1932

Abstract

Oceans play critical roles in the lives, economies, cultures, and nutrition of people globally, yet face increasing pressures from human activities that put those benefits at risk. To anticipate the future of the world's ocean, we review the many human activities that impose pressures on marine species and ecosystems, evaluating their impacts on marine life, the degree of scientific uncertainty in those assessments, and the expected trajectory over the next few decades. We highlight that fundamental research should prioritize areas of high potential impact and greater uncertainty about ecosystem vulnerability, such as emerging fisheries, organic chemical pollution, seabed mining, and the interactions of cumulative pressures, and deprioritize research on areas that demonstrate little impact or are well understood, such as plastic pollution and ship strikes to marine fauna. There remains hope for a productive and sustainable future ocean, but the window of opportunity for action is closing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-120120-053645
2022-10-17
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-120120-053645.html?itemId=/content/journals/10.1146/annurev-environ-120120-053645&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    United Nations 2021. Second World Ocean Assessment: Volume II New York: United Nations
    [Google Scholar]
  2. 2.
    IPCC (Intergov. Panel Clim. Change) 2021. Summary for Policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, et al Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  3. 3.
    IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.) 2019. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services S Díaz, J Settele, ES Brondízio, HT Ngo, M Guèze, et al. Bonn Ger.: IPBES Secr.
    [Google Scholar]
  4. 4.
    Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J et al. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:6471eaax3100
    [Google Scholar]
  5. 5.
    United Nations 2021. Second World Ocean Assessment: Volume I New York: United Nations
    [Google Scholar]
  6. 6.
    Costello C, Cao L, Gelcich S, Cisneros-Mata , Free CM et al. 2020. The future of food from the sea. Nature 588:95–10
    [Google Scholar]
  7. 7.
    Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L et al. 2021. A 20-year retrospective review of global aquaculture. Nature 591:7851551–63
    [Google Scholar]
  8. 8.
    Sala E, Mayorga J, Bradley D, Cabral RB, Atwood TB et al. 2021. Protecting the global ocean for biodiversity, food and climate. Nature 592:397–402
    [Google Scholar]
  9. 9.
    Leaper R. 2019. The role of slower vessel speeds in reducing greenhouse gas emissions, underwater noise and collision risk to whales. Front. Mar. Sci. 6:505
    [Google Scholar]
  10. 10.
    Butt N, Halpern BS, O'Hara CC, Allcock AL, Polidoro B et al. 2022. A trait-based framework for assessing the vulnerability of marine species to human impacts. Ecosphere 13:2e3919
    [Google Scholar]
  11. 11.
    Halpern BS, Selkoe KA, Micheli F, Kappel CV. 2007. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21:51301–15
    [Google Scholar]
  12. 12.
    Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F et al. 2008. A global map of human impact on marine ecosystems. Science 319:5865948–52
    [Google Scholar]
  13. 13.
    Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K et al. 2015. Spatial and temporal changes in cumulative human impacts on the world's ocean. Nat. Commun. 6:7615
    [Google Scholar]
  14. 14.
    Halpern BS, Frazier M, Afflerbach J, Lowndes JS, Micheli F et al. 2019. Recent pace of change in human impact on the world's ocean. Sci. Rep. 9:11609
    [Google Scholar]
  15. 15.
    FAO (UN Food Agric. Organ.) 2020. The State of World Fisheries and Aquaculture 2020: Sustainability in Action Rome: FAO
    [Google Scholar]
  16. 16.
    Cashion T. 2016. The end use of marine fisheries landings Fish. Cent. Res. Rep. , Vol. 243 Univ. B.C., Fish. Cent. Vancouver, Can.:
    [Google Scholar]
  17. 17.
    Hicks CC, Cohen PJ, Graham NAJ, Nash KL, Allison EH et al. 2019. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574:777695–98
    [Google Scholar]
  18. 18.
    Loring PA, Fazzino DV, Agapito M, Chuenpagdee R, Gannon G, Isaacs M 2019. Fish and food security in small-scale fisheries. Transdisciplinarity for Small-Scale Fisheries Governance: Analysis and Practice R Chuenpagdee, S Jentoft 55–73 Cham, Switz: Springer
    [Google Scholar]
  19. 19.
    Pikitch EK, Rountos KJ, Essington TE, Santora C, Pauly D et al. 2014. The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish 15:143–64
    [Google Scholar]
  20. 20.
    Link JS. 2021. Evidence of ecosystem overfishing in U.S. large marine ecosystems. ICES J. Mar. Sci. 78:93176–201
    [Google Scholar]
  21. 21.
    Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J et al. 2018. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8:14666
    [Google Scholar]
  22. 22.
    Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP et al. 2021. The soundscape of the Anthropocene ocean. Science 371:6529eaba4658
    [Google Scholar]
  23. 23.
    Davies TW, Duffy JP, Bennie J, Gaston KJ 2014. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12:6347–55
    [Google Scholar]
  24. 24.
    O'Hara CC, Frazier M, Halpern BS. 2021. At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science 372:653784–87
    [Google Scholar]
  25. 25.
    Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R et al. 2004. Ecosystem-based fishery management. Science 305:5682346–47
    [Google Scholar]
  26. 26.
    Hilborn R, Amoroso RO, Anderson CM, Baum JK, Branch TA et al. 2020. Effective fisheries management instrumental in improving fish stock status. PNAS 117:42218–24
    [Google Scholar]
  27. 27.
    Melnychuk MC, Kurota H, Mace PM, Pons M, Minto C et al. 2021. Identifying management actions that promote sustainable fisheries. Nat. Sustain. 4:440–49
    [Google Scholar]
  28. 28.
    Memarzadeh M, Britten GL, Worm B, Boettiger C. 2019. Rebuilding global fisheries under uncertainty. PNAS 116:3215985–90
    [Google Scholar]
  29. 29.
    Britten GL, Duarte CM, Worm B. 2021. Recovery of assessed global fish stocks remains uncertain. PNAS 118:31e2108532118
    [Google Scholar]
  30. 30.
    Costello C, Ovando D. 2019. Status, institutions, and prospects for global capture fisheries. Annu. Rev. Environ. Resourc. 44:177–200
    [Google Scholar]
  31. 31.
    Melnychuk MC, Peterson E, Elliott M, Hilborn R. 2017. Fisheries management impacts on target species status. PNAS 114:1178–83
    [Google Scholar]
  32. 32.
    Sharma R, Winker H, Levontin P, Kell L, Ovando D et al. 2021. Assessing the potential of catch-only models to inform on the state of global fisheries and the UN's SDGs. Sustainability 13:116101
    [Google Scholar]
  33. 33.
    Ye Y, Gutierrez NL. 2017. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1:0179
    [Google Scholar]
  34. 34.
    Short RE, Gelcich S, Little DC, Micheli F, Allison EH et al. 2021. Harnessing the diversity of small-scale actors is key to the future of aquatic food systems. Nat. Food 2:9733–41
    [Google Scholar]
  35. 35.
    Chan KMA, Boyd DR, Gould RK, Jetzkowitz J, Liu J et al. 2020. Levers and leverage points for pathways to sustainability. People Nat 2:3693–717
    [Google Scholar]
  36. 36.
    Burgess MG, McDermott GR, Owashi B, Peavey Reeves LE, Clavelle T et al. 2018. Protecting marine mammals, turtles, and birds by rebuilding global fisheries. Science 359:63811255–58
    [Google Scholar]
  37. 37.
    Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R et al. 2010. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16:124–35
    [Google Scholar]
  38. 38.
    Sala E, Mayorga J, Costello C, Kroodsma D, Palomares MLD et al. 2018. The economics of fishing the high seas. Sci. Adv. 4:6eaat2504
    [Google Scholar]
  39. 39.
    Dunn DC, Jablonicky C, Crespo GO, McCauley DJ, Kroodsma DA et al. 2018. Empowering high seas governance with satellite vessel tracking data. Fish Fish 19:4729–39
    [Google Scholar]
  40. 40.
    Seto K, Miller N, Young M, Hanich Q 2020. Toward transparent governance of transboundary fisheries: the case of Pacific tuna transshipment. Mar. Policy 136:104200
    [Google Scholar]
  41. 41.
    Cabral RB, Mayorga J, Clemence M, Lynham J, Koeshendrajana S et al. 2018. Rapid and lasting gains from solving illegal fishing. Nat. Ecol. Evol. 2:4650–58
    [Google Scholar]
  42. 42.
    McDonald GG, Costello C, Bone J, Cabral RB, Farabee V et al. 2021. Satellites can reveal global extent of forced labor in the world's fishing fleet. PNAS 118:3e2016238117
    [Google Scholar]
  43. 43.
    Hidalgo M, Browman HI. 2019. Developing the knowledge base needed to sustainably manage mesopelagic resources. ICES J. Mar. Sci. 76:3609–15
    [Google Scholar]
  44. 44.
    St. John MA, Borja A, Chust G, Heath M, Grigorov I et al. 2016. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3:31
    [Google Scholar]
  45. 45.
    Froehlich HE, Runge CA, Gentry RR, Gaines SD, Halpern BS. 2018. Comparative terrestrial feed and land use of an aquaculture-dominant world. PNAS 115:205295–300
    [Google Scholar]
  46. 46.
    Froehlich HE, Jacobsen NS, Essington TE, Clavelle T, Halpern BS. 2018. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1:6298–303
    [Google Scholar]
  47. 47.
    Gephart JA, Henriksson PJG, Parker RWR, Shepon A, Gorospe KD et al. 2021. Environmental performance of blue foods. Nature 597:7876360–65
    [Google Scholar]
  48. 48.
    Xiao X, Agusti S, Lin F, Li K, Pan Y et al. 2017. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Sci. Rep. 7:146613
    [Google Scholar]
  49. 49.
    CEA Consulting 2021. A decade of ocean funding: landscape trends 2010–2020 Rep. Our Shared Seas https://oursharedseas.com/funding/
    [Google Scholar]
  50. 50.
    Froehlich HE, Smith A, Gentry RR, Halpern BS. 2017. Offshore aquaculture: I know it when I see it. Front. Mar. Sci. 4:154
    [Google Scholar]
  51. 51.
    Cottrell RS, Blanchard JL, Halpern BS, Metian M, Froehlich HE. 2020. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1:301–8
    [Google Scholar]
  52. 52.
    Cerdeiro DA, Komaromi A, Liu Y, Saeed M. 2020. World seaborne trade in real time: a proof of concept for building AIS-based nowcasts from scratch Work. Pap. 20/57 Int. Monet. Fund Washington, DC:
    [Google Scholar]
  53. 53.
    Rockwood RC, Calambokidis J, Jahncke J. 2017. High mortality of blue, humpback and fin whales from modeling of vessel collisions on the U.S. West Coast suggests population impacts and insufficient protection. PLOS ONE 12:8e0183052
    [Google Scholar]
  54. 54.
    Wu L, Xu Y, Wang Q, Wang F, Xu Z. 2017. Mapping global shipping density from AIS data. J. Navig. 70:167–81
    [Google Scholar]
  55. 55.
    Seebens H, Schwartz N, Schupp PJ, Blasius B. 2016. Predicting the spread of marine species introduced by global shipping. PNAS 113:205646–51
    [Google Scholar]
  56. 56.
    Sardain A, Sardain E, Leung B. 2019. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2:4274–82
    [Google Scholar]
  57. 57.
    GWEC (Glob. Wind Energy Council) 2021. Global Offshore Wind Report 2021 Bruss., Belg.: GWEC
    [Google Scholar]
  58. 58.
    Torres A, Brandt J, Lear K, Liu J. 2017. A looming tragedy of the sand commons. Science 357:6355970–71
    [Google Scholar]
  59. 59.
    Farrington JW. 2013. Oil pollution in the marine environment I: inputs, big spills, small spills, and dribbles. Environ.: Sci. Policy Sustain. Dev. 55:63–13
    [Google Scholar]
  60. 60.
    Claisse JT, Pondella DJ, Love M, Zahn LA, Williams CM et al. 2014. Oil platforms off California are among the most productive marine fish habitats globally. PNAS 111:4315462–67
    [Google Scholar]
  61. 61.
    Paulikas D, Katona S, Ilves E, Ali SH. 2020. Life cycle climate change impacts of producing battery metals from land ores versus deep-sea polymetallic nodules. J. Clean. Prod. 275:123822
    [Google Scholar]
  62. 62.
    Malone TC, Newton A. 2020. The globalization of cultural eutrophication in the coastal ocean: causes and consequences. Front. Mar. Sci. 7:670
    [Google Scholar]
  63. 63.
    Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M et al. 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4:12934
    [Google Scholar]
  64. 64.
    Ngatia L, Grace JMIII, Moriasi D, Taylor R. 2019. Nitrogen and phosphorus eutrophication in marine ecosystems. Monitoring of Marine Pollution HB Fouzia 1–17 London: IntechOpen
    [Google Scholar]
  65. 65.
    Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:2153–226
    [Google Scholar]
  66. 66.
    Lassaletta L, Billen G, Garnier J, Bouwman L, Velazquez E et al. 2016. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 11:9095007
    [Google Scholar]
  67. 67.
    Boesch DF. 2019. Barriers and bridges in abating coastal eutrophication. Front. Mar. Sci. 6:123
    [Google Scholar]
  68. 68.
    Howarth RW. 2005. The development of policy approaches for reducing nitrogen pollution to coastal waters of the USA. Sci. China Ser. C. 48:2791–806
    [Google Scholar]
  69. 69.
    Paerl HW, Hall NS, Peierls BL, Rossignol KL. 2014. Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuaries Coasts 37:2243–58
    [Google Scholar]
  70. 70.
    Lallas PL. 2001. The Stockholm Convention on Persistent Organic Pollutants. Am. J. Int. Law 95:3692–708
    [Google Scholar]
  71. 71.
    Diamond ML, de Wit CA, Molander S, Scheringer M, Backhaus T et al. 2015. Exploring the planetary boundary for chemical pollution. Environ. Int. 78:8–15
    [Google Scholar]
  72. 72.
    Richmond EK, Grace MR, Kelly JJ, Reisinger AJ, Rosi EJ, Walters DM. 2017. Pharmaceuticals and personal care products (PPCPs) are ecological disrupting compounds (EcoDC). Elementa: Sci. Anthrop. 5:66
    [Google Scholar]
  73. 73.
    UNEP (UN Environ. Progr.) 2020. Stockholm Convention on Persistent Organic Pollutants (POPs) Châtelaine, Switz: Secr. Stockh. Conv.
    [Google Scholar]
  74. 74.
    Wagner CC, Amos HM, Thackray CP, Zhang Y, Lundgren EW et al. 2019. A global 3-D ocean model for PCBs: benchmark compounds for understanding the impacts of global change on neutral persistent organic pollutants. Glob. Biogeochem. Cycles 33:3469–81
    [Google Scholar]
  75. 75.
    Bernhardt ES, Rosi EJ, Gessner MO. 2017. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 15:284–90
    [Google Scholar]
  76. 76.
    Shah SB 2021. Heavy metals in the marine environment. Heavy Metals in Scleractinian Corals SB Shah 1–26 Cham, Switz: Springer
    [Google Scholar]
  77. 77.
    Hauton C, Brown A, Thatje S, Mestre NC, Bebianno MJ et al. 2017. Identifying toxic impacts of metals potentially released during deep-sea mining of the challenges to quantifying risk. Front. Mar. Sci. 4:368
    [Google Scholar]
  78. 78.
    UNEP (UN Environ. Progr.) 2019. Global Mercury Assessment 2018 Rep., Chem. Health Branch, UNEP Geneva, Switz:.
    [Google Scholar]
  79. 79.
    Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:7e1700782
    [Google Scholar]
  80. 80.
    Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M et al. 2015. Plastic waste inputs from land into the ocean. Science 347:6223768–71
    [Google Scholar]
  81. 81.
    MacLeod M, Arp HPH, Tekman MB, Jahnke A. 2021. The global threat from plastic pollution. Science 373:655061–65
    [Google Scholar]
  82. 82.
    Rabesandratana T. 2021. Report traces surge in ocean plastic studies. Science 372:65481249
    [Google Scholar]
  83. 83.
    Giving USA. 2021. Giving USA 2021: The Annual Report on Philanthropy for the Year 2020 Chicago: Giving USA Found.
    [Google Scholar]
  84. 84.
    Lim X. 2021. Microplastics are everywhere but are they harmful?. Nature 593:785722–25
    [Google Scholar]
  85. 85.
    UNEP (UN Environ. Progr.) 2021. From pollution to solution: a global assessment of marine litter and plastic pollution. Rep. UNEP Nairobi:
    [Google Scholar]
  86. 86.
    Ogonowski M, Gerdes Z, Gorokhova E. 2018. What we know and what we think we know about microplastic effects—a critical perspective. Curr. Opin. Environ. Sci. Health 1:41–46
    [Google Scholar]
  87. 87.
    Besset M, Anthony EJ, Bouchette F. 2019. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: an assessment and review. Earth-Sci. Rev. 193:199–219
    [Google Scholar]
  88. 88.
    Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S. 2018. The state of the world's beaches. Sci. Rep. 8:16641
    [Google Scholar]
  89. 89.
    Vousdoukas MI, Ranasinghe R, Mentaschi L, Plomaritis TA, Athanasiou P et al. 2020. Sandy coastlines under threat of erosion. Nat. Clim. Change 10:3260–63
    [Google Scholar]
  90. 90.
    Apitz SE. 2012. Conceptualizing the role of sediment in sustaining ecosystem services: sediment-ecosystem regional assessment (SEcoRA). Sci. Total Environ. 415:9–30
    [Google Scholar]
  91. 91.
    Myers MR, Barnard PL, Beighley E, Cayan DR, Dugan JE et al. 2019. A multidisciplinary coastal vulnerability assessment for local government focused on ecosystems, Santa Barbara area, California. Ocean Coast. Manag. 182:104921
    [Google Scholar]
  92. 92.
    Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB et al. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. BioScience 51:8633–41
    [Google Scholar]
  93. 93.
    Narayan S, Beck MW, Reguero BG, Losada IJ, van Wesenbeeck B et al. 2016. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLOS ONE 11:5e0154735
    [Google Scholar]
  94. 94.
    Dunn FE, Darby SE, Nicholls RJ, Cohen S, Zarfl C, Fekete BM. 2019. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14:8084034
    [Google Scholar]
  95. 95.
    Praskievicz S. 2016. Impacts of projected climate changes on streamflow and sediment transport for three snowmelt-dominated rivers in the interior Pacific Northwest. River Res. Appl. 32:14–17
    [Google Scholar]
  96. 96.
    Nicholls RJ, Brown S, Goodwin P, Wahl T, Lowe J et al. 2018. Stabilization of global temperature at 1.5 and 2.0: implications for coastal areas. Philos. Trans. R. Soc. A. 376:211920160448
    [Google Scholar]
  97. 97.
    Small C, Nicholls RJ. 2003. A global analysis of human settlement in coastal zones. J. Coastal Res. 19:3584–99
    [Google Scholar]
  98. 98.
    Gittman RK, Fodrie FJ, Popowich AM, Keller DA, Bruno JF et al. 2015. Engineering away our natural defenses: an analysis of shoreline hardening in the US. Front. Ecol. Environ. 13:6301–7
    [Google Scholar]
  99. 99.
    Gittman RK, Scyphers SB, Smith CS, Neylan IP, Grabowski JH. 2016. Ecological consequences of shoreline hardening: a meta-analysis. BioScience 66:9763–73
    [Google Scholar]
  100. 100.
    Tian H, Xu K, Goes JI, Liu Q, do Rosario Gomes H, Yang M 2020. Shoreline changes along the coast of mainland China—Time to pause and reflect?. ISPRS Int. J. Geo-Inf. 9:10572
    [Google Scholar]
  101. 101.
    Wilson MW, Ridlon AD, Gaynor KM, Gaines SD, Stier AC, Halpern BS. 2020. Ecological impacts of human-induced animal behaviour change. Ecol. Lett. 23:101522–36
    [Google Scholar]
  102. 102.
    Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ. 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLOS ONE 10:3e0118571
    [Google Scholar]
  103. 103.
    Davies TW, Smyth T. 2018. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Change Biol. 24:3872–82
    [Google Scholar]
  104. 104.
    Sanders D, Frago E, Kehoe R, Patterson C, Gaston KJ. 2021. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5:174–81
    [Google Scholar]
  105. 105.
    Lenton TM, Rockström J, Gaffney O, Rahmstorf S, Richardson K et al. 2019. Climate tipping points—too risky to bet against. Nature 575:7784592–95
    [Google Scholar]
  106. 106.
    Bijma J, Pörtner H-O, Yesson C, Rogers AD 2013. Climate change and the oceans—What does the future hold?. Mar. Pollut. Bull. 74:2495–505
    [Google Scholar]
  107. 107.
    Sampaio E, Santos C, Rosa IC, Ferreira V, Pörtner H-O et al. 2021. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5:3311–21
    [Google Scholar]
  108. 108.
    Lotterhos KE, Láruson ÁJ, Jiang L-Q. 2021. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11:115535
    [Google Scholar]
  109. 109.
    Garcia-Soto C, Cheng L, Caesar L, Schmidtko S, Jewett EB et al. 2021. An overview of ocean climate change indicators: sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, Arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Front. Mar. Sci. 8:1266
    [Google Scholar]
  110. 110.
    Pinsky ML, Selden RL, Kitchel ZJ. 2020. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci. 12:153–79
    [Google Scholar]
  111. 111.
    García Molinos J, Halpern BS, Schoeman DS, Brown CJ, Kiessling W et al. 2015. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6:183–88
    [Google Scholar]
  112. 112.
    Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A et al. 2014. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:7493492–95
    [Google Scholar]
  113. 113.
    Fredston-Hermann A, Gaines SD, Halpern BS. 2018. Biogeographic constraints to marine conservation in a changing climate. Ann. N. Y. Acad. Sci. 1429:15–7
    [Google Scholar]
  114. 114.
    Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA et al. 2018. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9:11324
    [Google Scholar]
  115. 115.
    Frölicher TL, Fischer EM, Gruber N. 2018. Marine heatwaves under global warming. Nature 560:7718360–64
    [Google Scholar]
  116. 116.
    Smale DA, Wernberg T, Oliver ECJ, Thomsen M, Harvey BP et al. 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9:4306–12
    [Google Scholar]
  117. 117.
    Holbrook NJ, Sen Gupta A, Oliver ECJ, Hobday AJ, Benthuysen JA et al. 2020. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1:9482–93
    [Google Scholar]
  118. 118.
    Cheung WWL, Frölicher TL, Lam VWY, Oyinlola MA, Reygondeau G et al. 2021. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. 7:40eabh0895
    [Google Scholar]
  119. 119.
    Nash KL, Cvitanovic C, Fulton EA, Halpern BS, Milner-Gulland EJ et al. 2017. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1:111625–34
    [Google Scholar]
  120. 120.
    Hurd CL, Beardall J, Comeau S, Cornwall CE, Havenhand JN et al. 2020. Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life. Mar. Freshwater Res. 71:3263–74
    [Google Scholar]
  121. 121.
    Rummer JL, Munday PL. 2017. Climate change and the evolution of reef fishes: past and future. Fish Fish 18:122–39
    [Google Scholar]
  122. 122.
    Nicholls RJ, Cazenave A. 2010. Sea-level rise and its impact on coastal zones. Science 328:59851517–20
    [Google Scholar]
  123. 123.
    Lovelock CE, Cahoon DR, Friess DA, Guntenspergen GR, Krauss KW et al. 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526:7574559–63
    [Google Scholar]
  124. 124.
    Kirwan ML, Megonigal JP. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:747853–60
    [Google Scholar]
  125. 125.
    Perry CT, Alvarez-Filip L, Graham NAJ, Mumby PJ, Wilson SK et al. 2018. Loss of coral reef growth capacity to track future increases in sea level. Nature 558:7710396–400
    [Google Scholar]
  126. 126.
    Albert S, Saunders MI, Roelfsema CM, Leon JX, Johnstone E et al. 2017. Winners and losers as mangrove, coral and seagrass ecosystems respond to sea-level rise in Solomon Islands. Environ. Res. Lett. 12:9094009
    [Google Scholar]
  127. 127.
    Brown BE, Dunne RP, Somerfield PJ, Edwards AJ, Simons WJF et al. 2019. Long-term impacts of rising sea temperature and sea level on shallow water coral communities over a ∼40 year period. Sci. Rep. 9:18826
    [Google Scholar]
  128. 128.
    El-Sayed SZ, Van Dijken GL, Gonzalez-Rodas G. 1996. Effects of ultraviolet radiation on marine ecosystems. Int. J. Environ. Stud. 51:3199–216
    [Google Scholar]
  129. 129.
    Barnes PW, Williamson CE, Lucas RM, Robinson SA, Madronich S et al. 2019. Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat. Sustain. 2:7569–79
    [Google Scholar]
  130. 130.
    WMO (World Meteorol. Organ.) 2019. Executive Summary: Scientific assessment of ozone depletion: 2018 Rep. 58, Glob. Ozone Res. Monit. Proj. WMO Geneva, Switz:.
    [Google Scholar]
  131. 131.
    Crain CM, Kroeker K, Halpern BS. 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11:121304–15
    [Google Scholar]
  132. 132.
    Selkoe KA, Blenckner T, Caldwell MR, Crowder LB, Erickson AL et al. 2015. Principles for managing marine ecosystems prone to tipping points. Ecosyst. Health Sustain. 1:51–18
    [Google Scholar]
  133. 133.
    Bennett NJ, Katz L, Yadao-Evans W, Ahmadia GN, Atkinson S et al. 2021. Advancing social equity in and through marine conservation. Front. Mar. Sci. 8:711538
    [Google Scholar]
  134. 134.
    Gill DA, Cheng SH, Glew L, Aigner E, Bennett NJ, Mascia MB. 2019. Social synergies, tradeoffs, and equity in marine conservation impacts. Annu. Rev. Environ. Resourc. 44:347–72
    [Google Scholar]
  135. 135.
    Friedman WR, Halpern BS, McLeod E, Beck MW, Duarte CM et al. 2020. Research priorities for achieving healthy marine ecosystems and human communities in a changing climate. Front. Mar. Sci. 7:5
    [Google Scholar]
  136. 136.
    Pizarro O, Pace L. 2021. Editorial: emerging technologies with high impact for ocean sciences, ecosystem management, and environmental conservation. Front. Mar. Sci. 8:671877
    [Google Scholar]
  137. 137.
    Sumaila UR, Walsh M, Hoareau K, Cox A, Teh L et al. 2021. Financing a sustainable ocean economy. Nat. Commun. 12:13259
    [Google Scholar]
  138. 138.
    Shiiba N, Wu HH, Huang MC, Tanaka H. 2022. How blue financing can sustain ocean conservation and development: a proposed conceptual framework for blue financing mechanism. Mar. Policy 139:104575
    [Google Scholar]
  139. 139.
    Lotze HK, Guest H, O'Leary J, Tuda A, Wallace D 2018. Public perceptions of marine threats and protection from around the world. Ocean Coast. Manag. 152:14–22
    [Google Scholar]
  140. 140.
    Beaumont NJ, Aanesen M, Austen MC, Börger T, Clark JR et al. 2019. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142:189–95
    [Google Scholar]
  141. 141.
    Teck SJ, Halpern BS, Kappel CV, Micheli F, Selkoe KA et al. 2010. Using expert judgment to estimate marine ecosystem vulnerability in the California Current. Ecol. Appl. 20:51402–16
    [Google Scholar]
  142. 142.
    McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR. 2015. Marine defaunation: animal loss in the global ocean. Science 347:62191255641
    [Google Scholar]
/content/journals/10.1146/annurev-environ-120120-053645
Loading
/content/journals/10.1146/annurev-environ-120120-053645
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error