1932

Abstract

Fire is an integral part of the Earth System and humans have skillfully used fire for millennia. Yet human activities are scaling up and reinforcing each other in ways that are reshaping fire patterns across the planet. We review these changes using the concept of the fire regime, which describes the timing, location, and type of fires. We then explore the consequences of fire regime changes on the biological, chemical, and physical processes that sustain life on Earth. Anthropogenic drivers such as climate change, land use, and invasive species are shifting fire regimes and creating environments unlike any humanity has previously experienced. Although human exposure to extreme wildfire events is increasing, we highlight how knowledge of fire regimes can be mobilized to achieve a wide range of goals, from reducing carbon emissions to promoting biodiversity and human well-being. A fire regime perspective is critical to navigating toward a sustainable future—a better Anthropocene.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-120220-055357
2023-11-13
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-120220-055357.html?itemId=/content/journals/10.1146/annurev-environ-120220-055357&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    McLauchlan KK, Higuera PE, Miesel J, Rogers BM, Schweitzer J et al. 2020. Fire as a fundamental ecological process: research advances and frontiers. J. Ecol. 108:2047–69
    [Google Scholar]
  2. 2.
    Hoffman KM, Davis EL, Wickham SB, Schang K, Johnson A. 2021. Conservation of Earth's biodiversity is embedded in Indigenous fire stewardship. PNAS 118:e2105073118
    [Google Scholar]
  3. 3.
    Archibald S, Hempson GP, Lehmann C. 2019. A unified framework for plant life-history strategies shaped by fire and herbivory. New Phytol 224:1490–503
    [Google Scholar]
  4. 4.
    Kelly LT, Giljohann KM, Duane A, Aquilué N, Archibald S et al. 2020. Fire and biodiversity in the Anthropocene. Science 370:eabb0355
    [Google Scholar]
  5. 5.
    Bowman DMJS, Kolden CA, Abatzoglou JT, Johnston FH, van der Werf GR, Flannigan M. 2020. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1:500–15
    [Google Scholar]
  6. 6.
    Xu R, Yu P, Abramson MJ, Johnston FH, Samet JM et al. 2020. Wildfires, global climate change, and human health. N. Engl. J. Med. 383:2173–81
    [Google Scholar]
  7. 7.
    MacDonald K, Scherjon F, van Veen E, Vaesen K, Roebroeks W. 2021. Middle Pleistocene fire use: the first signal of widespread cultural diffusion in human evolution. PNAS 118:e2101108118
    [Google Scholar]
  8. 8.
    McCarty JL, Smith TEL, Turetsky MR. 2020. Arctic fires re-emerging. Nat. Geosci. 13:658–60
    [Google Scholar]
  9. 9.
    Scholten RC, Jandt R, Miller EA, Rogers BM, Veraverbeke S. 2021. Overwintering fires in boreal forests. Nature 593:399–404
    [Google Scholar]
  10. 10.
    Boer MM, Resco de Dios V, Bradstock RA 2020. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10:171–72
    [Google Scholar]
  11. 11.
    Higuera PE, Abatzoglou JT. 2021. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. 27:1–2
    [Google Scholar]
  12. 12.
    Higuera PE, Shuman BN, Wolf KD. 2021. Rocky Mountain subalpine forests now burning more than any time in recent millennia. PNAS 118:e2103135118
    [Google Scholar]
  13. 13.
    Garcia LC, Szabo JK, de Oliveira Roque F, de Matos Martins Pereira A, Nunes da Cunha C et al. 2021. Record-breaking wildfires in the world's largest continuous tropical wetland: Integrative fire management is urgently needed for both biodiversity and humans. J. Environ. Manag. 293:112870
    [Google Scholar]
  14. 14.
    Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR et al. 2017. A human-driven decline in global burned area. Science 356:1356–62
    [Google Scholar]
  15. 15.
    Probert JR, Parr CL, Holdo RM, Anderson TM, Archibald S et al. 2019. Anthropogenic modifications to fire regimes in the wider Serengeti-Mara ecosystem. Glob. Change Biol. 25:3406–23
    [Google Scholar]
  16. 16.
    Rosan TM, Aragão LEOC, Oliveras I, Phillips OL. 2019. Extensive 21st-century woody encroachment in South America's savanna. Geophys. Res. Lett. 6:6594–603
    [Google Scholar]
  17. 17.
    Steffen W, Richardson K, Rockström J, Schellnhuber HJ, Dube OP et al. 2020. The emergence and evolution of Earth System Science. Nat. Rev. Earth Environ. 1:54–63
    [Google Scholar]
  18. 18.
    Malhi Y. 2017. The concept of the Anthropocene. Annu. Rev. Environ. Resour. 42:77–104
    [Google Scholar]
  19. 19.
    Ellis E, Maslin M, Boivin N, Bauer A. 2016. Involve social scientists in defining the Anthropocene. Nature 7632:192–93
    [Google Scholar]
  20. 20.
    Gibbard P, Walker M, Bauer A, Edgeworth M, Edwards L et al. 2022. The Anthropocene as an event, not an epoch. J. Quat. Sci. 37:395–99
    [Google Scholar]
  21. 21.
    Krebs P, Pezzatti GB, Mazzoleni S, Talbot LM, Conedera M. 2010. Fire regime: history and definition of a key concept in disturbance ecology. Theory Biosci 129:53–69
    [Google Scholar]
  22. 22.
    Gill AM. 1975. Fire and the Australian flora: a review. Aust. For. 38:4–25
    [Google Scholar]
  23. 23.
    Bowman DMJS, Perry GLW, Higgins SI, Johnson CN, Fuhlendorf SD, Murphy BP. 2016. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philos. Trans. R. Soc. B 371:20150169
    [Google Scholar]
  24. 24.
    Pausas JG, Ribeiro E. 2013. The global fire-productivity relationship. Glob. Ecol. Biogeogr. 22:728–36
    [Google Scholar]
  25. 25.
    Simpson KJ, Archibald S, Osborne CP. 2022. Savanna fire regimes depend on grass trait diversity. Trends Ecol. Evol. 37:749–58
    [Google Scholar]
  26. 26.
    Martin DA. 2019. Linking fire and the United Nations Sustainable Development Goals. Sci. Total Environ. 662:547–58
    [Google Scholar]
  27. 27.
    Smith C, Perkins O, Mistry J. 2022. Global decline in subsistence-oriented and smallholder fire use. Nat. Sustain. 5:542–51
    [Google Scholar]
  28. 28.
    Ward AKI, Friesem DE. 2021. Many words for fire: an etymological and micromorphological consideration of combustion features in Indigenous archaeological sites of Western Australia. J. R. Soc. West. Aust. 104:11–24
    [Google Scholar]
  29. 29.
    Linley GD, Jolly CJ, Doherty TS, Geary WL, Armenteras D et al. 2022. What do you mean, ‘megafire’?. Glob. Ecol. Biogeogr. 31:1906–22
    [Google Scholar]
  30. 30.
    Archibald S, Lehmann CER, Gómez-Dans JL, Bradstock RA. 2013. Defining pyromes and global syndromes of fire regimes. PNAS 110:6442–47
    [Google Scholar]
  31. 31.
    Chuvieco E, Pettinari ML, Koutsias N, Forkel M, Hantson S, Turco M. 2021. Human and climate drivers of global biomass burning variability. Sci. Total Environ. 779:146361
    [Google Scholar]
  32. 32.
    Duane A, Castellnou M, Brotons L. 2021. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165:43
    [Google Scholar]
  33. 33.
    Jones MW, Abatzoglou JT, Veraverbeke S, Andela N, Lasslop G et al. 2022. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60:e2020RG000726
    [Google Scholar]
  34. 34.
    Marlon JR. 2020. What the past can say about the present and future of fire. Quat. Res. 96:66–87
    [Google Scholar]
  35. 35.
    Rolstad J, Blanck YL, Storaunet KO. 2017. Fire history in a western Fennoscandian boreal forest as influenced by human land use and climate. Ecol. Monogr. 87:219–45
    [Google Scholar]
  36. 36.
    Knight CA, Anderson L, Bunting MJ, Champagne M, Clayburn RM et al. 2022. Land management explains major trends in forest structure and composition over the last millennium in California's Klamath Mountains. PNAS 119:e2116264119
    [Google Scholar]
  37. 37.
    Snitker G, Roos CI, Sullivan AP, Maezumi SY, Bird DW et al. 2022. A collaborative agenda for archaeology and fire science. Nat. Ecol. Evol. 6:835–39
    [Google Scholar]
  38. 38.
    Bradstock RA. 2010. A biogeographic model of fire regimes in Australia: current and future implications. Glob. Ecol. Biogeogr. 19:145–58
    [Google Scholar]
  39. 39.
    Moritz MA, Batllori E, Bradstock RA, Gill AM, Handmer J et al. 2014. Learning to coexist with wildfire. Nature 515:58–66
    [Google Scholar]
  40. 40.
    Scott AC, Glasspool IJ. 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. PNAS 103:10861–65
    [Google Scholar]
  41. 41.
    Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM et al. 2009. Fire in the Earth system. Science 324:481–84
    [Google Scholar]
  42. 42.
    Clarkson C, Jacobs Z, Marwick B, Fullagar R, Wallis L et al. 2017. Human occupation of northern Australia by 65,000 years ago. Nature 547:306–10
    [Google Scholar]
  43. 43.
    McKemey M, Ens E, Rangers YM, Costello O, Reid N. 2020. Indigenous knowledge and seasonal calendar inform adaptive savanna burning in northern Australia. Sustainability 12:995
    [Google Scholar]
  44. 44.
    Roos CI, Zedeño MN, Hollenback KL, Erlick MMH. 2018. Indigenous impacts on North American Great Plains fire regimes of the past millennium. PNAS 115:8143–48
    [Google Scholar]
  45. 45.
    Davies B, Power MJ, Braun DR, Douglass MJ, Mosher SG et al. 2022. Fire and human management of late Holocene ecosystems in southern Africa. Quat. Sci. Rev. 289:107600
    [Google Scholar]
  46. 46.
    Pyne S. 2018. Big fire; or, Introducing the Pyrocene. Fire 1:1
    [Google Scholar]
  47. 47.
    Chuvieco E, Aguado I, Salas J, García M, Yebra M, Oliva P. 2020. Satellite remote sensing contributions to wildland fire science and management. Curr. For. Rep. 6:81–96
    [Google Scholar]
  48. 48.
    Jain P, Castellanos-Acuna D, Coogan SC, Abatzoglou JT, Flannigan M. 2022. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12:63–70
    [Google Scholar]
  49. 49.
    Ellis TM, Bowman DMJS, Jain P, Flannigan MD, Williamson GJ. 2022. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28:1544–59
    [Google Scholar]
  50. 50.
    Balch JK, Abatzoglou JT, Joseph MB, Koontz MJ, Mahood AL et al. 2022. Warming weakens the night-time barrier to global fire. Nature 602:442–48
    [Google Scholar]
  51. 51.
    Canadell JG, Meyer CP(M), Cook GD, Dowdy A, Briggs PR et al. 2021. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12:6921
    [Google Scholar]
  52. 52.
    Freitag M, Kamp J, Dara A, Kuemmerle T, Sidorova TV et al. 2021. Post-Soviet shifts in grazing and fire regimes changed the functional plant community composition on the Eurasian steppe. Glob. Change Biol. 27:388–401
    [Google Scholar]
  53. 53.
    Alvarado ST, Silva TSF, Archibald S. 2018. Management impacts on fire occurrence: a comparison of fire regimes of African and South American tropical savannas in different protected areas. J. Environ. Manag. 218:79–87
    [Google Scholar]
  54. 54.
    Edwards A, Archer R, de Bruyn P, Evans J, Lewis B et al. 2021. Transforming fire management in northern Australia through successful implementation of savanna burning emissions reductions projects. J. Environ. Manag. 290:112568
    [Google Scholar]
  55. 55.
    Oliveira MR, Ferreira BHS, Souza EB, Lopes AA, Bolzan FP et al. 2022. Indigenous brigades change the spatial patterns of wildfires, and the influence of climate on fire regimes. J. Appl. Ecol. 59:1279–90
    [Google Scholar]
  56. 56.
    Iglesias V, Balch JK, Travis WR. 2022. U.S. fires became larger, more frequent, and more widespread in the 2000s. Sci. Adv. 8:eabc0020
    [Google Scholar]
  57. 57.
    Baron JN, Gergela SE, Hessburg PF, Daniels LD. 2022. A century of transformation: fire regime transitions from 1919 to 2019 in southeastern British Columbia, Canada. Landsc. Ecol. 37:2707–27
    [Google Scholar]
  58. 58.
    Johansson M, Senay S, Creathorn E, Kassa H, Hylander K. 2019. Change in heathland fire sizes inside versus outside the Bale Mountains National Park, Ethiopia, over 50 years of fire-exclusion policy: lessons for REDD+. Ecol. Soc. 24:26
    [Google Scholar]
  59. 59.
    Sloan S, Locatelli B, Wooster MJ, Gaveau DLA. 2017. Fire activity in Borneo driven by industrial land conversion and drought during El Niño periods, 1982–2010. Glob. Environ. Change 47:95–109
    [Google Scholar]
  60. 60.
    Zubkova M, Giglio L, Humber ML, Hall JV, Ellicott E. 2021. Conflict and climate: drivers of fire activity in Syria in the twenty-first century. Earth Interact 25:119–35
    [Google Scholar]
  61. 61.
    Fletcher MS, Hall T, Alexandra AN. 2020. The loss of an indigenous constructed landscape following British invasion of Australia: an insight into the deep human imprint on the Australian landscape. Ambio 50:138–49
    [Google Scholar]
  62. 62.
    Ryzhkova N, Kryshen A, Niklasson M, Pinto G, Aleinikov A et al. 2022. Climate drove the fire cycle and humans influenced fire occurrence in the East European boreal forest. Ecol. Monogr. 92:e1530
    [Google Scholar]
  63. 63.
    Pausas JG, Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim. Change 110:215–26
    [Google Scholar]
  64. 64.
    Poulter B, Freeborn PH, Jolly WM, Varner JM. 2021. COVID-19 lockdowns drive decline in active fires in southeastern United States. PNAS 118:e2105666118
    [Google Scholar]
  65. 65.
    Armenteras D, Schneider L, Dávalos LM. 2019. Fires in protected areas reveal unforeseen costs of Colombian peace. Nat. Ecol. Evol. 3:20–23
    [Google Scholar]
  66. 66.
    Bowman DMJS, Kolden CA, Mun AA, Salinas F, Cha RO et al. 2019. Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires. . Ambio 48:350–62
    [Google Scholar]
  67. 67.
    UNEP (U. N. Environ. Progr.) 2022. Spreading like wildfire: the rising threat of extraordinary landscape fires. Rep. UNEP Nairobi:
  68. 68.
    Turco M, Llasat MC, von Hardenberg J, Provenzale A. 2014. Climate change impacts on wildfires in a Mediterranean environment. Clim. Change 125:369–80
    [Google Scholar]
  69. 69.
    Li S, Sparrow SN, Otto FEL, Rifai SW, Oliveras I et al. 2021. Anthropogenic climate change contribution to wildfire-prone weather conditions in the Cerrado and Arc of deforestation. Environ. Res. Lett. 16:094051
    [Google Scholar]
  70. 70.
    Abatzoglou JT, Parks SA. 2016. Impact of anthropogenic climate change on wildfire across western US forests. PNAS 113:11770–75
    [Google Scholar]
  71. 71.
    Pausas JG, Keeley JE. 2021. Wildfires and global change. Front. Ecol. Environ. 19:387–95
    [Google Scholar]
  72. 72.
    Barlow J, Berenguer E, Carmenta R, França F. 2020. Clarifying Amazonia's burning crisis. Glob. Change Biol. 26:319–21
    [Google Scholar]
  73. 73.
    van Wees D, van der Werf GR, Randerson JT, Andela N, Chen Y, Morton DC. 2021. The role of fire in global forest loss dynamics. Glob. Change Biol. 27:2377–91
    [Google Scholar]
  74. 74.
    Brando PM, Soares-Filho B, Rodrigues L, Assunção A, Morton D et al. 2020. The gathering firestorm in southern Amazonia. Sci. Adv. 6:eaay1632
    [Google Scholar]
  75. 75.
    Driscoll DA, Armenteras D, Bennett AF, Brotons L, Clarke MF et al. 2021. How fire interacts with habitat loss and fragmentation. Biol. Rev. 96:976–98
    [Google Scholar]
  76. 76.
    Slingsby JA, Moncrieff GR, Rogers AJ, February EC 2020. Altered ignition catchments threaten a hyperdiverse fire-dependent ecosystem. Glob. Change Biol. 26:616–28
    [Google Scholar]
  77. 77.
    Syphard AD, Keeley JE, Pfaff AH, Ferschweiler K. 2017. Human presence diminishes the importance of climate in driving fire activity across the United States. PNAS 114:13750–55
    [Google Scholar]
  78. 78.
    Balch JK, Bradley BA, Abatzoglou JT, Chelsea Nagy R, Fusco EJ, Mahood AL 2017. Human-started wildfires expand the fire niche across the United States. . PNAS 114:2946–51
    [Google Scholar]
  79. 79.
    Roos CI, Swetnam TW, Ferguson TJ, Liebmann MJ, Loehman RA et al. 2021. Native American fire management at an ancient wildland–urban interface in the Southwest United States. PNAS 118:e2018733118
    [Google Scholar]
  80. 80.
    Fusco EJ, Balch JK, Mahood AL, Nagy RC, Syphard AD, Bradley BA. 2022. The human-grass-fire cycle: how people and invasives co-occur to drive fire regimes. Front. Ecol. Environ. 20:117–26
    [Google Scholar]
  81. 81.
    Johnson CN, Prior LD, Archibald S, Poulos HM, Barton AM et al. 2018. Can trophic rewilding reduce the impact of fire in a more flammable world?. Philos. Trans. R. Soc. B 373:20170443
    [Google Scholar]
  82. 82.
    Hayward MW, Ward-Fear G, L'Hotellier F, Herman K, Kabat AP, Gibbons JP 2016. Could biodiversity loss have increased Australia's bushfire threat?. Anim. Conserv. 19:490–97
    [Google Scholar]
  83. 83.
    Rouet-Leduc J, Pe'er G, Moreira F, Bonn A, Helmer W et al. 2021. Effects of large herbivores on fire regimes and wildfire mitigation. J. Appl. Ecol. 58:2690–702
    [Google Scholar]
  84. 84.
    Feng X, Merow C, Liu Z, Park DS, Roehrdanz PR et al. 2021. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597:516–21
    [Google Scholar]
  85. 85.
    Mariani M, Connor SE, Theuerkauf M, Herbert A, Kuneš P et al. 2022. Disruption of cultural burning promotes shrub encroachment and unprecedented wildfires. Front. Ecol. Environ. 20:292–300
    [Google Scholar]
  86. 86.
    Mistry J, Bilbao BA, Berardi A. 2016. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America. Philos. Trans. R. Soc. B 371:20150174
    [Google Scholar]
  87. 87.
    Peterson DA, Fromm MD, McRae RHD, Campbell JR, Hyer EJ et al. 2021. Australia's Black Summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events. npj Clim. Atmos. Sci. 4:38
    [Google Scholar]
  88. 88.
    Puig-Gironès R, Brotons L, Pons P. 2022. Aridity, fire severity and proximity of populations affect the temporal responses of open-habitat birds to wildfires. Biol. Conserv. 272:109661
    [Google Scholar]
  89. 89.
    Pellegrini AFA, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP et al. 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553:194–98
    [Google Scholar]
  90. 90.
    Stephens SL, Thompson S, Boisramé G, Collins BM, Ponisio LC et al. 2021. Fire, water, and biodiversity in the Sierra Nevada: a possible triple win. Environ. Res. Commun. 3:081004
    [Google Scholar]
  91. 91.
    van Wees D, van der Werf GR, Randerson JT, Rogers BM, Chen Y et al. 2022. Global biomass burning fuel consumption and emissions at 500-m spatial resolution based on the Global Fire Emissions Database (GFED). Geosci. Model. Dev. Discuss. 15:8411–37
    [Google Scholar]
  92. 92.
    Walker XJ, Baltzer JL, Cumming SG, Day NJ, Ebert C et al. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572:520–23
    [Google Scholar]
  93. 93.
    Abram NJ, Henley BJ, Gupta AS, Lippmann TJR, Clarke H et al. 2021. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2:8
    [Google Scholar]
  94. 94.
    Hirsch E, Koren I. 2021. Record-breaking aerosol levels explained by smoke injection into the stratosphere. Science 371:1269–74
    [Google Scholar]
  95. 95.
    Shiraishi T, Hirata R. 2021. Estimation of carbon dioxide emissions from the megafires of Australia in 2019–2020. Sci. Rep. 11:8267
    [Google Scholar]
  96. 96.
    Kablick GP III, Allen DR, Fromm MD, Nedoluha GE 2020. Australian PyroCb smoke generates synoptic-scale stratospheric anticyclones. Geophys. Res. Lett. 47:e2020GL088101
    [Google Scholar]
  97. 97.
    di Virgilio G, Evans JP, Blake SAP, Armstrong M, Dowdy AJ et al. 2019. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46:8517–26
    [Google Scholar]
  98. 98.
    Johnston FH, Borchers-Arriagada N, Morgan GG, Jalaludin B, Palmer AJ et al. 2021. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 4:42–47
    [Google Scholar]
  99. 99.
    Santos JL, Hradsky BA, Keith DA, Rowe KC, Senior KL et al. 2022. Beyond inappropriate fire regimes: a synthesis of fire-driven declines of threatened mammals in Australia. Conserv. Lett. 15:e12905
    [Google Scholar]
  100. 100.
    Fairman TA, Nitschke CR, Bennett LT. 2016. Too much, too soon? A review of the impacts of increasing wildfire frequency on tree demography and structure in temperate forests. Int. J. Wildland Fire 25:831–48
    [Google Scholar]
  101. 101.
    Lindenmayer DB, Bowd EJ, Gibbons P. 2022. Forest restoration in a time of fire: perspectives from tall, wet eucalypt forests subject to stand-replacing wildfires. Philos. Trans. R. Soc. B 378:20210082
    [Google Scholar]
  102. 102.
    Turner MG, Braziunas KH, Hansen WD, Harvey BJ. 2019. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. PNAS 166:11319–28
    [Google Scholar]
  103. 103.
    Baltzer JL, Day NJ, Walker XJ, Greene D, Mack MC et al. 2021. Increasing fire and the decline of fire adapted black spruce in the boreal forest. PNAS 118:e2024872118
    [Google Scholar]
  104. 104.
    Syphard AD, Brennan TJ, Rustigian-Romsos H, Keeley JE. 2022. Fire-driven vegetation type conversion in Southern California. Ecol. Appl. 32:e2626
    [Google Scholar]
  105. 105.
    Reich PB, Peterson DW, Wedin DA, Wrage K. 2001. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82:1703–19
    [Google Scholar]
  106. 106.
    Pressler Y, Moore JC, Cotrufo MF. 2019. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128:309–27
    [Google Scholar]
  107. 107.
    Lopes AR, Girona-García A, Corticeiro S, Martins R, Keizer JJ, Vieira DCS. 2021. What is wrong with post-fire soil erosion modelling? A meta-analysis on current approaches, research gaps, and future directions. Earth Surf. Process Landf 46:205–19
    [Google Scholar]
  108. 108.
    Debano LF. 2000. The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol. 231:195–206
    [Google Scholar]
  109. 109.
    Roces-Díaz JV, Santín C, Martínez-Vilalta J, Doerr SH. 2022. A global synthesis of fire effects on ecosystem services of forests and woodlands. Front. Ecol. Environ. 20:170–78
    [Google Scholar]
  110. 110.
    Tedim F, Leone V, Amraoui M, Bouillon C, Coughlan MR et al. 2018. Defining extreme wildfire events: difficulties, challenges, and impacts. Fire 1:9
    [Google Scholar]
  111. 111.
    Kean JW, Staley DM. 2021. Forecasting the frequency and magnitude of postfire debris flows across southern California. Earth's Future 9:e2020EF001735
    [Google Scholar]
  112. 112.
    Robinne FN, Hallema DW, Bladon KD, Flannigan MD, Boisramé G et al. 2021. Scientists’ warning on extreme wildfire risks to water supply. Hydrol. Process. 35:e14086
    [Google Scholar]
  113. 113.
    Alizadeh MR, Abatzoglou JT, Luce CH, Adamowski JF, Farid A, Sadegh M. 2021. Warming enabled upslope advance in western US forest fires. PNAS 118:e2009717118
    [Google Scholar]
  114. 114.
    Kampf SK, Mcgrath D, Sears MG, Fassnacht SR, Kiewiet L, Hammond JC. 2022. Increasing wildfire impacts on snowpack in the western U.S.. PNAS 119:e2200333119
    [Google Scholar]
  115. 115.
    Williams AP, Livneh B, Mckinnon KA, Hansen WD, Mankin JS et al. 2022. Growing impact of wildfire on western US water supply. PNAS 119:e2114069119
    [Google Scholar]
  116. 116.
    Tang W, Llort J, Weis J, Perron MMG, Basart S et al. 2021. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597:370–75
    [Google Scholar]
  117. 117.
    Zou Y, Rasch PJ, Wang H, Xie Z, Zhang R. 2021. Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic. Nat. Commun. 12:6048
    [Google Scholar]
  118. 118.
    Jones MW, Coppola AI, Santín C, Dittmar T, Jaffé R et al. 2020. Fires prime terrestrial organic carbon for riverine export to the global oceans. Nat. Commun. 11:2791
    [Google Scholar]
  119. 119.
    Bennett EM, Solan M, Biggs R, McPhearson T, Norström AV et al. 2016. Bright spots: seeds of a good Anthropocene. Front. Ecol. Environ. 14:441–48
    [Google Scholar]
  120. 120.
    Boivin N, Crowther A. 2021. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5:273–84
    [Google Scholar]
  121. 121.
    Daeli W, Carmenta R, Monroe MC, Adams AE, Monroe MC, Adams AE. 2021. Where policy and culture collide: perceptions and responses of Swidden farmers to the burn ban in West Kalimantan, Indonesia. Hum. Ecol. 49:159–70
    [Google Scholar]
  122. 122.
    Long JW, Lake FK, Goode RW. 2021. The importance of Indigenous cultural burning in forested regions of the Pacific West, USA. For. Ecol. Manag. 500:119597
    [Google Scholar]
  123. 123.
    Bliege Bird R, Bird DW 2021. Climate, landscape diversity, and food sovereignty in arid Australia: the firestick farming hypothesis. Am. J. Hum. Biol. 33:e23527
    [Google Scholar]
  124. 124.
    Regos A, Hermoso V, Amen MD, Guisan A, Brotons L. 2018. Trade-offs and synergies between bird conservation and wildfire suppression in the face of global change. J. Appl. Ecol. 55:2181–92
    [Google Scholar]
  125. 125.
    Smith AMS, Kolden CA, Paveglio TB, Cochrane MA, Bowman DMJS et al. 2016. The science of firescapes: achieving fire-resilient communities. Bioscience 66:130–46
    [Google Scholar]
  126. 126.
    Masri S, Scaduto E, Jin Y, Wu J. 2021. Disproportionate impacts of wildfires among elderly and low-income communities in California from 2000–2020. . Int. J. Environ. Res. Public Health 18:3921
    [Google Scholar]
  127. 127.
    Cui X, Alam MA, Perry GL, Paterson AM, Wyse SV, Curran TJ. 2019. Green firebreaks as a management tool for wildfires: lessons from China. J. Environ. Manag. 233:329–36
    [Google Scholar]
  128. 128.
    Pellegrini AFA, Harden J, Georgiou K, Hemes KS, Malhotra A et al. 2022. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 15:5–13
    [Google Scholar]
  129. 129.
    Kelly LT, Brotons L. 2017. Using fire to promote biodiversity. Science 355:1264–65
    [Google Scholar]
  130. 130.
    Tebbutt CA, Devisscher T, Obando-Cabrera L, Gutiérrez García GA, Meza Elizalde MC et al. 2021. Participatory mapping reveals socioeconomic drivers of forest fires in protected areas of the post-conflict Colombian Amazon. . People Nat 3:811–26
    [Google Scholar]
  131. 131.
    Senior KL, Giljohann KM, McCarthy MA, Kelly LT. 2022. A field test of mechanisms underpinning animal diversity in recently burned landscapes. J. Appl. Ecol. 60:146–57
    [Google Scholar]
  132. 132.
    Beale CM, Mustaphi CJC, Morrison TA, Archibald S, Anderson TM et al. 2018. Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. . Ecol. Lett. 21:557–67
    [Google Scholar]
  133. 133.
    Pellegrini AFA, Franco AC, Hoffmann WA. 2016. Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes. Glob. Change Biol. 22:1235–43
    [Google Scholar]
  134. 134.
    Castellanos MC, González-Martínez SC, Pausas JG. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol. Ecol. 24:5633–42
    [Google Scholar]
  135. 135.
    Rainsford FW, Kelly LT, Leonard SWJ, Bennett AF. 2021. Post-fire habitat relationships for birds differ among ecosystems. . Biol. Conserv. 260:109218
    [Google Scholar]
  136. 136.
    Gómez-González S, Torres-Diáz C, Bustos-Schindler C, Gianoli E. 2011. Anthropogenic fire drives the evolution of seed traits. PNAS 108:18743–47
    [Google Scholar]
  137. 137.
    Pugh BE, Colley M, Dugdale SJ, Edwards P, Flitcroft R et al. 2022. A possible role for river restoration enhancing biodiversity through interaction with wildfire. Glob. Ecol. Biogeogr. 31:1990–2004
    [Google Scholar]
  138. 138.
    McWethy DB, Schoennagel T, Higuera PE, Krawchuk M, Harvey BJ et al. 2019. Rethinking resilience to wildfire. Nat. Sustain. 2:797–804
    [Google Scholar]
  139. 139.
    Granath G, Moore PA, Lukenbach MC, Waddington JM. 2016. Mitigating wildfire carbon loss in managed northern peatlands through restoration. Sci. Rep. 6:28498
    [Google Scholar]
  140. 140.
    Bowman DMJS, Williamson GJ, Abatzoglou JT, Kolden CA, Cochrane MA, Smith AMS. 2017. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1:58
    [Google Scholar]
  141. 141.
    Cochrane MA, Bowman DMJS. 2021. Manage fire regimes, not fires. Nat. Geosci. 14:455–57
    [Google Scholar]
  142. 142.
    Moreira F, Ascoli D, Safford H, Adams MA, Moreno JM et al. 2020. Wildfire management in Mediterranean-type regions: paradigm change needed. Environ. Res. Lett. 15:011001
    [Google Scholar]
  143. 143.
    Borchers-Arriagada N, Bowman DMJS, Price O, Palmer AJ, Samson S, Clarke H. 2021. Smoke health costs and the calculus for wildfires fuel management: a modelling study. Lancet Planet. Health 5:e608–19
    [Google Scholar]
  144. 144.
    Shuman JK, Balch JK, Barnes RT, Higuera PE, Roos CI et al. 2022. Reimagine fire science for the Anthropocene. PNAS Nexus 1:1–14
    [Google Scholar]
  145. 145.
    Harrison SP, Prentice IC, Bloomfield KJ, Dong N, Forkel M et al. 2021. Understanding and modelling wildfire regimes: an ecological perspective. Environ. Res. Lett. 16:125008
    [Google Scholar]
  146. 146.
    Gillson L, Biggs H, Smit IPJ, Virah-Sawmy M, Rogers K. 2019. Finding common ground between adaptive management and evidence-based approaches to biodiversity conservation. Trends Ecol. Evol. 34:31–44
    [Google Scholar]
  147. 147.
    Keane RE, Loehman R. 2020. Historical Range and Variation (HRV). Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires SL Manzello Cham, Switz.: Springer https://doi.org/10.1007/978-3-319-51727-8_255-1
    [Crossref] [Google Scholar]
  148. 148.
    Whitlock C, Higuera PE, Mcwethy DB, Briles CE. 2010. Paleoecological perspectives on fire ecology: revisiting the fire-regime concept. Open Ecol. J. 3:6–23
    [Google Scholar]
  149. 149.
    Jones GM, Tingley MW. 2021. Pyrodiversity and biodiversity: a history, synthesis, and outlook. Divers. Distrib. 28:386–403
    [Google Scholar]
/content/journals/10.1146/annurev-environ-120220-055357
Loading
/content/journals/10.1146/annurev-environ-120220-055357
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error