1932

Abstract

Biodiversity, a term now widely employed in science, policy, and wider society, has a burgeoning associated literature. We synthesize aspects of this literature, focusing on several key concepts, debates, patterns, trends, and drivers. We review the history of the term and the multiple dimensions and values of biodiversity, and we explore what is known and not known about global patterns of biodiversity. We then review changes in biodiversity from early human times to the modern era, examining rates of extinction and direct drivers of biodiversity change and also highlighting some less-well-studied drivers. Finally, we turn attention to the indirect drivers of global biodiversity loss, notably humanity's increasing global consumption footprint, and explore what might be required to reverse the ongoing decline in the fabric of life on Earth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-120120-054300
2022-10-17
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-120120-054300.html?itemId=/content/journals/10.1146/annurev-environ-120120-054300&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Reddy E. 2014. What does it mean to do anthropology in the Anthropocene?. Platypus The CASTAC Blog April 8. https://blog.castac.org/2014/04/what-does-it-mean-to-do-anthropology-in-the-anthropocene/
    [Google Scholar]
  2. 2.
    UNEP (UN Environ. Prog.). 1995. Global Biodiversity Assessment: Summary for Policy-Makers ed. RT Watson, VH Heywood, I Baste, B Dias, R Gámez, et al.: Cambridge, UK: Cambridge Univ. Press
  3. 3.
    Millennium Ecosystem Assessment 2005. Ecosystems and Human Well-Being: Synthesis Washington, DC: Island Press
  4. 4.
    IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.) 2019. Summary for Policymakers of the Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services S Díaz, J Settele, ES Brondizio, HT Ngo, M Guèze et al. Bonn, Ger: IPBES Secr 56 pp .
  5. 5.
    Díaz S, Settele J, Brondizio ES, Ngo HT, Agard J et al. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:eaax3100
    [Google Scholar]
  6. 6.
    Harris JA. 1916. The variable desert. Sci. Mon. 3:41–50
    [Google Scholar]
  7. 7.
    Pielou EC. 1975. Ecological Diversity Hoboken, NJ: Wiley165 pp.
  8. 8.
    Magurran AE. 2003. Measuring Biological Diversity Hoboken, NJ: Wiley
  9. 9.
    Lovejoy TE 1980. Foreword. Conservation Biology: An Evolutionary-Ecological Perspective ME Soulé, BAW Wilcox VII–X Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  10. 10.
    Wilson EO. 1988. Biodiversity Washington, DC: Natl. Acad. Press538 pp.
  11. 11.
    Harper JL, Hawksworth DL. 1994. Biodiversity: measurement and estimation. Philos. Trans. R. Soc. B 345:5–12
    [Google Scholar]
  12. 12.
    Star SL, Griesemer JR. 1989. Institutional ecology, “translations” and boundary objects: amateurs and professionals in Berkeley's Museum of Vertebrate Zoology, 1907–39. Soc. Stud. Sci. 19:387–420
    [Google Scholar]
  13. 13.
    Malhi Y. 2017. The concept of the Anthropocene. Annu. Rev. Environ. Resour. 42:77–104
    [Google Scholar]
  14. 14.
    Ducarme F, Flipo F, Couvet D. 2021. How the diversity of human concepts of nature affects conservation of biodiversity. Conserv. Biol. 35:1019–28
    [Google Scholar]
  15. 15.
    Pascual U, Adams WM, Díaz S, Lele S, Mace GM, Turnhout E. 2021. Biodiversity and the challenge of pluralism. Nat. Sustain. 4:567–72
    [Google Scholar]
  16. 16.
    Díaz S. 2022. A fabric of life view of the world. Science 375:1204
    [Google Scholar]
  17. 17.
    Soltis PS, Folk RA, Soltis DE 2019. Darwin review: angiosperm phylogeny and evolutionary radiations. 28620190099
  18. 18.
    Garnier E, Navas M-L, Grigulis K. 2015. Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties Oxford, UK: Oxford Univ. Press
  19. 19.
    Díaz S, Pascual U, Stenseke M, Martín-López B, Watson RT et al. 2018. Assessing nature's contributions to people. Science 359:270–72
    [Google Scholar]
  20. 20.
    O'Neill J, Holland A, Light A. 2008. Environmental Values London: Routledge
  21. 21.
    Chan KMA, Balvanera P, Benessaiah K, Chapman M, Díaz S et al. 2016. Why protect nature? Rethinking values and the environment. PNAS 113:1462–65
    [Google Scholar]
  22. 22.
    Pascual U, Balvanera P, Díaz S, Pataki G, Roth E et al. 2017. Valuing nature's contributions to people: the IPBES approach. Curr. Opin. Environ. Sustain. 26–27:7–16
    [Google Scholar]
  23. 23.
    Mace GM. 2014. Whose conservation?. Science 345:1558
    [Google Scholar]
  24. 24.
    Tallis H, Lubchenco J. 2014. A call for inclusive conservation. Nature 515:27–28
    [Google Scholar]
  25. 25.
    Chan K, Gould R, Pascual U. 2018. Editorial overview: Relational values: What are they, and what's the fuss about?. Curr. Opin. Environ. Sustain. 35:A1–7
    [Google Scholar]
  26. 26.
    Zafra-Calvo N, Balvanera P, Pascual U, Merçon J, Martín-López B et al. 2020. Plural valuation of nature for equity and sustainability: insights from the Global South. Glob. Environ. Chang. 63:102115
    [Google Scholar]
  27. 27.
    Lele S. 2021. From wildlife-ism to ecosystem-service-ism to a broader environmentalism. Environ. Conserv. 48:5–7
    [Google Scholar]
  28. 28.
    Martín-López B. 2021. Plural valuation of nature matters for environmental sustainability and justice. The Royal Society https://royalsociety.org/topics-policy/projects/biodiversity/plural-valuation-of-nature-matters-for-environmental-sustainability-and-justice/
    [Google Scholar]
  29. 29.
    Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T et al. 2015. A higher level classification of all living organisms. PLOS ONE 10:e0119248
    [Google Scholar]
  30. 30.
    Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T et al. 2015. Correction: A higher level classification of all living organisms. PLOS ONE 10:e0130114
    [Google Scholar]
  31. 31.
    Willis KJ. 2017. State of the World's Plants 2017 London: R. Bot. Gar., Kew
  32. 32.
    Willis KJ. 2018. State of the World's Fungi 2018 London: R. Bot. Gar., Kew
  33. 33.
    Purvis A, Molnar Z, Obura D, Ichii K, Willis K et al. 2019. Chapter 2.2: Status and trends – nature. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services ES Brondízio, S Díaz, J Settele, HT Ngo 201–308 Bonn, Ger: Secr. Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.
    [Google Scholar]
  34. 34.
    Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. 2011. How many species are there on Earth and in the ocean?. PLOS Biol. 9:e1001127
    [Google Scholar]
  35. 35.
    Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth?. 6331–45
  36. 36.
    Larsen BB, Miller EC, Rhodes MK, Wiens JJ. 2017. Inordinate fondness multiplied and redistributed: the number of species on Earth and the new pie of life. Q. Rev. Biol. 92:229–65
    [Google Scholar]
  37. 37.
    Pedrós-Alió C, Manrubia S. 2016. The vast unknown microbial biosphere. PNAS 113:6585–87
    [Google Scholar]
  38. 38.
    Gogarten JP, Doolittle WF, Lawrence JG. 2002. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19:2226–38
    [Google Scholar]
  39. 39.
    Louca S, Mazel F, Doebeli M, Parfrey LW. 2019. A census-based estimate of Earth's bacterial and archaeal diversity. PLOS Biol. 17:e3000106
    [Google Scholar]
  40. 40.
    Locey KJ, Lennon JT. 2016. Scaling laws predict global microbial diversity. PNAS 113:5970–75
    [Google Scholar]
  41. 41.
    Wiens JJ. 2021. Vast (but avoidable) underestimation of global biodiversity. PLOS Biol. 19:e3001192
    [Google Scholar]
  42. 42.
    Louca S, Mazel F, Doebeli M, Parfrey LW. 2021. Response to “Vast (but avoidable) underestimation of global biodiversity. .” PLOS Biol. 19:e3001362
    [Google Scholar]
  43. 43.
    Singer D, Seppey CVW, Lentendu G, Dunthorn M, Bass D et al. 2021. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ. Int. 146:106262
    [Google Scholar]
  44. 44.
    Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61:1–10
    [Google Scholar]
  45. 45.
    Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:6506–11
    [Google Scholar]
  46. 46.
    Duarte CM, Chiscano CL. 1999. Seagrass biomass and production: a reassessment. Aquat. Bot. 65:159–74
    [Google Scholar]
  47. 47.
    Davidson N, Finlayson M. 2019. Updating global coastal wetland areas presented in Davidson and Finlayson (2018). Mar. Freshw. Res. 70:1195–200
    [Google Scholar]
  48. 48.
    Duarte CM, Gattuso J-P, Hancke K, Gundersen H, Filbee-Dexter K et al. 2022. Global estimates of the extent and production of macroalgal forests. Global Ecol. Biogeogr. 31:1422–39
    [Google Scholar]
  49. 49.
    Benton MJ, Wilf P, Sauquet H. 2021. The angiosperm terrestrial revolution and the origins of modern biodiversity. New Phytol. 233:2017–35
    [Google Scholar]
  50. 50.
    Svenning J-C, Skov F. 2007. Ice Age legacies in the geographical distribution of tree species richness in Europe. Global Ecol. Biogeogr. 16:234–45
    [Google Scholar]
  51. 51.
    Hagen O, Skeels A, Onstein RE, Jetz W, Pellissier L. 2021. Earth history events shaped the evolution of uneven biodiversity across tropical moist forests. PNAS 118:e2026347118
    [Google Scholar]
  52. 52.
    Cracraft J, Ribas CC, d'Horta FM, Bates J, Almeida RP et al. 2020. The origin and evolution of Amazonian species diversity. Neotropical Diversification: Patterns and Processes V Rull, AC Carnaval 225–44 Cham, Switz: Springer
    [Google Scholar]
  53. 53.
    Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD et al. 2018. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361:eaar5452
    [Google Scholar]
  54. 54.
    Harvey MG, Bravo GA, Claramunt S, Cuervo AM, Derryberry GE et al. 2020. The evolution of a tropical biodiversity hotspot. Science 370:1343–48
    [Google Scholar]
  55. 55.
    Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G et al. 2016. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. PNAS 113:6388–96
    [Google Scholar]
  56. 56.
    Laland KN, Odling-Smee J, Feldman MW. 2001. Cultural niche construction and human evolution. J. Evol. Biol. 14:22–33
    [Google Scholar]
  57. 57.
    Archibald S, Staver AC, Levin SA. 2012. Evolution of human-driven fire regimes in Africa. PNAS 109:847–52
    [Google Scholar]
  58. 58.
    Barnosky AD. 2008. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. PNAS 105:11543–48
    [Google Scholar]
  59. 59.
    Williams M, Zalasiewicz J, Haff PK, Schwägerl C, Barnosky AD, Ellis EC. 2015. The Anthropocene biosphere. Anthropocene Rev. 2:196–219
    [Google Scholar]
  60. 60.
    Ellis EC, Gauthier N, Goldewijk KK, Bird RB, Boivin N et al. 2021. People have shaped most of terrestrial nature for at least 12,000 years. PNAS 118:e2023483118
    [Google Scholar]
  61. 61.
    Todd NE. 2006. Trends in proboscidean diversity in the African Cenozoic. J. Mamm. Evol. 13:1–10
    [Google Scholar]
  62. 62.
    Koch PL, Barnosky AD. 2006. Late quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37:215–50
    [Google Scholar]
  63. 63.
    Sandom C, Faurby S, Sandel B, Svenning J-C. 2014. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281:20133254
    [Google Scholar]
  64. 64.
    Andermann T, Faurby S, Turvey ST, Antonelli A, Silvestro D. 2020. The past and future human impact on mammalian diversity. Sci. Adv. 6:eabb2313
    [Google Scholar]
  65. 65.
    Malhi Y, Gardner TA, Goldsmith GR, Silman MR, Zelazowski P. 2014. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39:125–59
    [Google Scholar]
  66. 66.
    Dembitzer J, Barkai R, Ben-Dor M, Meiri S. 2022. Levantine overkill: 1.5 million years of hunting down the body size distribution. Quat. Sci. Rev. 276:107316
    [Google Scholar]
  67. 67.
    Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning J-C, Terborgh JW. 2016. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. PNAS 113:838–46
    [Google Scholar]
  68. 68.
    Enquist BJ, Abraham AJ, Harfoot MBJ, Malhi Y, Doughty CE. 2020. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11:699
    [Google Scholar]
  69. 69.
    Duncan RP, Boyer AG, Blackburn TM. 2013. Magnitude and variation of prehistoric bird extinctions in the Pacific. PNAS 110:6436–41
    [Google Scholar]
  70. 70.
    Babai D, Molnár Z. 2014. Small-scale traditional management of highly species-rich grasslands in the Carpathians. Agric. Ecosyst. Environ. 182:123–30
    [Google Scholar]
  71. 71.
    Levis C, Flores BM, Moreira PA, Luize BG, Alves RP et al. 2018. How people domesticated Amazonian forests. Front. Ecol. Evol. 5:171
    [Google Scholar]
  72. 72.
    Hill R, Nates-Parra G, Quezada-Euán JJG, Buchori D, LeBuhn G et al. 2019. Biocultural approaches to pollinator conservation. Nat. Sustain. 2:214–22
    [Google Scholar]
  73. 73.
    Brondízio ES, Aumeeruddy-Thomas Y, Bates P, Carino J, Fernández-Llamazares Á et al. 2021. Locally based, regionally manifested, and globally relevant: Indigenous and local knowledge, values, and practices for nature. Annu. Rev. Environ. Resour. 46:481–509
    [Google Scholar]
  74. 74.
    Middleton BA. 2013. Rediscovering traditional vegetation management in preserves: trading experiences between cultures and continents. Biol. Conserv. 158:271–79
    [Google Scholar]
  75. 75.
    Vitousek P, Chadwick O. 2013. Pacific islands in the Anthropocene. Elementa Sci. Anthropocene 1:000011
    [Google Scholar]
  76. 76.
    Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L et al. 2014. Current perspectives and the future of domestication studies. PNAS 111:6139–46
    [Google Scholar]
  77. 77.
    DeClerck FAJ, Koziell I, Sidhu A, Wirths J, Benton T et al. 2021. Biodiversity and Agriculture: Rapid Evidence Review Colombo, Sri Lanka: CGIAR Res. Program Water Land Ecosyst. Int. Water Manag. Inst.70 pp.
  78. 78.
    FAO (Food Agric. Organ.) 2016. Commission on genetic resources from food and agriculture Intergovernmental Technical Working Group on Animal Genetic Resources for Food and Agriculture – Status of Animal Genetic Resources, 9th sess Rome: July 6–8. http://www.fao.org/3/a-mq950e.pdf
  79. 79.
    FAO (Food Agric. Organ.) 2019. The State of the World's Aquatic Genetic Resources for Food and Agriculture Rome: FAO
  80. 80.
    Moore JW. 2017. The Capitalocene, Part I: on the nature and origins of our ecological crisis. J. Peasant Stud. 44:594–630
    [Google Scholar]
  81. 81.
    Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. 2015. The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev. 2:81–98
    [Google Scholar]
  82. 82.
    McKinney ML, Lockwood JL. 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14:450–53
    [Google Scholar]
  83. 83.
    Olden JD, LeRoy Poff N, Douglas MR, Douglas ME, Fausch KD 2004. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19:18–24
    [Google Scholar]
  84. 84.
    Dalton L. 2001. Passport, please: a global strategy to curb invasive species. Stanford News Serv., Feb. 16. https://news.stanford.edu/news/2001/february21/mooney-a.html
    [Google Scholar]
  85. 85.
    Daru BH, Davies TJ, Willis CG, Meineke EK, Ronk A et al. 2021. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12:6983
    [Google Scholar]
  86. 86.
    Palumbi SR. 2001. Humans as the world's greatest evolutionary force. Science 293:1786–90
    [Google Scholar]
  87. 87.
    Hendry AP. 2017. Eco-Evolutionary Dynamics Princeton, NJ: Princeton Univ. Press
  88. 88.
    Hendry AP, Gotanda KM, Svensson E. 2017. Human influences on evolution, and the ecological and societal consequences. Philos. Trans. R. Soc. B 372:20160028
    [Google Scholar]
  89. 89.
    Jørgensen PS, Folke C, Carroll SP. 2019. Evolution in the Anthropocene: informing governance and policy. Annu. Rev. Ecol. Evol. Syst. 50:527–46
    [Google Scholar]
  90. 90.
    Sarrazin F, Lecomte J. 2016. Evolution in the Anthropocene. Science 351:922–23
    [Google Scholar]
  91. 91.
    Thomas CD. 2020. The development of Anthropocene biotas. Philos. Trans. R. Soc. B 375:20190113
    [Google Scholar]
  92. 92.
    Redford KH. 1992. The empty forest. Bioscience 42:412–22
    [Google Scholar]
  93. 93.
    Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1:e1400253
    [Google Scholar]
  94. 94.
    De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL. 2015. Estimating the normal background rate of species extinction. Conserv. Biol. 29:452–62
    [Google Scholar]
  95. 95.
    Proença V, Pereira H. 2013. Comparing extinction rates: past, present and future. Encycl. Biodivers. 2:167–76
    [Google Scholar]
  96. 96.
    Purvis A, Butchart SHM, Brondizio ES, Settele J, Díaz S. 2019. No inflation of threatened species. Science 365:767
    [Google Scholar]
  97. 97.
    Humphreys AM, Govaerts R, Ficinski SZ, Lughadha EN, Vorontsova MS. 2019. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3:1043–47
    [Google Scholar]
  98. 98.
    Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B et al. 2011. Has the Earth's sixth mass extinction already arrived?. Nature 471:51–57
    [Google Scholar]
  99. 99.
    Purvis A. 2019. A million threatened species? Thirteen questions and answers. IPBES Blog https://ipbes.net/news/million-threatened-species-thirteen-questions-answers
    [Google Scholar]
  100. 100.
    Rounsevell MDA, Harfoot M, Harrison PA, Newbold T, Gregory RD, Mace GM. 2020. A biodiversity target based on species extinctions. Science 368:1193–95
    [Google Scholar]
  101. 101.
    Pimm SL, Russell GJ, Gittleman JL, Brooks TM. 1995. The future of biodiversity. Science 269:347–50
    [Google Scholar]
  102. 102.
    Foote M, Raup DM. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121–40
    [Google Scholar]
  103. 103.
    Gonzalez A, Cardinale BJ, Allington GRH, Byrnes J, Arthur Endsley K et al. 2016. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97:1949–60
    [Google Scholar]
  104. 104.
    Vellend M, Dornelas M, Baeten L, Beausejour R, Brown CD et al. 2017. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 98:583–90
    [Google Scholar]
  105. 105.
    Cardinale BJ, Gonzalez A, Allington GRH, Loreau M. 2018. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219:175–83
    [Google Scholar]
  106. 106.
    De Palma A, Sanchez-Ortiz K, Martin PA, Chadwick A, Gilbert G et al. 2018. Challenges with inferring how land-use affects terrestrial biodiversity: study design, time, space and synthesis. Adv. Ecol. Res. 58:163–99
    [Google Scholar]
  107. 107.
    Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F et al. 2014. Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–99
    [Google Scholar]
  108. 108.
    Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520:45–50
    [Google Scholar]
  109. 109.
    Dornelas M, Gotelli NJ, Shimadzu H, Moyes F, Magurran AE, McGill BJ. 2019. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22:847–54
    [Google Scholar]
  110. 110.
    Almond REA, Grooten M, Petersen T, eds. 2020. Living Planet Report 2020: Bending the Curve of Biodiversity Loss. Gland, Switz: WWF
  111. 111.
    Ritchie H. 2020. Wild mammals have declined by 85% since the rise of humans, but there is a possible future where they flourish. Our World in Data Apr. 20. https://ourworldindata.org/wild-mammal-decline
    [Google Scholar]
  112. 112.
    Scholes RJ, Biggs R. 2005. A biodiversity intactness index. Nature 434:45–49
    [Google Scholar]
  113. 113.
    Hill SLL, Gonzalez R, Sanchez-Ortiz K, Caton E, Espinoza F et al. 2018. Worldwide impacts of past and projected future land-use change on local species richness and the Biodiversity Intactness Index. bioRxiv 311787. https://doi.org/10.1101/311787
    [Crossref]
  114. 114.
    Fritz SA, Bininda-Emonds ORP, Purvis A 2009. Geographical variation in predictors of mammalian extinction risk: Big is bad, but only in the tropics. Ecol. Lett. 12:538–49
    [Google Scholar]
  115. 115.
    Newbold T, Scharlemann JPW, Butchart SHM, Sekercioğlu CH, Alkemade R et al. 2013. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. B 280:20122131
    [Google Scholar]
  116. 116.
    Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG et al. 2014. Status and ecological effects of the world's largest carnivores. Science 343:1241484
    [Google Scholar]
  117. 117.
    Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT et al. 2015. Collapse of the world's largest herbivores. Sci. Adv. 1:e1400103
    [Google Scholar]
  118. 118.
    Carmona CP, Tamme R, Pärtel M, de Bello F, Brosse S et al. 2021. Erosion of global functional diversity across the tree of life. Sci. Adv. 7:eabf2675
    [Google Scholar]
  119. 119.
    Pacoureau N, Rigby CL, Kyne PM, Sherley RB, Winker H et al. 2021. Half a century of global decline in oceanic sharks and rays. Nature 589:567–71
    [Google Scholar]
  120. 120.
    Grime JP, Pierce S 2012. The Evolutionary Strategies That Shape Ecosystems Hoboken, NJ: Wiley
  121. 121.
    Bond WJ. 2005. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16:261–66
    [Google Scholar]
  122. 122.
    Doughty CE, Roman J, Faurby S, Wolf A, Haque A et al. 2016. Global nutrient transport in a world of giants. PNAS 113868–73
  123. 123.
    Fricke EC, Ordonez A, Rogers HS, Svenning J-C. 2022. The effects of defaunation on plants’ capacity to track climate change. Science 375:210–14
    [Google Scholar]
  124. 124.
    Brondízio ES, Díaz S, Settele J, Ngo HT, Guèze M et al. 2019. Chapter 1: Introduction to and rationale of the global assessment. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services ES Brondízio, S Díaz, J Settele, HT Ngo 1–48 Bonn, Ger: Secr. Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.
    [Google Scholar]
  125. 125.
    Jaureguiberry P, Titeaux N, Wiemers M, Bowler DE, Coscieme L et al. 2022. The direct drivers of global anthropogenic biodiversity loss. Sci. Adv. In press
    [Google Scholar]
  126. 126.
    IPCC (Intergov. Panel Climate Change) 2018. Summary for policymakers. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty V Masson-Delmotte, P Zhai, H-O Pörtner, D Roberts, J Skea et al. Geneva: IPCC32 pp.
    [Google Scholar]
  127. 127.
    IPCC (Intergov. Panel Climate Change) 2019. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems A Arneth, H Barbosa, T Benton, E Calco, S Connors et al. Geneva: IPCC31 pp.
  128. 128.
    Shin YJ, Arneth A, Chowdhury R, Midgley GF, Leadley P et al. 2019. Chapter 4: Plausible futures of nature, its contributions to people and their good quality of life. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services ES Brondízio, S Díaz, J Settele, HT Ngo 599–766 Bonn, Ger: Secr. Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.
    [Google Scholar]
  129. 129.
    Pörtner HO, Scholes RJ, Agard J, Archer E, Arneth A et al. 2021. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change Bonn, Ger: Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv./Intergov. Panel Climate Change
  130. 130.
    IPCC (Intergov. Panel Climate Change) 2022. Summary for policy makers. Climate Change 2022 - Impacts, Adaptation and Vulnerability H-O Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck et al. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  131. 131.
    O'Hara CC, Frazier M, Halpern BS. 2021. At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science 372:84–87
    [Google Scholar]
  132. 132.
    Harfoot MBJ, Johnston A, Balmford A, Burgess ND, Butchart SHM et al. 2021. Using the IUCN Red List to map threats to terrestrial vertebrates at global scale. Nat. Ecol. Evol. 5:1510–19
    [Google Scholar]
  133. 133.
    Aragão LEOC, Anderson LO, Fonseca MG, Rosan TM, Vedovato LB et al. 2018. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9:536
    [Google Scholar]
  134. 134.
    Berenguer E, Lennox GD, Ferreira J, Malhi Y, Aragão LEOC et al. 2021. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. PNAS 118e2019377118
  135. 135.
    PlasticsEurope 2021. Plastics - the Facts 2021. An analysis of European plastics production, demand and waste data Rep., PlasticsEurope, Brussels Belgium: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/
  136. 136.
    Worm B, Lotze HK, Jubinville I, Wilcox C, Jambeck J. 2017. Plastic as a persistent marine pollutant. Annu. Rev. Environ. Resour. 42:1–26
    [Google Scholar]
  137. 137.
    Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Science 3:e1700782
    [Google Scholar]
  138. 138.
    Kühn S, van Franeker JA. 2020. Quantitative overview of marine debris ingested by marine megafauna. Mar. Pollut. Bull. 151:110858
    [Google Scholar]
  139. 139.
    Allen S, Allen D, Baladima F, Phoenix V, Thomas J et al. 2021. Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory. Nat. Commun. 12:7242
    [Google Scholar]
  140. 140.
    Corinaldesi C, Canensi S, Dell'Anno A, Tangherlini M, Di Capua I et al. 2021. Multiple impacts of microplastics can threaten marine habitat-forming species. Commun. Biol. 4:431
    [Google Scholar]
  141. 141.
    Puskic PS, Lavers JL, Bond AL. 2020. A critical review of harm associated with plastic ingestion on vertebrates. Sci. Total Environ. 743:140666
    [Google Scholar]
  142. 142.
    Foley CJ, Feiner ZS, Malinich TD, Höök TO. 2018. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631–632:550–59
    [Google Scholar]
  143. 143.
    SAPEA (Sci. Advice Policy Eur. Acad.) 2019. A Scientific Perspective on Microplastics in Nature and Society. Berlin: SAPEA
  144. 144.
    Lim X. 2021. Microplastics are everywhere – but are they harmful?. Nature 593:22–25
    [Google Scholar]
  145. 145.
    Ditmer MA, Francis CD, Barber JR, Stoner DC, Seymoure BM et al. 2021. Assessing the vulnerabilities of vertebrate species to light and noise pollution: Expert surveys illuminate the impacts on specialist species. Integr. Comp. Biol. 61:1202–15
    [Google Scholar]
  146. 146.
    Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP et al. 2021. The soundscape of the Anthropocene ocean. Science 371:eaba4658
    [Google Scholar]
  147. 147.
    McMahon TA, Rohr JR, Bernal XE. 2017. Light and noise pollution interact to disrupt interspecific interactions. Ecology 98:1290–99
    [Google Scholar]
  148. 148.
    Leduc AOHC, Nunes JACC, de Araújo CB, Quadros ALS, Barros F et al. 2021. Land-based noise pollution impairs reef fish behavior: a case study with a Brazilian carnival. Biol. Conserv. 253:108910
    [Google Scholar]
  149. 149.
    McClure CJW, Ware HE, Carlisle J, Kaltenecker G, Barber JR. 2013. An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. Proc. R. Soc. B 280:20132290
    [Google Scholar]
  150. 150.
    Shannon G, McKenna MF, Angeloni LM, Crooks KR, Fristrup KM et al. 2016. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 91:982–1005
    [Google Scholar]
  151. 151.
    Kunc HP, Schmidt R. 2019. The effects of anthropogenic noise on animals: a meta-analysis. Biol. Lett. 15:20190649
    [Google Scholar]
  152. 152.
    Gómez C, Lawson J, Wright A, Buren A, Tollit D, Lesage V. 2016. A systematic review on the behavioural responses of wild marine mammals to noise: the disparity between science and policy. Can. J. Zool. 94:801–19
    [Google Scholar]
  153. 153.
    Nedelec SL, Radford AN, Pearl L, Nedelec B, McCormick MI et al. 2017. Motorboat noise impacts parental behaviour and offspring survival in a reef fish. Proc. R. Soc. B 284:20170143
    [Google Scholar]
  154. 154.
    Gaston KJ, Duffy JP, Bennie J 2015. Quantifying the erosion of natural darkness in the global protected area system. Conserv. Biol. 29:1132–41
    [Google Scholar]
  155. 155.
    Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD et al. 2016. The new world atlas of artificial night sky brightness. Sci. Adv. 2e1600377
  156. 156.
    Gaston KJ, Sánchez de Miguel A. 2022. Environmental impacts of artificial light at night. Annu. Rev. Environ. Resour. 47:373–98
    [Google Scholar]
  157. 157.
    Gaston KJ, Holt LA. 2018. Nature, extent and ecological implications of night-time light from road vehicles. J. Appl. Ecol. 55:2296–307
    [Google Scholar]
  158. 158.
    McLaren JD, Buler JJ, Schreckengost T, Smolinsky JA, Boone M et al. 2018. Artificial light at night confounds broad-scale habitat use by migrating birds. Ecol. Lett. 21:356–64
    [Google Scholar]
  159. 159.
    Boyes DH, Evans DM, Fox R, Parsons MS, Pocock MJO. 2021. Street lighting has detrimental impacts on local insect populations. Sci. Adv. 7:eabi8322
    [Google Scholar]
  160. 160.
    Grubisic M, van Grunsven RHA, Kyba CCM, Manfrin A, Hölker F. 2018. Insect declines and agroecosystems: Does light pollution matter?. Ann. Appl. Biol. 173:180–89
    [Google Scholar]
  161. 161.
    Cabrera-Cruz SA, Smolinsky JA, Buler JJ. 2018. Light pollution is greatest within migration passage areas for nocturnally-migrating birds around the world. Sci. Rep. 8:3261
    [Google Scholar]
  162. 162.
    Rodríguez A, Holmes ND, Ryan PG, Wilson K-J, Faulquier L et al. 2017. Seabird mortality induced by land-based artificial lights. Conserv. Biol. 31:986–1001
    [Google Scholar]
  163. 163.
    Berge J, Geoffroy M, Daase M, Cottier F, Priou P et al. 2020. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200m depth. Commun. Biol. 3:102
    [Google Scholar]
  164. 164.
    Herring PJ, Gaten E, Shelton PMJ. 1999. Are vent shrimps blinded by science?. Nature 398:116
    [Google Scholar]
  165. 165.
    Gaston KJ, Ackermann S, Bennie J, Cox DTC, Phillips BB et al. 2021. Pervasiveness of biological impacts of artificial light at night. Integr. Comp. Biol. 61:1098–110
    [Google Scholar]
  166. 166.
    Francis CD, Kleist NJ, Ortega CP, Cruz A 2012. Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal. Proc. R. Soc. B 279:2727–35
    [Google Scholar]
  167. 167.
    Hein JR, Mizell K, Koschinsky A, Conrad TA. 2013. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol. Rev. 51:1–14
    [Google Scholar]
  168. 168.
    Miller KA, Thompson KF, Johnston P, Santillo D. 2018. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps. Front. Mar. Sci. 4: https://doi.org/10.3389/fmars.2017.00418
    [Crossref] [Google Scholar]
  169. 169.
    Miller KA, Brigden K, Santillo D, Currie D, Johnston P, Thompson KF. 2021. Challenging the need for deep seabed mining from the perspective of metal demand, biodiversity, ecosystems services, and benefit sharing. Front. Mar. Sci. 8:706061
    [Google Scholar]
  170. 170.
    Ramírez-Llodra E, Brandt A, Danovaro R, De Mol B, Escobar E et al. 2010. Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences 7:2851–99
    [Google Scholar]
  171. 171.
    Vanreusel A, Hilario A, Ribeiro PA, Menot L, Arbizu PM. 2016. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6:26808
    [Google Scholar]
  172. 172.
    Rowden AA, Schlacher TA, Williams A, Clark MR, Stewart R et al. 2010. A test of the seamount oasis hypothesis: Seamounts support higher epibenthic megafaunal biomass than adjacent slopes. Mar. Ecol. 31:95–106
    [Google Scholar]
  173. 173.
    Garrigue C, Clapham PJ, Geyer Y, Kennedy AS, Zerbini AN. 2015. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales. R. Soc. Open Sci. 2:150489
    [Google Scholar]
  174. 174.
    Morato T, Miller PI, Dunn DC, Nicol SJ, Bowcott J, Halpin PN. 2016. A perspective on the importance of oceanic fronts in promoting aggregation of visitors to seamounts. Fish Fish. 17:1227–33
    [Google Scholar]
  175. 175.
    Thurber AR, Jones WJ, Schnabel K. 2011. Dancing for food in the deep sea: bacterial farming by a new species of yeti crab. PLOS ONE 6:e26243
    [Google Scholar]
  176. 176.
    Chen C, Linse K, Copley JT, Rogers AD. 2015. The ‘scaly-foot gastropod’: a new genus and species of hydrothermal vent-endemic gastropod (Neomphalina: Peltospiridae) from the Indian Ocean. J. Molluscan Stud. 81:322–34
    [Google Scholar]
  177. 177.
    Lane N. 2010. Life Ascending: The Ten Great Inventions of Evolution London: Profile Books353 pp.
  178. 178.
    Carreiro-Silva M, Andrews AH, Braga-Henriques A, de Matos V, Porteiro FM, Santos RS. 2013. Variability in growth rates of long-lived black coral Leiopathes sp. from the Azores. Mar. Ecol. Progr. 473:189–99
    [Google Scholar]
  179. 179.
    Hallgren A, Hansson A 2021. Conflicting narratives of deep sea mining. Sustainability 13:5261
    [Google Scholar]
  180. 180.
    Liu J. 2021. Consumption patterns and biodiversity. The Royal Society https://royalsociety.org/topics-policy/projects/biodiversity/consumption-patterns-and-biodiversity/
    [Google Scholar]
  181. 181.
    World Bank 2021. Exports of goods and services (constant 2015 US$) [chart]. Washington, DC: World Bank https://data.worldbank.org/indicator/NE.EXP.GNFS.KD
  182. 182.
    Ritchie H, Roser M. 2017. Meat and dairy production. Our World in Data https://ourworldindata.org/meat-production
    [Google Scholar]
  183. 183.
    Naylor RL, Kishore A, Sumaila UR, Issifu I, Hunter BP et al. 2021. Blue food demand across geographic and temporal scales. Nat. Commun. 12:5413
    [Google Scholar]
  184. 184.
    Lenzen M, Sun Y-Y, Faturay F, Ting Y-P, Geschke A, Malik A 2018. The carbon footprint of global tourism. Nat. Climate Change 8:522–28
    [Google Scholar]
  185. 185.
    Balvanera P, Pfaff A, Viña A, Frapolli EG, Hussain SA et al. 2019. Chapter 2.1: Status and trends - drivers of change. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services ES Brondizio, S Díaz, J Settele, HT Ngo 49–200 Bonn, Ger.: Secr. Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.
    [Google Scholar]
  186. 186.
    Ceddia MG. 2020. The super-rich and cropland expansion via direct investments in agriculture. Nat. Sustain. 3:312–18
    [Google Scholar]
  187. 187.
    WID (World Inequal. Database) 2022. The World Inequality Report 2022 Paris: WID https://wir2022.wid.world/
  188. 188.
    Gradín C, Murray L, Finn T. 2021. Inequality in the Developing World Oxford, UK: Oxford Univ. Press
  189. 189.
    Yang H, Ligmann-Zielinska A, Dou Y, Chung MG, Zhang J, Liu J. 2021. Complex effects of telecouplings on forest dynamics: an agent-based modeling approach. Earth Interact. 26:15–27
    [Google Scholar]
  190. 190.
    OECD (Organ. Econ. Coop. Dev.) 2020. A Comprehensive Overview of Global Biodiversity Finance Paris: OECD
  191. 191.
    Liu J, Hull V, Batistella M, DeFries R, Dietz T et al. 2013. Framing sustainability in a telecoupled world. Ecol. Soc. 18:26
    [Google Scholar]
  192. 192.
    Garrison VH, Shinn EA, Foreman WT, Griffin DW, Holmes CW et al. 2003. African and Asian dust: from desert soils to coral reefs. Bioscience 53:469–80
    [Google Scholar]
  193. 193.
    Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A. 2012. International trade drives biodiversity threats in developing nations. Nature 486:109–12
    [Google Scholar]
  194. 194.
    Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S et al. 2015. The material footprint of nations. PNAS 112:6271–76
    [Google Scholar]
  195. 195.
    Galaz V, Crona B, Dauriach A, Jouffray J-B, Österblom H, Fichtner J. 2018. Tax havens and global environmental degradation. Nat. Ecol. Evol. 2:1352–57
    [Google Scholar]
  196. 196.
    Wong Y, Rosindell J. 2021. Dynamic visualisation of million-tip trees: the OneZoom project. Methods Ecol. Evol. 13:303–13
    [Google Scholar]
/content/journals/10.1146/annurev-environ-120120-054300
Loading
/content/journals/10.1146/annurev-environ-120120-054300
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error