 1989. Fluid inclusions in the Stripa granite and their possible influence on the groundwater chemistry. Geochim. Cosmochim. Acta 53:1741–55
    [Google Scholar]
  93. 93.
    Von Damm KL. 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions SE Humphris, RA Zierenberg, LS Mullineaux, RE Thomson 222–47. Geophys. Monogr. 91 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  94. 94.
    Spencer RJ. 1987. Origin of Ca-Cl brines in Devonian formations, western Canada sedimentary basin. Appl. Geochem. 2:4373–84
    [Google Scholar]
  95. 95.
    Machel HG. 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment. Geol. 140:143–75
    [Google Scholar]
  96. 96.
    Cai CF, Xie ZY, Worden RH, Hu GY, Wang LS, He H. 2004. Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation East Sichuan Basin, China: towards prediction of fatal H2S concentrations. Mar. Pet. Geol. 21:1265–79
    [Google Scholar]
  97. 97.
    Bentor YK. 1961. Some geochemical aspects of the Dead Sea and the question of its age. Geoch. Cosmochem. Acta 25:4239–60
    [Google Scholar]
  98. 98.
    Zhang PX. 1987. Salt Lakes in Qaidam Basin Beijing: Science in Chinese )
  99. 99.
    Wu BH, Duan ZH, Guan YH, Lian W. 1986. Deposition of potash-magnesium salts in the Qarhan playa, Qaidam Basin. Acta Geol. Sin. 3:286–96 ( in Chinese with English abstract )
    [Google Scholar]
  100. 100.
    Lowenstein TK, Spencer RJ, Zhang P. 1989. Origin of ancient potash evaporites: clues from the modern nonmarine Qaidam Basin of Western China. Science 245:49221090–92
    [Google Scholar]
  101. 101.
    Gavrieli I, Stein M. 2006. On the origin and fate of the brines in the Dead Sea basin. New Frontiers in Dead Sea Paleoenvironmental Research Y Enzel, A Agnon, M Stein 183–94. Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  102. 102.
    IFA 2021. IFA's global potash capacity survey https://www.ifastat.org/supply/Potassium%20Products/MOP%20(Potash) This survey introduces current global potash capacity and predictions for the near future.
  103. 103.
    Liu CL, Yu XC, Yuan XY, Li RQ, Yao FJ et al. 2021. Characteristics, distribution regularity and forming model of brine-type Li deposits in salt lakes in the world. Acta Geol. Sin. 95:72009–29 ( in Chinese with English abstract )
    [Google Scholar]
  104. 104.
    Chen C, Lee CTA, Tang M, Biddle K, Sun WD. 2020. Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment. Nat. Commun. 11:5313
    [Google Scholar]
  105. 105.
    Giggenbach WF. 1995. Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 68:89–116
    [Google Scholar]
  106. 106.
    Godfrey L, Álvarez-Amado F. 2020. Volcanic and saline lithium inputs to the Salar de Atacama. Minerals 10:201
    [Google Scholar]
  107. 107.
    Araoka D, Kawahata H, Takagi T, Watanabe Y, Nishimura K, Nishio Y. 2014. Lithium and strontium isotopic systematics in playas in Nevada, USA: constraints on the origin of lithium. Mineral. Depos. 49:371–79
    [Google Scholar]
  108. 108.
    Garreaud RD. 2009. The Andes climate and weather. Adv. Geosci. 22:3–11
    [Google Scholar]
  109. 109.
    Godfrey LV, Chan LH, Alonso RN, Lowenstein TK, McDonough WF et al. 2013. The role of climate in the accumulation of lithium-rich brine in the central Andes. Appl. Geochem. 38:92–102
    [Google Scholar]
  110. 110.
    Sanjuan B, Gourcerol B, Millot R, Rettenmaier D, Jeandel E, Rombaut A. 2022. Lithium-rich geothermal brines in Europe: an up-date about geochemical characteristics and implications for potential Li resources. Geothermics 101:102385
    [Google Scholar]
  111. 111.
    Yu XC, Liu CL, Wang CL, Wang JY, Li Q, Meng LY. 2022. Origin of Li brine-type deposits in the Cretaceous gypsum-bearing formation of the Jitai Basin, South China: constraints from geochemistry and H, O, Li, B, and Sr isotopes. Appl. Geochem. 139:105257
    [Google Scholar]
  112. 112.
    US Geol. Surv 2022. Mineral commodity summaries Rep. Jan., US Geol. Surv. Reston, VA: https://doi.org/10.3133/mcs2022
    [Crossref]
  113. 113.
    Wang S. 2000. Influence of carnallite types on the production process of potassium chloride by cold decomposition-flotation. Sea-Lake Salt Chem. Ind. 29:51–4 ( in Chinese with English abstract )
    [Google Scholar]
  114. 114.
    Qian X. 1998. Extraction of potassium chloride from carnallite by reverse flotation-cold crystallization method. Chem. Ind. Eng. Technol. 19:33 abstract), 19–20 (text) (in Chinese with English abstract)
    [Google Scholar]
  115. 115.
    Diao X, Zhu C, Zhu J, Wang S, Cheng F. 2008. Influence of decomposing procedure on potassium yield in potassium chloride production. Inorg. Salt Ind. 10:31–35 ( in Chinese with English abstract )
    [Google Scholar]
  116. 116.
    Li H. 2011. Characteristics of brine potassium sulfate deposit from salt lake brine and its application study on chemical process in Lop Nur PhD Diss. China Univ. Min. Technol. Beijing: in Chinese with English abstract )
  117. 117.
    Li S. 2019. Study on theory and technology of flotation of potassium salts in sulfate-type lake of Lop Nur PhD Diss. Wuhan Univ. Technol. Wuhan, China: in Chinese with English abstract )
  118. 118.
    Ha QZ. 2017. Study on the process of magnesium production by anhydrous magnesium chloride particle electrolysis. World Nonferr. Metals 2017:1517–18 ( in Chinese with English abstract )
    [Google Scholar]
  119. 119.
    Ma MY, Zuo Y, Zhang HL, Cai YJ, Zhang SJ. 2011. Dehydration and electrodeposition of magnesium from MgCl2·6H2O in ionic liquids. Chin. J. Process Eng. 11:2209–14 ( in Chinese with English abstract )
    [Google Scholar]
  120. 120.
    Liang WS, Lu GM, Yu JG. 2020. Composition-dependent microstructure evolution in liquid MgCl2-KCl: a first-principles molecular dynamics study. J. Mol. Liq. 309:113131
    [Google Scholar]
  121. 121.
    Swain B. 2017. Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172:388–403
    [Google Scholar]
  122. 122.
    Zhou ZY, Qin W, Liang SK, Tan YZ, Fei WY. 2012. Recovery of lithium using tributyl phosphate in methylisobutyl ketone and FeCl3. Ind. Eng. Chem. Res. 51:3912926–32
    [Google Scholar]
  123. 123.
    Wang JF, Yang SC, Bai RB, Chen YM, Zhang SJ. 2019. Lithium recovery from the mother liquor obtained in the process of Li2CO3 production. Ind. Eng. Chem. Res. 58:31363–72
    [Google Scholar]
  124. 124.
    Kazemabad M, Verliefde A, Cornelissen ER, D'Haese A. 2020. Crown ether containing polyelectrolyte multilayer membranes for lithium recovery. J. Membr. Sci. 595:1117432
    [Google Scholar]
  125. 125.
    Wang Y, Liu HT, Fan JH, Liu XT, Hu YF et al. 2019. Recovery of lithium ions from salt lake brine with a high magnesium/lithium ratio using heteropolyacid ionic liquid. ACS Sustain. Chem. Eng. 7:3062–72
    [Google Scholar]
  126. 126.
    Sun Q, Chen H, Yu JG. 2022. Investigation on the lithium extraction process with the TBP–FeCl3 solvent system using experimental and DFT methods. Ind. Eng. Chem. Res. 61:4672–82
    [Google Scholar]
  127. 127.
    Li LJ, Peng XW, Shi D. 2018. Eco-friendly separation and effective applications of lithium resources from various brine with lithium: their extractant and extraction system. J. Salt Lake Res. 26:041–10 ( in Chinese with English abstract )
    [Google Scholar]
  128. 128.
    Ying J, Lin Y, Zhang Y, Jin Y, Matsuyama H, Yu J. 2022. Layer-by-layer assembly of cation exchange membrane for highly efficient monovalent ion selectivity. Chem. Eng. J. 446:137076
    [Google Scholar]
  129. 129.
    Sheng F, Wu B, Li X, Xu T, Shehzad MA et al. 2021. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv. Mater. 33:44e2104404
    [Google Scholar]
  130. 130.
    Liu G, Zhao Z, He L. 2020. Highly selective lithium recovery from high Mg/Li ratio brines. Desalination 474:114185
    [Google Scholar]
  131. 131.
    Yu H, Naidu G, Zhang C, Wang C, Razmjou A et al. 2022. Metal-based adsorbents for lithium recovery from aqueous resources. Desalination 539:115951
    [Google Scholar]
  132. 132.
    Orooji Y, Nezafat Z, Nasrollahzadeh M, Shafiei N, Afsari M. 2022. Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination 529:115624
    [Google Scholar]
  133. 133.
    Zhong J, Lin S, Yu JG. 2021. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines. Desalination 505:114983
    [Google Scholar]
  134. 134.
    Battistel A, Palagonia MS, Brogioli D, La Mantia F, Trocoli R. 2020. Electrochemical methods for lithium recovery: a comprehensive and critical review. J. Adv. Mater. 32:231905440
    [Google Scholar]
  135. 135.
    Vera ML, Torres WR, Galli CI, Chagnes A, Flexer V. 2023. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 4:3149–65
    [Google Scholar]
  136. 136.
    Jang Y, Hou C-H, Kwon K, Kang JS, Chung E. 2023. Selective recovery of lithium and ammonium from spent lithium-ion batteries using intercalation electrodes. Chemosphere 317:137865
    [Google Scholar]
  137. 137.
    Yan G, Wang M, Hill GT, Zou S, Liu C. 2022. Defining the challenges of Li extraction with olivine host: the roles of competitor and spectator ions. PNAS 119:31e2200751119
    [Google Scholar]
  138. 138.
    Liu D, Sun S, Yu J. 2018. Research and development on technique of lithium recovery from salt lake brine. Chin. J. Chem. Eng. 69:01141–55 ( in Chinese with English abstract )
    [Google Scholar]
  139. 139.
    Li X, Mo Y, Qing W, Shao S, Tang CY, Li J. 2019. Membrane-based technologies for lithium recovery from water lithium resources: a review. J. Membr. Sci. 591:117317
    [Google Scholar]
  140. 140.
    Yang Z, Fang W, Wang Z, Zhang R, Zhu Y, Jin J 2021. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation. J. Membr. Sci. 620:118862
    [Google Scholar]
  141. 141.
    Warnock SJ, Sujanani R, Zofchak ES, Zhao S, Dilenschneider TJ et al. 2021. Engineering Li/Na selectivity in 12-crown-4-functionalized polymer membranes. PNAS 118:37e2022197118
    [Google Scholar]
  142. 142.
    Hou J, Zhang H, Thornton AW, Hill AJ, Wang H, Konstas K. 2021. Lithium extraction by emerging metal-organic framework-based membranes. Adv. Funct. Mater. 31:4621991
    [Google Scholar]
  143. 143.
    Jiang C, Chen B, Zhang D, Ge L, Wang Y, Xu T. 2022. Progress in isolating lithium resources from China salt lake brine. . CIESC J. 73:02481–503 ( in Chinese with English abstract )
    [Google Scholar]
  144. 144.
    López BI. 2021. Sustainability of lithium production in Chile Rep. Solut. Hum. Progress Santiago, Chile: https://sqmiodine.com/wp-content/uploads/2021/08/SQM-Sustainable-Lithium-English-2020430-2.pdf
  145. 145.
    Huang X. 2002. Multipurpose utilization of bittern resource in Salt Lake. Ocean Technol. 4:66–72 ( in Chinese with English abstract )
    [Google Scholar]
  146. 146.
    Zhang S, Zhang L, Jiang A, Zhang Y, Zhu X. 2022. Current situation and development suggestions of development and utilization of salt lake resources in China. Inorg. Chem. Ind. 54:1013–21 ( in Chinese with English abstract )
    [Google Scholar]
  147. 147.
    Res. Cent. Strategy Glob. Mineral Resour 2021. Assessment report for lithium, cobalt, nickel, tin, and potash reserves in the world Res. Rep. China Geol. Surv. Beijing: in Chinese )This report assesses lithium, cobalt, nickel, tin, and potash reserves in the world.
  148. 148.
    CISIA 2022. The statistics of China's imported and exported fertilizers (from January to December, 2022). Potash K-Fertil. Febr.:34–36 ( in Chinese )
    [Google Scholar]
  149. 149.
    Minist. Nat. Resour 2021. China Mineral Resources Beijing: Geol. Publ. House in Chinese )This book introduced the situation of Chinese mineral resources and development uses.
  150. 150.
    Wang AJ, Wang GS. 2021. The China's consumption demand prediction of thirty five kinds of minerals up to year 2035 Res. Rep. Res. Cent. Strategy Glob. Mineral Resour., China Geol. Surv. Beijing: in Chinese )This report introduces China's predicted demand for 35 kinds of minerals up to 2035.
  151. 151.
    Int. Energy Agency 2021. The role of critical minerals in clean energy transitions World Energy Outlook Spec. Rep., Int. Energy Agency Paris:This report introduces the role of critical world energy minerals in clean energy transitions.
  152. 152.
    Vikstrom H, Davidsson S, Hook M. 2013. Lithium availability and future production outlooks. Appl. Energy 110:252–66
    [Google Scholar]
  153. 153.
    US Dep. State, Off. Pres 2021. The long-term strategy of the United States: pathways to net-zero greenhouse gas emissions by 2050 Rep. US Dep. State, Off. Pres. Washington, DC: https://unfccc.int/sites/default/files/resource/US-LongTermStrategy-2021.pdf
  154. 154.
    Eur. Parliam 2020. Proposal for a regulation of the European Parliament and of the Council establishing the framework for achieving climate neutrality and amending Regulation (EU) 2018/1999 (European Climate Law) Propos., Eur. Parliam. Strasbourg, Fr.: https://www.europarl.europa.eu/doceo/document/A-9-2020-0162_EN.html
  155. 155.
    Inst. Pet. Chem. Ind. Plan 2022. Monographic study of high quality development of salt chemical industry and production chain modernization for Jingzhou Municipality Res. Rep. Inst. Pet. Chem. Ind. Plan. Beijing: in Chinese )
  156. 156.
    Jiangling Cty. Financ. Media Cent 2022. News on one more significant project of Jiangling county is signed in Jingzhou. http://www.jiangling.gov.cn/ztzl/zsyz/202201/t20220112_686738.shtml (in Chinese )
/content/journals/10.1146/annurev-environ-112621-094745
Loading
/content/journals/10.1146/annurev-environ-112621-094745
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error