1932

Abstract

This review examines the alleged crisis of trust in environmental science and its impact on public opinion, policy decisions in the context of democratic governance, and the interaction between science and society. In an interdisciplinary manner, the review focuses on the following themes: the trustworthiness of environmental science, empirical studies on levels of trust and trust formation; social media, environmental science, and disinformation; trust in environmental governance and democracy; and co-production of knowledge and the production of trust in knowledge. The review explores both the normative issue of trustworthiness and empirical studies on how to build trust. The review does not provide any simple answers to whether trust in science is generally in decline or whether we are returning to a lessenlightened era in public life with decreased appreciation of knowledge and truth. The findings are more nuanced, showing signs of both distrust and trust in environmental science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-120920-015909
2022-10-17
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-120920-015909.html?itemId=/content/journals/10.1146/annurev-environ-120920-015909&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Goldenberg MJ. 2021. Vaccine Hesitancy: Public Trust, Expertise, and the War on Science Pittsburgh, PA: Univ. Pittsburgh Press
    [Google Scholar]
  2. 2.
    Kitcher P. 2011. Science in a Democratic Society Amherst, NY: Prometheus Books
    [Google Scholar]
  3. 3.
    Oreskes N. 2019. Why Trust Science? Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  4. 4.
    Nichols T. 2017. The Death of Expertise: The Campaign Against Established Knowledge and Why It Matters New York: Oxford Univ. Press
    [Google Scholar]
  5. 5.
    Ipsos MORI 2017. Veracity Index 2017 Rep. Ipsos MORI London:
    [Google Scholar]
  6. 6.
    Ipsos MORI 2019. Global trust in professions: Who do global citizens trust? Rep. Ipsos MORI London:
    [Google Scholar]
  7. 7.
    Kotcher JE, Myers TA, Vraga EK, Stenhouse N, Maibach EW. 2017. Does engagement in advocacy hurt the credibility of scientists? Results from a randomized national survey experiment. Environ. Commun. 11:415–29
    [Google Scholar]
  8. 8.
    World Economic Forum, SAP Qualtrics 2021. The Climate Progress Survey: business & consumer worries & hopes. A global study of public opinion. Rep. World Economic Forum, Cologny, Switz./SAP Qualtrics Provo, UT:
    [Google Scholar]
  9. 9.
    Owens S. 2018. Trust in experts? Knowledge, advice, and influence in environmental policy. Proceedings of the All European Academies (ALLEA) Science in Times of Challenged Trust and Expertise, General Assembly, Bulgarian Academy of Sciences, Sofia, Bulgaria10–19 Berlin: ALLEA
    [Google Scholar]
  10. 10.
    Oreskes N, Conway EM. 2010. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues From Tobacco Smoke to Global Warming New York: Bloomsbury Press
    [Google Scholar]
  11. 11.
    Mahl D, Schäfer MS, Zeng J. 2022. Conspiracy theories in online environments: an interdisciplinary literature review and agenda for future research. New Media Soc. https://doi.org/10.1177/14614448221075759. In press
    [Crossref] [Google Scholar]
  12. 12.
    Bruns A, Harrington S, Hurcombe E. 2020. ‘Corona? 5G? Or both?’: The dynamics of COVID-19/5G conspiracy theories on Facebook. Media Int. Aust. 177:12–29
    [Google Scholar]
  13. 13.
    Funtowicz SO, Ravetz JR. 1993. Science for the post-normal age. Futures: J. Policy Plann. Futures Stud. 25:739–55
    [Google Scholar]
  14. 14.
    Jasanoff S. 1990. The Fifth Branch: Science Advisers As Policymakers Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  15. 15.
    Owens S. 2016. Science and environmental sustainability. Environ. Res. Lett. 11:120203
    [Google Scholar]
  16. 16.
    Oppenheimer M, Oreskes N, Jamieson D, Brysse K, O'Reilly J et al. 2019. Discerning Experts: The Practices of Scientific Assessment for Environmental Policy Chicago: Univ. Chicago Press
    [Google Scholar]
  17. 17.
    Kennedy D. 2016. A World of Struggle: How Power, Law, and Expertise Shape Global Political Economy Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  18. 18.
    Turner SP. 2014. The Politics of Expertise London: Routledge
    [Google Scholar]
  19. 19.
    O'Neill O. 2020. Trust and accountability in a digital age. Philosophy 95:3–17
    [Google Scholar]
  20. 20.
    Irzik G, Kurtulmus F. 2019. What is epistemic public trust in science?. Br. J. Philos. Sci. 70:1145–66
    [Google Scholar]
  21. 21.
    Rolin K 2020. Trust in science. The Routledge Handbook of Trust and Philosophy J Simon 354–66 London: Routledge
    [Google Scholar]
  22. 22.
    Cartwright N. 2020. X—Why trust science? Reliability, particularity and the tangle of science. Proc. Aristot. Soc. 120:237–52
    [Google Scholar]
  23. 23.
    Rolin KH. 2021. Objectivity, trust and social responsibility. Synthese 199:513–53
    [Google Scholar]
  24. 24.
    Schroeder SA. 2020. Democratic values: a better foundation for public trust in science. Br. J. Philos. Sci. 72:2545–62
    [Google Scholar]
  25. 25.
    Grasswick H. 2018. Understanding epistemic trust injustices and their harms. R. Inst. Philos. Suppl. 84:69–91
    [Google Scholar]
  26. 26.
    Almassi B 2016. Experts in the climate change debate. Companion to Applied Philosophy K Lippert-Rasmussen, K Brownlee, D Coady 133–46 Chichester, UK: Wiley
    [Google Scholar]
  27. 27.
    Anderson E 2011. Democracy, public policy, and lay assessments of scientific testimony. Episteme 8:144–64
    [Google Scholar]
  28. 28.
    Biddle JB, Leuschner A. 2015. Climate skepticism and the manufacture of doubt: Can dissent in science be epistemically detrimental?. Eur. J. Philos. Sci. 5:261–78
    [Google Scholar]
  29. 29.
    Intemann K. 2017. Who needs consensus anyway? Addressing manufactured doubt and increasing public trust in climate science. Public Aff. Q. 31:189–208
    [Google Scholar]
  30. 30.
    Pearce W, Grundmann R, Hulme M, Raman S, Hadley Kershaw E, Tsouvalis J 2017. Beyond counting climate consensus. Environ. Commun. 11:723–30
    [Google Scholar]
  31. 31.
    Keohane RO, Lane M, Oppenheimer M. 2014. The ethics of scientific communication under uncertainty. Politics Philos. Econ. 13:343–68
    [Google Scholar]
  32. 32.
    Shrader-Frechette K. 2011. What Will Work: Fighting Climate Change with Renewable Energy, Not Nuclear Power Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  33. 33.
    Piso Z, Werkheiser I, Noll S, Leshko C. 2016. Sustainability of what? Recognising the diverse values that sustainable agriculture works to sustain. Environ. Values 25:195–214
    [Google Scholar]
  34. 34.
    Elliott KC. 2017. A Tapestry of Values: An Introduction to Values in Science Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  35. 35.
    Brown MJ. 2020. Science and Moral Imagination: A New Ideal for Values in Science Pittsburgh, PA: Univ. Pittsburgh Press
    [Google Scholar]
  36. 36.
    Laursen BK, Gonnerman C, Crowley SJ. 2021. Improving philosophical dialogue interventions to better resolve problematic value pluralism in collaborative environmental science. Stud. History Philos. Sci. A 87:54–71
    [Google Scholar]
  37. 37.
    Steel D, Gonnerman C, O'Rourke M 2017. Scientists’ attitudes on science and values: case studies and survey methods in philosophy of science. Stud. History Philos. Sci. A 63:22–30
    [Google Scholar]
  38. 38.
    Steel D, Gonnerman C, McCright AM, Bavli I. 2018. Gender and scientists’ views about the value-free ideal. Perspect. Sci. 26:619–57
    [Google Scholar]
  39. 39.
    Robinson B, Gonnerman C, O'Rourke M. 2019. Experimental philosophy of science and philosophical differences across the sciences. Philos. Sci. 86:551–76
    [Google Scholar]
  40. 40.
    Douglas H. 2016. Values in science. The Oxford Handbook of Philosophy of Science P Humphreys 609–30 New York: Oxford Univ. Press
    [Google Scholar]
  41. 41.
    Steel D. 2016. Climate change and second-order uncertainty: defending a generalized, normative, and structural argument from inductive risk. Perspect. Sci. 24:696–721
    [Google Scholar]
  42. 42.
    Havstad JC, Brown MJ 2017. Inductive risk, deferred decisions, and climate science advising. Exploring Inductive Risk: Case Studies of Values in Science KC Elliot, T Richards 101–23 New York: Oxford Univ. Press
    [Google Scholar]
  43. 43.
    Frisch M. 2020. Uncertainties, values, and climate targets. Philos. Sci. 87:979–90
    [Google Scholar]
  44. 44.
    Fleming A, Ogier E, Hobday AJ, Thomas L, Hartog JR, Haas B. 2020. Stakeholder trust and holistic fishery sustainability assessments. Mar. Policy 111:103719
    [Google Scholar]
  45. 45.
    Funk C, Hefferon M, Kennedy B, Johnson C 2019. Trust and mistrust in Americans’ views of scientific experts Rep. Pew Res. Cent. Washington, DC:
    [Google Scholar]
  46. 46.
    Funk C, Tyson A, Kennedy B, Johnson C. 2020. Science and scientists held in high esteem across global publics Rep. Pew Res. Cent. Washington, DC:
    [Google Scholar]
  47. 47.
    Capstick S, Whitmarsh L, Poortinga W, Pidgeon N, Upham P. 2015. International trends in public perceptions of climate change over the past quarter century. WIREs Clim. Change 6:35–61 Erratum 2015. WIREs Clim. Change 6:435
    [Google Scholar]
  48. 48.
    Bolin JL, Hamilton LC. 2018. The news you choose: News media preferences amplify views on climate change. Environ. Politics 27:455–76
    [Google Scholar]
  49. 49.
    Hornsey MJ, Fielding KS. 2020. Understanding (and reducing) inaction on climate change. Soc. Issues Policy Rev. 14:3–35
    [Google Scholar]
  50. 50.
    Marlon J, Neyens L, Jefferson M, Howe P, Mildenberger M, Leiserowitz A 2022. Yale Climate Opinion Maps 2021 Yale Sch. Environ., Yale Univ. New Haven, CT: retrieved February 23, 2022. https://climatecommunication.yale.edu/visualizations-data/ycom-us/
    [Google Scholar]
  51. 51.
    Sarathchandra D, Haltinner K. 2020. Trust/distrust judgments and perceptions of climate science: a research note on skeptics’ rationalizations. Public Understand. Sci. 29:53–60
    [Google Scholar]
  52. 52.
    Motta M. 2018. The enduring effect of scientific interest on trust in climate scientists in the United States. Nat. Clim. Change 8:485–88
    [Google Scholar]
  53. 53.
    Guber DL. 2017. Partisan cueing and polarization in public opinion about climate change. Oxford Research Encyclopedia of Climate Science MC Nisbet, SS Ho, E Markowitz, S O'Neill, MS Schäfer, J Thaker New York: Oxford Univ. Press https://doi.org/10.1093/acrefore/9780190228620.013.306
    [Crossref] [Google Scholar]
  54. 54.
    Fairbrother M. 2017. Environmental attitudes and the politics of distrust. Sociol. Compass 11:e12482
    [Google Scholar]
  55. 55.
    Hornsey MJ, Harris EA, Fielding KS. 2018. Relationships among conspiratorial beliefs, conservatism and climate scepticism across nations. Nat. Clim. Change 8:614–20
    [Google Scholar]
  56. 56.
    Kulin J, Johansson Sevä I. 2021. Who do you trust? How trust in partial and impartial government institutions influences climate policy attitudes. Clim. Policy 21:33–46
    [Google Scholar]
  57. 57.
    Björnberg KE, Karlsson M, Gilek M, Hansson SO. 2017. Climate and environmental science denial: a review of the scientific literature published in 1990–2015. J. Clean. Prod. 167:229–41
    [Google Scholar]
  58. 58.
    Cologna V, Siegrist M. 2020. The role of trust for climate change mitigation and adaptation behaviour: a meta-analysis. J. Environ. Psychol. 69:101428
    [Google Scholar]
  59. 59.
    Bidwell D. 2016. Thinking through participation in renewable energy decisions. Nat. Energy 1:16051
    [Google Scholar]
  60. 60.
    Goldberg MH, Gustafson A, van der Linden S. 2020. Leveraging social science to generate lasting engagement with climate change solutions. One Earth 3:314–24
    [Google Scholar]
  61. 61.
    Orlove B, Shwom R, Markowitz E, Cheong S-M. 2020. Climate decision-making. Annu. Rev. Environ. Resour. 45:271–303
    [Google Scholar]
  62. 62.
    van der Linden S. 2021. The Gateway Belief Model (GBM): a review and research agenda for communicating the scientific consensus on climate change. Curr. Opin. Psychol. 42:7–12
    [Google Scholar]
  63. 63.
    van der Linden S, Leiserowitz A, Maibach E. 2018. Scientific agreement can neutralize politicization of facts. Nat. Hum. Behav. 2:2–3
    [Google Scholar]
  64. 64.
    Bolsen T, Druckman JN. 2018. Do partisanship and politicization undermine the impact of a scientific consensus message about climate change?. Group Process. Intergroup Relat 21:389–402
    [Google Scholar]
  65. 65.
    van der Linden S, Leiserowitz A, Maibach E. 2018. Perceptions of scientific consensus predict later beliefs about the reality of climate change using cross-lagged panel analysis: a response to Kerr and Wilson (2018). J. Environ. Psychol. 60:110–11
    [Google Scholar]
  66. 66.
    Burgess RA, Osborne RH, Yongabi KA, Greenhalgh T, Gurdasani D et al. 2021. The COVID-19 vaccines rush: Participatory community engagement matters more than ever. Lancet North Am. Ed. 397:8–10
    [Google Scholar]
  67. 67.
    Bouman T, Steg L, Perlaviciute G. 2021. From values to climate action. Curr. Opin. Psychol. 42:102–7
    [Google Scholar]
  68. 68.
    Druckman JN, Levendusky MS, McLain A. 2018. No need to watch: how the effects of partisan media can spread via interpersonal discussions. Am. J. Political Sci. 62:99–112
    [Google Scholar]
  69. 69.
    Hornsey MJ. 2021. The role of worldviews in shaping how people appraise climate change. Curr. Opin. Behav. Sci. 42:36–41
    [Google Scholar]
  70. 70.
    de Vries G. 2020. Public communication as a tool to implement environmental policies. Soc. Issues Policy Rev 14:244–72
    [Google Scholar]
  71. 71.
    Salvatore J, Morton TA 2021. Evaluations of science are robustly biased by identity concerns. Group Process. Intergroup Relat. 24:568–82
    [Google Scholar]
  72. 72.
    Bayes R, Druckman JN, Goods A, Molden DC. 2020. When and how different motives can drive motivated political reasoning. Political Psychol 41:1031–52
    [Google Scholar]
  73. 73.
    Chong D, Druckman JN. 2013. Counterframing effects. J. Politics 75:1–16
    [Google Scholar]
  74. 74.
    Treen KMd'I, Williams HT, O'Neill SJ 2020. Online misinformation about climate change. WIREs Clim. Change 11:e665
    [Google Scholar]
  75. 75.
    Shu K, Bhattacharjee A, Alatawi F, Nazer TH, Ding K et al. 2020. Combating disinformation in a social media age. Wiley Interdiscip. Rev.: Data Mining Knowledge Discov. 10:e1385
    [Google Scholar]
  76. 76.
    Wardle C, Derakhshan H. 2017. Information disorder: toward an interdisciplinary framework for research and policy making Rep. 162317GBR Counc. Eur. Strasbourg, Fr:.
    [Google Scholar]
  77. 77.
    Cox R. 2013. Environmental Communication and the Public Sphere Newcastle upon Tyne, UK: Sage
    [Google Scholar]
  78. 78.
    Lewandowsky S. 2021. Climate change disinformation and how to combat it. Annu. Rev. Public Health 42:1–21
    [Google Scholar]
  79. 79.
    Lazer DM, Baum MA, Benkler Y, Berinsky AJ, Greenhill KM et al. 2018. The science of fake news. Science 359:1094–96
    [Google Scholar]
  80. 80.
    Petersen AM, Vincent EM, Westerling AL. 2019. Discrepancy in scientific authority and media visibility of climate change scientists and contrarians. Nat. Commun. 10:3502
    [Google Scholar]
  81. 81.
    Marwick A, Lewis R. 2017. Media manipulation and disinformation online Rep. Data & Soc. Res. Inst. New York:
    [Google Scholar]
  82. 82.
    Anderson A. 2019. Climate change communication in the United Kingdom. Oxford Research Encyclopedia of Climate Science MC Nisbet, SS Ho, E Markowitz, S O'Neill, MS Schäfer, J Thaker New York: Oxford Univ. Press https://doi.org/10.1093/acrefore/9780190228620.013.458
    [Crossref] [Google Scholar]
  83. 83.
    Pearce W, Brown B, Nerlich B, Koteyko N. 2015. Communicating climate change: conduits, content, and consensus. WIREs Clim. Change 6:613–26
    [Google Scholar]
  84. 84.
    Huber B, Barnidge M, Gil de Zúñiga H, Liu J 2019. Fostering public trust in science: the role of social media. Public Understand. Sci. 28:759–77
    [Google Scholar]
  85. 85.
    Boy B, Bucher H-J, Christ K 2020. Audiovisual science communication on TV and YouTube. How recipients understand and evaluate science videos. Front. Commun. 5:608620
    [Google Scholar]
  86. 86.
    Pearce W, Niederer S, Özkula SM, Sánchez Querubín N. 2019. The social media life of climate change: platforms, publics, and future imaginaries. WIREs Clim. Change 10:e569
    [Google Scholar]
  87. 87.
    Uscinski JE, Douglas K, Lewandowsky S 2017. Climate change conspiracy theories. Oxford Research Encyclopedia of Climate Science MC Nisbet, SS Ho, E Markowitz, S O'Neill, MS Schäfer, J Thaker New York: Oxford Univ. Press https://doi.org/10.1093/acrefore/9780190228620.013.328
    [Crossref] [Google Scholar]
  88. 88.
    Oliveira T, Wang Z, Xu J. 2022. Scientific disinformation in times of epistemic crisis: circulation of conspiracy theories on social media platforms. Online Media Glob. Commun. 1:1164–86
    [Google Scholar]
  89. 89.
    Douglas KM, Uscinski JE, Sutton RM, Cichocka A, Nefes T et al. 2019. Understanding conspiracy theories. Political Psychol 40:3–35
    [Google Scholar]
  90. 90.
    Deuze M. 2008. Corporate Appropriation of Participatory Culture Newcastle upon Tyne, UK: Cambridge Sch. Publ.
    [Google Scholar]
  91. 91.
    Schäfer MT. 2011. Bastard Culture! How User Participation Transforms Cultural Production Amsterdam: Amsterdam Univ. Press
    [Google Scholar]
  92. 92.
    Van Dijck J, Poell T, De Waal M. 2018. The Platform Society: Public Values in a Connective World Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  93. 93.
    Marres N. 2018. Why we can't have our facts back. Engag. Sci. Technol. Soc. 4:423–43
    [Google Scholar]
  94. 94.
    Lewandowsky S, Ecker UK, Cook J. 2017. Beyond misinformation: understanding and coping with the “post-truth” era. J. Appl. Res. Mem. Cogn. 6:353–69
    [Google Scholar]
  95. 95.
    Otto SL. 2016. The War on Science: Who's Waging It, Why It Matters, What We Can Do About It Minneapolis, MN: Milkweed Ed.
    [Google Scholar]
  96. 96.
    Priest S. 2019. Theme issue: Communication and persuasion on energy, environment, and climate. Sci. Commun. 41:391–93
    [Google Scholar]
  97. 97.
    Weingart P, Guenther L. 2016. Science communication and the issue of trust. J. Sci. Commun. 15:1–11
    [Google Scholar]
  98. 98.
    Büscher B. 2020. The Truth About Nature: Environmentalism in the Era of Post-Truth Politics and Platform Capitalism Berkeley: Univ. Calif. Press
    [Google Scholar]
  99. 99.
    Guess AM, Lerner M, Lyons B, Montgomery JM, Nyhan B et al. 2020. A digital media literacy intervention increases discernment between mainstream and false news in the United States and India. PNAS 117:15536–45
    [Google Scholar]
  100. 100.
    Gillespie T. 2018. Custodians of the Internet New Haven, CT: Yale Univ. Press
    [Google Scholar]
  101. 101.
    Anderson AA. 2017. Effects of social media use on climate change opinion, knowledge, and behavior. Oxford Research Encyclopedia of Climate Science MC Nisbet, SS Ho, E Markowitz, S O'Neill, MS Schäfer, J Thaker New York: Oxford Univ. Press https://doi.org/10.1093/acrefore/9780190228620.013.369
    [Crossref] [Google Scholar]
  102. 102.
    Biesbroek R, Peters BG, Tosun J. 2018. Public bureaucracy and climate change adaptation. Rev. Policy Res. 35:6776–91
    [Google Scholar]
  103. 103.
    Biesbroek R, Lesnikowski A, Ford JD, Berrang-Ford L, Vink M. 2018. Do administrative traditions matter for climate change adaptation policy? A comparative analysis of 32 high-income countries. Rev. Policy Res. 35:6881–906
    [Google Scholar]
  104. 104.
    Owens SE. 2015. Knowledge, Policy, and Expertise: The UK Royal Commission on Environmental Pollution 1970–2011 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  105. 105.
    Christensen J, Holst C. 2017. Advisory commissions, academic expertise and democratic legitimacy: the case of Norway. Sci. Public Policy 44:821–33
    [Google Scholar]
  106. 106.
    Bovens M, Schillemans T, Goodin RE. 2014. Public accountability. The Oxford Handbook of Public Accountability M Bovens, RE Goodin, T Schillemans 1–22 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  107. 107.
    Holst C, Molander A. 2017. Public deliberation and the fact of expertise: making experts accountable. Soc. Epistemol. 31:235–50
    [Google Scholar]
  108. 108.
    Greiling D. 2014. Accountability and trust. The Oxford Handbook of Public Accountability M Bovens, RE Goodin, T Schillemans 617–31 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  109. 109.
    Kramarz T, Park S. 2017. The politics of environmental accountability. Rev. Policy Res. 34:14–9
    [Google Scholar]
  110. 110.
    Krick E. 2021. Expertise and Participation: Institutional Designs for Policy Development in Europe Berlin, Ger: Springer Nature
    [Google Scholar]
  111. 111.
    O'Neill O. 2002. A Question of Trust: The BBC Reith Lectures 2002 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  112. 112.
    Bustos EO. 2021. Organizational reputation in the public administration: a systematic literature review. Public Adm. Rev. 81:731–51
    [Google Scholar]
  113. 113.
    Rimkutė D. 2018. Organizational reputation and risk regulation: the effect of reputational threats on agency scientific outputs. Public Adm 96:70–83
    [Google Scholar]
  114. 114.
    Overman S, Busuioc M, Wood M. 2020. A multidimensional reputation barometer for public agencies: a validated instrument. Public Adm. Rev. 80:415–25
    [Google Scholar]
  115. 115.
    Pearce W, Mahony M, Raman S. 2018. Science advice for global challenges: learning from trade-offs in the IPCC. Environ. Sci. Policy 80:125–31
    [Google Scholar]
  116. 116.
    Baber W, Bartlett R. 2018. Deliberative democracy and the environment. The Oxford Handbook of Deliberative Democracy A Bächtiger, JS Dryzek, J Mansbridge, M Warren 755–67 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  117. 117.
    Dryzek JS, Niemeyer S. 2019. Deliberative democracy and climate governance. Nat. Hum. Behav. 3:411–13
    [Google Scholar]
  118. 118.
    Nordbrandt M. 2021. Do cross-cutting discussions enhance pro-environmental attitudes? Testing green deliberative theory in practice. Environ. Politics 30:326–56
    [Google Scholar]
  119. 119.
    Berg M, Lidskog R. 2018. Deliberative democracy meets democratised science: a deliberative systems approach to global environmental governance. Environ. Politics 27:1–20
    [Google Scholar]
  120. 120.
    Braun K, Könninger S. 2018. From experiments to ecosystems? Reviewing public participation, scientific governance and the systemic turn. Public Understand. Sci. 27:674–89
    [Google Scholar]
  121. 121.
    Chilvers J, Bellamy R, Pallett H, Hargreaves T. 2021. A systemic approach to mapping participation with low-carbon energy transitions. Nat. Energy 6:250–59
    [Google Scholar]
  122. 122.
    Krick E, Holst C. 2019. The socio-political ties of expert bodies. How to reconcile the independence requirement of reliable expertise and the responsiveness requirement of democratic governance. Eur. Politics Soc. 20:117–31
    [Google Scholar]
  123. 123.
    Rothstein B. 2011. The Quality of Government: Corruption, Social Trust, and Inequality in International Perspective Chicago: Univ. Chicago Press
    [Google Scholar]
  124. 124.
    Povitkina M. 2018. The limits of democracy in tackling climate change. Environ. Politics 27:411–32
    [Google Scholar]
  125. 125.
    Kulin J, Johansson Sevä I. 2019. The role of government in protecting the environment: quality of government and the translation of normative views about government responsibility into spending preferences. Int. J. Sociol. 49:110–29
    [Google Scholar]
  126. 126.
    Kulin J, Johansson Sevä I. 2021. Quality of government and the relationship between environmental concern and pro-environmental behavior: a cross-national study. Environ. Politics 30:727–52
    [Google Scholar]
  127. 127.
    Carrozza C. 2015. Democratizing expertise and environmental governance: different approaches to the politics of science and their relevance for policy analysis. J. Environ. Plann. Policy Manag. 17:108–26
    [Google Scholar]
  128. 128.
    Chilvers J, Kearnes MB. 2016. Remaking Participation: Science, Environment and Emergent Publics London: Routledge
    [Google Scholar]
  129. 129.
    Jasanoff S 2004. States of Knowledge: The Co-Production of Science and Social Order London: Routledge
    [Google Scholar]
  130. 130.
    Jasanoff S. 2004. Ordering knowledge, ordering science. States of Knowledge: The Co-Production of Science and Social Order S Jasanoff 13–45 London: Routledge
    [Google Scholar]
  131. 131.
    Miller CA, Wyborn C. 2020. Co-production in global sustainability: histories and theories. Environ. Sci. Policy 113:88–95
    [Google Scholar]
  132. 132.
    Lemos MC, Arnott JC, Ardoin NM, Baja K, Bednarek AT et al. 2018. To co-produce or not to co-produce. Nat. Sustain. 1:722–24
    [Google Scholar]
  133. 133.
    Macq H, Tancoigne É, Strasser BJ. 2020. From deliberation to production: public participation in science and technology policies of the European Commission (1998–2019). Minerva 58:489–512
    [Google Scholar]
  134. 134.
    Weingart P, Joubert M, Connoway K. 2021. Public engagement with science—origins, motives and impact in academic literature and science policy. PLOS ONE 16:e0254201
    [Google Scholar]
  135. 135.
    Bremer S, Meisch S. 2017. Co-production in climate change research: reviewing different perspectives. WIREs Clim. Change 8:e482
    [Google Scholar]
  136. 136.
    Eyal G. 2019. The Crisis of Expertise Cambridge, UK: Polity
    [Google Scholar]
  137. 137.
    Latour B. 1987. Science in Action: How to Follow Scientists and Engineers Through Society Milton Keynes, UK: Open Univ. Press
    [Google Scholar]
  138. 138.
    Hilgartner S. 2000. Science on Stage: Expert Advice As Public Drama Stanford, CA: Stanford Univ. Press
    [Google Scholar]
  139. 139.
    Bijker WE, Bal R, Hendriks R. 2009. The Paradox of Scientific Authority: The Role of Scientific Advice in Democracies Cambridge, MA: MIT Press
    [Google Scholar]
  140. 140.
    Lidskog R, Sundqvist G. 2015. When does science matter? International relations meets science and technology studies. Glob. Environ. Politics 15:1–20
    [Google Scholar]
  141. 141.
    Sundqvist G, Bohlin I, Hermansen EA, Yearley S. 2015. Formalization and separation: a systematic basis for interpreting approaches to summarizing science for climate policy. Soc. Stud. Sci. 45:416–40
    [Google Scholar]
  142. 142.
    Livingston JE, Lövbrand E, Alkan Olsson J. 2018. From climates multiple to climate singular: maintaining policy-relevance in the IPCC synthesis report. Environ. Sci. Policy 90:83–90
    [Google Scholar]
  143. 143.
    Dannevig H, Hovelsrud GK, Hermansen EAT, Karlsson M. 2020. Culturally sensitive boundary work: a framework for linking knowledge to climate action. Environ. Sci. Policy 112:405–13
    [Google Scholar]
  144. 144.
    Lahn B, Sundqvist G. 2017. Science as a “fixed point”? Quantification and boundary objects in international climate politics. Environ. Sci. Policy 67:8–15
    [Google Scholar]
  145. 145.
    Hulme M. 2009. Why We Disagree About Climate Change: Understanding Controversy, Inaction and Opportunity Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  146. 146.
    Bulkeley H, Kok M. 2016. The quest for “good” global environmental assessment. Environ. Politics 25:61126–36
    [Google Scholar]
  147. 147.
    Beck S, Mahony M. 2018. The politics of anticipation: the IPCC and the negative emissions technologies experience. Glob. Sustain. 1:e8
    [Google Scholar]
  148. 148.
    van der Sluijs JP. 2017. The NUSAP approach to uncertainty appraisal and communication. Routledge Handbook of Ecological Economics CL Spash 301–10 London: Routledge
    [Google Scholar]
  149. 149.
    Van der Bles AM, Van Der Linden S, Freeman AL, Mitchell J, Galvao AB et al. 2019. Communicating uncertainty about facts, numbers and science. R. Soc. Open Sci. 6:181870
    [Google Scholar]
  150. 150.
    Gustafson A, Rice RE. 2020. A review of the effects of uncertainty in public science communication. Public Understand. Sci. 29:614–33
    [Google Scholar]
  151. 151.
    Pellizzoni L. 2011. The politics of facts: local environmental conflicts and expertise. Environ. Politics 20:765–85
    [Google Scholar]
  152. 152.
    Díaz-Reviriego I, Turnhout E, Beck S 2019. Participation and inclusiveness in the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services. Nat. Sustain. 2:457–64
    [Google Scholar]
  153. 153.
    Clark WC, van Kerkhoff L, Lebel L, Gallopin GC. 2016. Crafting usable knowledge for sustainable development. PNAS 113:4570–78
    [Google Scholar]
  154. 154.
    Wyborn C, Datta A, Montana J, Ryan M, Leith P et al. 2019. Co-producing sustainability: reordering the governance of science, policy, and practice. Annu. Rev. Environ. Resour. 44:319–46
    [Google Scholar]
  155. 155.
    Grand A, Wilkinson C, Bultitude K, Winfield AFT. 2012. Open Science: A new “trust technology”?. Sci. Commun. 34:679–89
    [Google Scholar]
  156. 156.
    Owen R, von Schomberg R, Macnaghten P 2021. An unfinished journey? Reflections on a decade of responsible research and innovation. J. Responsib. Innov. 8:217–23
    [Google Scholar]
  157. 157.
    Djenontin INS, Meadow AM. 2018. The art of co-production of knowledge in environmental sciences and management: lessons from international practice. Environ. Manag. 61:885–903
    [Google Scholar]
  158. 158.
    Lacey J, Howden M, Cvitanovic C, Colvin RM. 2018. Understanding and managing trust at the climate science–policy interface. Nat. Clim. Change 8:22–28
    [Google Scholar]
  159. 159.
    Cvitanovic C, Shellock RJ, Mackay M, van Putten EI, Karcher DB et al. 2021. Strategies for building and managing ‘trust’ to enable knowledge exchange at the interface of environmental science and policy. Environ. Sci. Policy 123:179–89
    [Google Scholar]
  160. 160.
    Lövbrand E, Pielke R, Beck S. 2011. A democracy paradox in studies of science and technology. Sci. Technol. Hum. Values 36:474–96
    [Google Scholar]
  161. 161.
    Turnhout E, Metze T, Wyborn C, Klenk N, Louder E. 2020. The politics of co-production: participation, power, and transformation. Curr. Opin. Environ. Sustain. 42:15–21
    [Google Scholar]
  162. 162.
    Wynne B. 2006. Public engagement as a means of restoring public trust in science—Hitting the notes, but missing the music?. Public Health Genom 9:211–20
    [Google Scholar]
  163. 163.
    Tomkiv Y, Liland A, Oughton DH, Wynne B. 2017. Assessing quality of stakeholder engagement: from bureaucracy to democracy. Bull. Sci. Technol. Soc. 37:167–78
    [Google Scholar]
  164. 164.
    Dendler L, Böl G-F. 2021. Increasing engagement in regulatory science: reflections from the field of risk assessment. Sci. Technol. Hum. Values 46:719–54
    [Google Scholar]
  165. 165.
    Gustafsson KM. 2019. Learning from the experiences of the Intergovernmental Panel on Climate Change: balancing science and policy to enable trustworthy knowledge. Sustainability 11:6533
    [Google Scholar]
  166. 166.
    Kelkar S. 2019. Post-truth and the search for objectivity: political polarization and the remaking of knowledge production. Engag. Sci. Technol. Soc. 5:86
    [Google Scholar]
/content/journals/10.1146/annurev-environ-120920-015909
Loading
/content/journals/10.1146/annurev-environ-120920-015909
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error