1932

Abstract

Great claims have been made about the benefits of dematerialization in a digital service economy. However, digitalization has historically increased environmental impacts at local and planetary scales, affecting labor markets, resource use, governance, and power relationships. Here we study the past, present, and future of digitalization through the lens of three interdependent elements of the Anthropocene: () planetary boundaries and stability, () equity within and between countries, and () human agency and governance, mediated via () increasing resource efficiency, () accelerating consumption and scale effects, () expanding political and economic control, and () deteriorating social cohesion. While direct environmental impacts matter, the indirect and systemic effects of digitalization are more profoundly reshaping the relationship between humans, technosphere and planet. We develop three scenarios: planetary instability, green but inhumane, and deliberate for the good. We conclude with identifying leverage points that shift human–digital–Earth interactions toward sustainability.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Digitalization and the Anthropocene
Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-120920-100056
2022-10-17
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-120920-100056.html?itemId=/content/journals/10.1146/annurev-environ-120920-100056&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Crutzen PJ 2006. The ‘Anthropocene.’. Earth System Science in the Anthropocene E Ehlers, T Krafft 13–18 Berlin: Springer
    [Google Scholar]
  2. 2.
    Steffen W, Grinevald J, Crutzen P, McNeill J. 2011. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. A 369:842–67
    [Google Scholar]
  3. 3.
    Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. 2015. The trajectory of the Anthropocene: the Great Acceleration. Anthr. Rev. 2:81–98
    [Google Scholar]
  4. 4.
    Syvitski J, Waters CN, Day J, Milliman JD, Summerhayes C et al. 2020. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 ce initiated the proposed Anthropocene Epoch. Commun. Earth Environ. 1:32
    [Google Scholar]
  5. 5.
    Nakicenovic N. 2019. TWI2050—the world in 2050. The digital revolution and sustainable development: opportunities and challenges Rep., World 2050 Initiat. Laxenburg, Austria:
    [Google Scholar]
  6. 6.
    Schinckus C. 2020. The good, the bad and the ugly: an overview of the sustainability of blockchain technology. Energy Res. Soc. Sci. 69:101614
    [Google Scholar]
  7. 7.
    WBGU (Ger. Advis. Counc. Glob. Change) 2019. Towards our common digital future Flagship Rep., WBGU Berlin: https://www.wbgu.de/fileadmin/user_upload/wbgu/publikationen/hauptgutachten/hg2019/pdf/wbgu_hg2019_en.pdf
    [Google Scholar]
  8. 8.
    Haff PK. 2014. Technology as a geological phenomenon: implications for human well-being. Geol. Soc. Lond. Spec. Publ. 395:301–9
    [Google Scholar]
  9. 9.
    Rosol C, Nelson S, Renn J. 2017. Introduction: in the machine room of the Anthropocene. Anthr. Rev. 4:2–8
    [Google Scholar]
  10. 10.
    Nissen HJ, Damerow P, Englund RK. 1993. Archaic Bookkeeping: Early Writing and Techniques of Economic Administration in the Ancient Near East Chicago: Univ. Chicago Press
    [Google Scholar]
  11. 11.
    Carneiro RL. 1970. A theory of the origin of the state: Traditional theories of state origins are considered and rejected in favor of a new ecological hypothesis. Science 169:733–38
    [Google Scholar]
  12. 12.
    Scott JC. 1998. Seeing Like a State: How Certain Schemes to Improve the Human Condition Have Failed New Haven, CT: Yale Univ. Press
    [Google Scholar]
  13. 13.
    Englund RK. 1991. Hard work—where will it get you? Labor management in Ur III Mesopotamia. J. Near East. Stud. 50:255–80
    [Google Scholar]
  14. 14.
    Renn J. 2020. The Evolution of Knowledge: Rethinking Science for the Anthropocene Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  15. 15.
    Wilkinson TJ 2013. Hydraulic landscapes and irrigation systems of Sumer. The Sumerian World H Crawford 33–54 London: Routledge
    [Google Scholar]
  16. 16.
    Boudreau V. 2004. The First Writing: Script Invention as History and Process Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  17. 17.
    Dickson DB. 1987. Circumscription by anthropogenic environmental destruction: an expansion of Carneiro's (1970) Theory of the Origin of the State. Am. Antiq. 52:709–16
    [Google Scholar]
  18. 18.
    Cameron R. 1982. The industrial revolution: a misnomer. Hist. Teach. 15:377–84
    [Google Scholar]
  19. 19.
    Squicciarini MP, Voigtländer N. 2015. Human capital and industrialization: evidence from the Age of Enlightenment. Q. J. Econ. 130:1825–83
    [Google Scholar]
  20. 20.
    Mokyr J. 2002. The Gifts of Athena: Historical Origins of the Knowledge Economy Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  21. 21.
    Turnbull T. 2021. Energy, history, and the humanities: against a new determinism. Hist. Technol. 2:247–92
    [Google Scholar]
  22. 22.
    Nef JU. 1932. The Rise of the British Coal Industry 2 vol. London: Routledge
    [Google Scholar]
  23. 23.
    Albritton Jonsson F 2012. The industrial revolution in the Anthropocene. J. Mod. Hist. 84:679–96
    [Google Scholar]
  24. 24.
    Malm A. 2014. Fossil capital: the rise of steam-power in the British cotton industry, c. 1825–1848, and the roots of global warming PhD Thesis, Lund Univ., Lund. Swed.
    [Google Scholar]
  25. 25.
    Pomeranz K. 2000. The Great Divergence: China, Europe, and the Making of the Modern World Economy Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  26. 26.
    Wrigley EA. 2013. Energy and the English industrial revolution. Philos. Trans. R. Soc. A 371:20110568
    [Google Scholar]
  27. 27.
    De Pleijt AM, Weisdorf JL. 2017. Human capital formation from occupations: the ‘deskilling hypothesis’ revisited. Cliometrica 11:1–30
    [Google Scholar]
  28. 28.
    de Pleijt A, Nuvolari A, Weisdorf J. 2020. Human capital formation during the first Industrial Revolution: evidence from the use of steam engines. J. Eur. Econ. Assoc. 18:829–89
    [Google Scholar]
  29. 29.
    Clapham JH. 1959. An Economic History of Modern Britain, Vol. 2 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  30. 30.
    Wise MN, Smith C. 1989. Work and waste: political economy and natural philosophy in nineteenth century Britain. Hist. Sci. 27:391–449
    [Google Scholar]
  31. 31.
    Hills RL, Pacey AJ. 1972. The measurement of power in early steam-driven textile mills. Technol. Cult. 13:25–43
    [Google Scholar]
  32. 32.
    Mayr O. 1971. Maxwell and the origins of cybernetics. Isis 62:425–44
    [Google Scholar]
  33. 33.
    Hughes TP. 1993. Networks of Power: Electrification in Western Society, 1880–1930 Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  34. 34.
    Mindell DA. 2004. Between Human and Machine: Feedback, Control, and Computing Before Cybernetics Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  35. 35.
    Gooday G 2004. Profit and prophecy: electricity in the late-Victorian periodical. Science in the Nineteenth-Century Periodical GN Cantor 238–54 New York: Cambridge Univ. Press
    [Google Scholar]
  36. 36.
    Jevons HS. 1931. The second industrial revolution. Econ. J. 41:1–18
    [Google Scholar]
  37. 37.
    Zimmermann EW. 1933. World Resources and Industries New York: Harper
    [Google Scholar]
  38. 38.
    Kander A, Malanima P, Warde P 2014. Power to the People: Energy in Europe over the Last Five Centuries Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  39. 39.
    Haberl H, Wiedenhofer D, Virág D, Kalt G, Plank B et al. 2020. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions. Part II: Synthesizing the insights. Environ. Res. Lett. 15:065003
    [Google Scholar]
  40. 40.
    Brynjolfsson E, Rock D, Syverson C. 2021. The productivity J-curve: how intangibles complement general purpose technologies. Am. Econ. J. Macroecon. 13:1333–72
    [Google Scholar]
  41. 41.
    Bresnahan T 2010. General purpose technologies. Handbook of the Economics of Innovation, Vol. 2 BH Hall, N Rosenberg 761–91 Amsterdam: North-Holland
    [Google Scholar]
  42. 42.
    Halpern O. 2015. Beautiful Data Durham, NC: Duke Univ. Press
    [Google Scholar]
  43. 43.
    Kline RR. 2015. The Cybernetics Moment: Or Why We Call Our Age the Information Age Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  44. 44.
    Abbate J. 1999. Inventing the Internet Cambridge, MA: MIT Press
    [Google Scholar]
  45. 45.
    Rosol C, Steininger B, Renn J, Schlögl R. 2018. On the age of computation in the epoch of humankind. Nat. Portf. 563:1–5
    [Google Scholar]
  46. 46.
    Zalasiewicz J, Waters CN, Williams M, Barnosky AD, Cearreta A et al. 2015. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int. 383:196–203
    [Google Scholar]
  47. 47.
    Zalasiewicz J, Waters CN, Summerhayes CP, Wolfe AP, Barnosky AD et al. 2017. The Working Group on the Anthropocene: summary of evidence and interim recommendations. Anthropocene 19:55–60
    [Google Scholar]
  48. 48.
    Rosol C, Steininger B, Renn J, Schlögl R. 2018. Die digitale Transformation und die Geo-Anthropologie White Pap., Max-Planck-Gesellschaft Novemb. 30. https://www.mpg.de/12545963/geo-anthropologie-digitale-transformation (in German)
    [Google Scholar]
  49. 49.
    Windarto AP, Dewi LS, Hartama D. 2017. Implementation of artificial intelligence in predicting the value of Indonesian oil and gas exports with BP algorithm. Int. J. Recent Trends Eng. Res. 3:101–12
    [Google Scholar]
  50. 50.
    Krausmann F, Wiedenhofer D, Lauk C, Haas W, Tanikawa H et al. 2017. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. PNAS 114:1880–85
    [Google Scholar]
  51. 51.
    Cooper AH, Brown TJ, Price SJ, Ford JR, Waters CN. 2018. Humans are the most significant global geomorphological driving force of the 21st century. Anthr. Rev. 5:222–29
    [Google Scholar]
  52. 52.
    Matthess M, Kunkel S. 2020. Structural change and digitalization in developing countries: conceptually linking the two transformations. Technol. Soc. 63:101428
    [Google Scholar]
  53. 53.
    Bardhan A, Kroll CA. 2003. The new wave of outsourcing Work. Pap., Univ. Calif. Berkeley: https:/doi.org/10.2139/ssrn.985741
    [Crossref] [Google Scholar]
  54. 54.
    Jensen PH, Stonecash RE. 2005. Incentives and the efficiency of public sector–outsourcing contracts. J. Econ. Surv. 19:767–87
    [Google Scholar]
  55. 55.
    Graham M, Hjorth I, Lehdonvirta V. 2017. Digital labour and development: impacts of global digital labour platforms and the gig economy on worker livelihoods. Transf. Eur. Rev. Labour Res. 23:135–62
    [Google Scholar]
  56. 56.
    Banga K, te Velde DW. 2018. Digitalisation and the future of manufacturing in Africa Res. Rep., ODI London:
    [Google Scholar]
  57. 57.
    Michaels G, Natraj A, Van Reenen J. 2014. Has ICT polarized skill demand? Evidence from eleven countries over twenty-five years. Rev. Econ. Stat. 96:60–77
    [Google Scholar]
  58. 58.
    Acemoglu D, Restrepo P. 2019. Automation and new tasks: how technology displaces and reinstates labor. J. Econ. Perspect. 33:3–30
    [Google Scholar]
  59. 59.
    Barbieri L, Mussida C, Piva M, Vivarelli M. 2019. Testing the employment impact of automation, robots and AI: a survey and some methodological issues IZA Discuss. Pap. 12612, Inst. Labor Econ. Bonn, Ger:.
    [Google Scholar]
  60. 60.
    Kerr S, Maczulskij T, Maliranta M. 2020. Within and between firm trends in job polarization: the roles of globalization and technology. J. Econ. Geogr. 20:1003–39
    [Google Scholar]
  61. 61.
    Autor D. 2019. Work of the past, work of the future NBER Work. Pap. 25588
    [Google Scholar]
  62. 62.
    Acemoglu D, Autor D 2011. Skills, tasks and technologies: implications for employment and earnings. Handbook of Labor Economics D Card, O Ashenfelter 1043–171 Amsterdam: Elsevier
    [Google Scholar]
  63. 63.
    Acemoglu D, Restrepo P. 2020. Robots and jobs: evidence from US labor markets. J. Political Econ. 128:2188–244
    [Google Scholar]
  64. 64.
    Chiacchio F, Petropoulos G, Pichler D. 2018. The impact of industrial robots on EU employment and wages: a local labour market approach Work. Pap., Breughel, Josse-ten-Noode Belg:.
    [Google Scholar]
  65. 65.
    Dauth W, Findeisen S, Suedekum J, Woessner N. 2017. German robots—the impact of industrial robots on workers IAB Discuss. Pap. 30/2017 Inst. Employ. Res. Nuremberg, Ger:.
    [Google Scholar]
  66. 66.
    Dottori D. 2021. Robots and employment: evidence from Italy. Econ. Politica 38:739–95
    [Google Scholar]
  67. 67.
    Pohl J, Höfner A, Albers E, Rohde F. 2021. Design options for long-lasting, efficient and open hardware and software. Ökol. Wirtsch. Fachz. 36:20–24
    [Google Scholar]
  68. 68.
    Hischier R, Coroama VC, Schien D, Ahmadi Achachlouei M 2015. Grey energy and environmental impacts of ICT hardware. ICT Innovations for Sustainability LM Hilty, B Aebischer 171–89 Cham, Switz: Springer Int.
    [Google Scholar]
  69. 69.
    Nkulu CBL, Casas L, Haufroid V, De Putter T, Saenen ND et al. 2018. Sustainability of artisanal mining of cobalt in DR Congo. Nat. Sustain. 1:495–504
    [Google Scholar]
  70. 70.
    Pilgrim H, Reckordt M, Groneweg M. 2017. Ressourcenfluch 4.0: die sozialen und ökologischen Auswirkungen von Industrie 4.0 auf den Rohstoffsektor Rep., PowerShift Berlin:
    [Google Scholar]
  71. 71.
    Awasthi AK, Li J, Koh L, Ogunseitan OA. 2019. Circular economy and electronic waste. Nat. Electron. 2:86–89
    [Google Scholar]
  72. 72.
    Evermann A. 2018. Am anderen Ende der Lieferkette: Was tun IT-Hersteller für einen verantwortungsvollen Bezug von Rohstoffen? Rep., WEED (Weltwirtschaft, Ökologie & Entwicklung e.V.) Berlin: https://www2.weed-online.org/uploads/weed_studie_rohstoffe_web.pdf
    [Google Scholar]
  73. 73.
    Max Planck Found 2016. Human rights risks in mining: a baseline study Rep., Bund. Geowiss. Rohst. Berlin: https://www.bgr.bund.de/DE/Themen/Zusammenarbeit/TechnZusammenarbeit/Downloads/human_rights_risks_in_mining.pdf?__blob=publicationFile&v=2
    [Google Scholar]
  74. 74.
    Eftimie A, Heller K, Strongman J, Hinton J, Lahiri-Dutt K, Mutemeri N. 2012. Gender dimensions of artisanal and small-scale mining: a rapid assessment toolkit Rep., World Bank Washington, DC: https://openknowledge.worldbank.org/handle/10986/2731
    [Google Scholar]
  75. 75.
    Coderre-Proulx M, Campbell B, Mandé I. 2016. International migrant workers in the mining sector Rep., Int. Labour Off. Geneva: https://labordoc.ilo.org/discovery/delivery/41ILO_INST:41ILO_V1/1244629950002676
    [Google Scholar]
  76. 76.
    Bahadur A, Leifker M, Lincoln S 2018. Edles Metall—unwürdiger Abbau. Platin aus Südafrika und die Verantwortung deutscher Unternehmen Anal. 75, Brot für die Welt Berlin:
    [Google Scholar]
  77. 77.
    Sovacool BK. 2021. When subterranean slavery supports sustainability transitions? Power, patriarchy, and child labor in artisanal Congolese cobalt mining. Extr. Ind. Soc. 8:271–93
    [Google Scholar]
  78. 78.
    Zimm C. 2019. Methodological issues in measuring international inequality in technology ownership and infrastructure service use. Dev. Stud. Res. 6:92–105
    [Google Scholar]
  79. 79.
    ITU (Int. Telecommun. Union) 2020. Measuring digital development: facts and figures 2020 Fact Sheet, ITU Geneva: https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2020.pdf
    [Google Scholar]
  80. 80.
    Cruz-Cárdenas J, Zabelina E, Guadalupe-Lanas J, Palacio-Fierro A, Ramos-Galarza C. 2021. COVID-19, consumer behavior, technology, and society: a literature review and bibliometric analysis. Technol. Forecast. Soc. Change 173:121179
    [Google Scholar]
  81. 81.
    Mayer-Schonberger V, Ramge T. 2019. Reinventing Capitalism in the Age of Big Data London: Murray
    [Google Scholar]
  82. 82.
    Kryvasheyeu Y, Chen H, Obradovich N, Moro E, Van Hentenryck P et al. 2016. Rapid assessment of disaster damage using social media activity. Sci. Adv. 2:e1500779
    [Google Scholar]
  83. 83.
    Baylis K, Paulson ND. 2011. Potential for carbon offsets from anaerobic digesters in livestock production. Anim. Feed Sci. Technol. 166–67:446–56
    [Google Scholar]
  84. 84.
    Ilieva RT, McPhearson T. 2018. Social-media data for urban sustainability. Nat. Sustain. 1:553–65
    [Google Scholar]
  85. 85.
    Creutzig F, Lohrey S, Bai X, Baklanov A, Dawson R et al. 2019. Upscaling urban data science for global climate solutions. Glob. Sustain. 2:e2
    [Google Scholar]
  86. 86.
    Nonnecke B, Carlton C. 2022. EU and US legislation seek to open up digital platform data. Science 375:610–12
    [Google Scholar]
  87. 87.
    Koski H, Pantzar M. 2021. Data markets in making: the role of technology giants ETLA Work. Pap. 72, Res. Inst. Finn. Econ. Helsinki:
    [Google Scholar]
  88. 88.
    Zuboff S. 2019. Surveillance capitalism. Esprit 5:63–77
    [Google Scholar]
  89. 89.
    Kosinski M, Stillwell D, Graepel T. 2013. Private traits and attributes are predictable from digital records of human behavior. PNAS 110:5802–5
    [Google Scholar]
  90. 90.
    Youyou W, Kosinski M, Stillwell D. 2015. Computer-based personality judgments are more accurate than those made by humans. PNAS 112:1036–40
    [Google Scholar]
  91. 91.
    Aho B, Duffield R. 2020. Beyond surveillance capitalism: privacy, regulation and big data in Europe and China. Econ. Soc. 49:187–212
    [Google Scholar]
  92. 92.
    Fukuyama F, Richman B, Goel A. 2021. How to save democracy from technology: ending Big Tech's information monopoly. Foreign Aff 100:98
    [Google Scholar]
  93. 93.
    Zollo F, Quattrociocchi W 2018. Misinformation spreading on Facebook. Complex Spreading Phenomena in Social Systems: Influence and Contagion in Real-World Social Networks S Lehmann, Y-Y Ahn 177–96 Cham, Switz: Springer Int.
    [Google Scholar]
  94. 94.
    Persily N. 2017. The 2016 U.S. election: Can democracy survive the Internet?. J. Democr. 28:63–76
    [Google Scholar]
  95. 95.
    Karlsen R, Aalberg T. 2021. Social media and trust in news: an experimental study of the effect of Facebook on news story credibility. Digit. Journal. https://doi.org/10.1080/21670811.2021.1945938
    [Crossref] [Google Scholar]
  96. 96.
    Berkhout F, Hertin J. 2004. De-materialising and re-materialising: digital technologies and the environment. Futures 36:903–20
    [Google Scholar]
  97. 97.
    Horner NC, Shehabi A, Azevedo IL. 2016. Known unknowns: indirect energy effects of information and communication technology. Environ. Res. Lett. 11:103001
    [Google Scholar]
  98. 98.
    Koomey JG, Matthews HS, Williams E 2013. Smart everything: Will intelligent systems reduce resource use?. Annu. Rev. Environ. Resour. 38:311–43
    [Google Scholar]
  99. 99.
    Hilty LM, Aebischer B 2015. ICT for sustainability: an emerging research field. ICT Innovations for Sustainability LM Hilty, B Aebischer 3–36 Cham, Switz: Springer Int.
    [Google Scholar]
  100. 100.
    Malmodin J, Bergmark P, Matinfar S. 2018. A high-level estimate of the material footprints of the ICT and the E&M sector. Proceedings of the 5th International Conference on Information and Communication Technology for Sustainability (ICT4S)168–86 Manchester, UK: EasyChair
    [Google Scholar]
  101. 101.
    Forti V, Balde CP, Kuehr R, Bel G 2020. The Global E-Waste Monitor 2020: Quantities, Flows, and the Circular Economy Potential Geneva: U. N. Univ.
    [Google Scholar]
  102. 102.
    Lange S, Pohl J, Santarius T. 2020. Digitalization and energy consumption: Does ICT reduce energy demand?. Ecol. Econ. 176:106760
    [Google Scholar]
  103. 103.
    Dauvergne P. 2022. Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs. Rev. Int. Political Econ. 29:696–718
    [Google Scholar]
  104. 104.
    Kaack LH, Donti PL, Strubell E, Kamiya G, Creutzig F, Rolnick D 2022. Aligning artificial intelligence with climate change mitigation. Nat. Clim. Change 12:518–27
    [Google Scholar]
  105. 105.
    Jones N. 2018. How to stop data centres from gobbling up the world's electricity. Nature 561:163–67
    [Google Scholar]
  106. 106.
    Strubell E, Ganesh A, McCallum A. 2019. Energy and policy considerations for deep learning in NLP. arXiv:1906.02243 [cs]
  107. 107.
    Masanet E, Shehabi A, Lei N, Smith S, Koomey J. 2020. Recalibrating global data center energy-use estimates. Science 367:984–86
    [Google Scholar]
  108. 108.
    Huang P, Copertaro B, Zhang X, Shen J, Löfgren I et al. 2020. A review of data centers as prosumers in district energy systems: renewable energy integration and waste heat reuse for district heating. Appl. Energy 258:114109
    [Google Scholar]
  109. 109.
    Google 2020. Realizing a carbon-free future: Google's third decade of climate action Rep., Google, Mountain View CA: https://clim8.com/wp-content/uploads/2020/11/carbon-free-by-203012.pdf
    [Google Scholar]
  110. 110.
    Varro L, Kamiya G. 2021. 5 ways Big Tech could have big impacts on clean energy transitions Commentary, Int. Energy Agency Paris: https://www.iea.org/commentaries/5-ways-big-tech-could-have-big-impacts-on-clean-energy-transitions
    [Google Scholar]
  111. 111.
    Grubler A, Wilson C, Bento N, Boza-Kiss B, Krey V et al. 2018. A low energy demand scenario for meeting the 1.5°C target and sustainable development goals without negative emission technologies. Nat. Energy 3:515–27
    [Google Scholar]
  112. 112.
    Vinuesa R, Azizpour H, Lente I, Balaam M, Dignum V et al. 2020. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 11:233
    [Google Scholar]
  113. 113.
    Rolnick D, Donti PL, Kaack LH, Kochanski K, Lacoste A et al. 2021. Tackling climate change with machine learning. ACM Comput. Surv. 55:42
    [Google Scholar]
  114. 114.
    Creutzig F, Franzen M, Moeckel R, Heinrichs D, Nieland S et al. 2019. Leveraging digitalization for sustainability in urban transport. Glob. Sustain. 2:e14
    [Google Scholar]
  115. 115.
    Edwards PN. 2017. Knowledge infrastructures for the Anthropocene. Anthr. Rev. 4:34–43
    [Google Scholar]
  116. 116.
    Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J et al. 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566:195–204
    [Google Scholar]
  117. 117.
    Kruitwagen L, Story KT, Friedrich J, Byers L, Skillman S, Hepburn C. 2021. A global inventory of photovoltaic solar energy generating units. Nature 598:604–10
    [Google Scholar]
  118. 118.
    Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J et al., eds. 2018. Global warming of 1.5°C: an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty Rep., IPCC Geneva:
    [Google Scholar]
  119. 119.
    Nawaz A, Hafeez G, Khan I, Jan KU, Li H, Khan SA et al. 2020. An intelligent integrated approach for efficient demand side management with forecaster and advanced metering infrastructure frameworks in smart grid. IEEE Access 8:132551–81
    [Google Scholar]
  120. 120.
    Buckley P. 2020. Prices, information and nudges for residential electricity conservation: a meta-analysis. Ecol. Econ. 172:106635
    [Google Scholar]
  121. 121.
    Khanna TM, Baiocchi G, Callaghan M, Creutzig F, Guias H et al. 2021. A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings. Nat. Energy 6:925–32
    [Google Scholar]
  122. 122.
    Zeng W, Miwa T, Morikawa T. 2017. Application of the support vector machine and heuristic k-shortest path algorithm to determine the most eco-friendly path with a travel time constraint. Transport. Res. D 57:458–73
    [Google Scholar]
  123. 123.
    Cazzola P, Crist P. 2020. Good to go? Assessing the environmental performance of new mobility Rep., Int. Transp. Forum Paris: https://www.itf-oecd.org/good-go-assessing-environmental-performance-new-mobility
    [Google Scholar]
  124. 124.
    Creutzig F. 2021. Making smart mobility sustainable: how to leverage the potential of smart and shared mobility to mitigate climate change Policy Pap., Isr. Public Policy Inst., Tel Aviv
    [Google Scholar]
  125. 125.
    Milojevic-Dupont N, Creutzig F. 2020. Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 64:102526
    [Google Scholar]
  126. 126.
    Zawieska J, Pieriegud J. 2018. Smart city as a tool for sustainable mobility and transport decarbonisation. Transp. Policy 63:39–50
    [Google Scholar]
  127. 127.
    Deichmann U, Goyal A, Mishra D. 2016. Will digital technologies transform agriculture in developing countries?. Agric. Econ. 47:21–33
    [Google Scholar]
  128. 128.
    Chlingaryan A, Sukkarieh S, Whelan B. 2018. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput. Electron. Agric. 151:61–69
    [Google Scholar]
  129. 129.
    World Bank 2019. Future of food: harnessing digital technologies to improve food system outcomes Rep., World Bank Washington, DC:
    [Google Scholar]
  130. 130.
    Parida V, Sjödin D, Reim W 2019. Reviewing literature on digitalization, business model innovation, and sustainable industry: past achievements and future promises. Sustainability 11:391
    [Google Scholar]
  131. 131.
    Aghaei J, Alizadeh M-I. 2013. Demand response in smart electricity grids equipped with renewable energy sources: a review. Renew. Sustain. Energy Rev. 18:64–72
    [Google Scholar]
  132. 132.
    Voyant C, Notton G, Kalogirou S, Nivet ML, Paoli C et al. 2017. Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105:569–82
    [Google Scholar]
  133. 133.
    Vázquez-Canteli JR, Nagy Z. 2019. Reinforcement learning for demand response: a review of algorithms and modeling techniques. Appl. Energy 235:1072–89
    [Google Scholar]
  134. 134.
    Andrae A, Edler T 2015. On global electricity usage of communication technology: trends to 2030. Challenges 6:117–57
    [Google Scholar]
  135. 135.
    Rikap C. 2020. Amazon: a story of accumulation through intellectual rentiership and predation. Compet. Change. https://doi.org/10.1177/1024529420932418
    [Crossref] [Google Scholar]
  136. 136.
    Deetman S, Pauliuk S, van Vuuren DP, van der Voet E, Tukker A. 2018. Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances. Environ. Sci. Technol. 52:4950–59
    [Google Scholar]
  137. 137.
    Pitron G. 2018. La guerre des métaux rares Paris: LLL
    [Google Scholar]
  138. 138.
    Taj F, Klein MCA, van Halteren A. 2019. Digital health behavior change technology: bibliometric and scoping review of two decades of research. JMIR mHealth uHealth 7:e13311
    [Google Scholar]
  139. 139.
    Calvão F, Archer M 2021. Digital extraction: blockchain traceability in mineral supply chains. Political Geogr. 87:102381
    [Google Scholar]
  140. 140.
    Kunkel S, Tyfield D. 2021. Digitalisation, sustainable industrialisation and digital rebound—asking the right questions for a strategic research agenda. Energy Res. Soc. Sci. 82:102295
    [Google Scholar]
  141. 141.
    Mironkina A, Kharitonov S, Kuchumov A, Belokopytov A. 2020. Digital technologies for efficient farming. IOP Conf. Ser. Earth Environ. Sci. 578:012017
    [Google Scholar]
  142. 142.
    Wolniak R, Saniuk S, Grabowska S, Gajdzik B 2020. Identification of energy efficiency trends in the context of the development of Industry 4.0 using the Polish steel sector as an example. Energies 13:2867
    [Google Scholar]
  143. 143.
    Kleidon A 2022. Empowering the Earth system by technology: using thermodynamics of the Earth system to illustrate a possible sustainable future of the planet. Strategies for Sustainability of the Earth System PA Wilderer, M Grambow, M Molls, K Oexle 433–44 Berlin: Springer
    [Google Scholar]
  144. 144.
    Michalek G, Meran G, Schwarze R, Yildiz Ö. 2015. Nudging as a new “soft” tool in environmental policy—an analysis based on insights from cognitive and social psychology. RECAP15: Re-Thinking the Efficacy of International Climate Change Agreements Post COP15 Discuss. Pap. 20 Frankfurt, Ger: Eur. Univ. Viadrina
    [Google Scholar]
  145. 145.
    Clarke R. 2019. Risks inherent in the digital surveillance economy: a research agenda. J. Inf. Technol. 34:59–80
    [Google Scholar]
  146. 146.
    Di Silvestre ML, Favuzza S, Riva Sanseverino E, Zizzo G 2018. How decarbonization, digitalization and decentralization are changing key power infrastructures. Renew. Sustain. Energy Rev. 93:483–98
    [Google Scholar]
  147. 147.
    Schmück K, Sturm M, Gassmann O 2021. Decentralized platform ecosystems for data and digital trust in industrial environments. Connected Business: Create Value in a Networked Economy O Gassmann, F Ferrandina 127–36 Cham, Switz: Springer Int.
    [Google Scholar]
  148. 148.
    Deseriis M. 2021. Rethinking the digital democratic affordance and its impact on political representation: toward a new framework. New Media Soc 23:2452–73
    [Google Scholar]
  149. 149.
    Luers A, Garard J, St. Clair AL, Gaffney O, Hassenboehler T, Langlois L et al. 2020. Leveraging digital disruptions for a climate-safe and equitable world: the D2S agenda. IEEE Technol. Soc. Mag. 39:18–31
    [Google Scholar]
  150. 150.
    Strefler J, Kriegler E, Bauer N, Luderer G, Pietzcker RC et al. 2021. Alternative carbon price trajectories can avoid excessive carbon removal. Nat. Commun. 12:2264
    [Google Scholar]
  151. 151.
    Mattauch L, Creutzig F, aus dem Moore N, Franks M, Funke F et al. 2019. Antworten auf zentrale Fragen zur Einführung von CO2 Preisen Rep., Sci. Future, Clim. Change Cent. Vienna:
    [Google Scholar]
  152. 152.
    Amazon 2021. Faster and further, together Sustain. Rep., Amazon Seattle, WA: https://sustainability.aboutamazon.com/pdfBuilderDownload?name=amazon-sustainability-2020-report
    [Google Scholar]
  153. 153.
    Truby J, Brown RD, Dahdal A, Ibrahim I 2022. Blockchain, climate damage, and death: policy interventions to reduce the carbon emissions, mortality, and net-zero implications of non-fungible tokens and Bitcoin. Energy Res. Soc. Sci. 88:102499
    [Google Scholar]
  154. 154.
    Rockström J, Beringer T, Hole D, Creutzer F. 2021. We need biosphere stewardship that protects carbon sinks and builds resilience. PNAS 118:e2115218118
    [Google Scholar]
  155. 155.
    World Econ. Forum 2019. A new circular vision for electronics: time for a global reboot. Rep., World Econ. Forum Geneva: https://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf
    [Google Scholar]
  156. 156.
    R. Soc 2020. Digital technology and the planet: harnessing computing to achieve net zero Rep., R. Soc. London:
    [Google Scholar]
  157. 157.
    Bai X, Nagendra H, Shi P, Liu H. 2020. Cities: build networks and share plans to emerge stronger from COVID-19. Nature 584:517–20
    [Google Scholar]
  158. 158.
    Preist C, Schien D, Shabajee P. 2019. Evaluating sustainable interaction design of digital services: the case of YouTube. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems Pap. 397 New York: ACM
    [Google Scholar]
  159. 159.
    Shaviro D. 2019. Digital services taxes and the broader shift from determining the source of income to taxing location-specific rents Law Econ. Res. Pap. 19–36 NYU New York:
    [Google Scholar]
  160. 160.
    Soergel B, Kriegler E, Bodirsky BL, Bauer N, Leimbach M, Popp A. 2021. Combining ambitious climate policies with efforts to eradicate poverty. Nat. Commun. 12:2342
    [Google Scholar]
  161. 161.
    Creutzig F. 2019. The mitigation trinity: coordinating policies to escalate climate mitigation. One Earth 1:76–85
    [Google Scholar]
  162. 162.
    Kornek U, Edenhofer O. 2020. The strategic dimension of financing global public goods. Eur. Econ. Rev. 127:103423
    [Google Scholar]
  163. 163.
    POSMO Coop 2021. The data cooperative: a new business model for the digital economy. Medium Oct. 31
    [Google Scholar]
  164. 164.
    Creutzig F. 2021. From smart city to digital urban commons: institutional considerations for governing shared mobility data. Environ. Res. Infrastruct. Sustain. 1:025004
    [Google Scholar]
  165. 165.
    Adeodato R, Pournouri S 2020. Secure implementation of e-governance: a case study about Estonia. Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity H Jahankhani, S Kendzierskyj, N Chelvachandran, J Ibarra 397–429 Cham, Switz: Springer Int.
    [Google Scholar]
  166. 166.
    Afonso JR. 2017. Estonia, the digital republic. New Yorker Dec. 25
    [Google Scholar]
  167. 167.
    Bharosa N, Lips S, Draheim D 2020. Making e-government work: learning from the Netherlands and Estonia. Electronic Participation S Hofmann, C Csáki, N Edelmann, T Lampoltshammer, U Melin et al.41–53 Berlin: Springer
    [Google Scholar]
  168. 168.
    Eur. Comm 2020. A new Circular Economy Action Plan for a cleaner and more competitive Europe Position Pap., Eur. Comm. Brussels/Luxembourg:
    [Google Scholar]
  169. 169.
    Wieser H, Tröger N. 2018. Exploring the inner loops of the circular economy: replacement, repair, and reuse of mobile phones in Austria. J. Clean. Prod. 172:3042–55
    [Google Scholar]
  170. 170.
    Tzani D, Stavrakas V, Santini M, Thomas S, Rosenow J, Flamos A. 2022. Pioneering a performance-based future for energy efficiency: lessons learnt from a comparative review analysis of pay-for-performance programmes. Renew. Sustain. Energy Rev. 158:112162
    [Google Scholar]
  171. 171.
    Kazmi H, Munné-Collado Í, Mehmood F, Syed TA, Driesen J. 2021. Towards data-driven energy communities: a review of open-source datasets, models and tools. Renew. Sustain. Energy Rev. 148:111290
    [Google Scholar]
  172. 172.
    Brockway PE, Sorrell S, Semieniuk G, Heun MK, Court V. 2021. Energy efficiency and economy-wide rebound effects: a review of the evidence and its implications. Renew. Sustain. Energy Rev. 141:110781
    [Google Scholar]
  173. 173.
    Ruiz D, San Miguel G, Rojo J, Teriús-Padrón JG, Gaeta E et al. 2022. Life cycle inventory and carbon footprint assessment of wireless ICT networks for six demographic areas. Resour. Conserv. Recycl. 176:105951
    [Google Scholar]
  174. 174.
    Eur. Comm 2018. Time to establish a modern, fair and efficient taxation standard for the digital economy Commun. 146, Eur. Comm., Brussels/Luxembourg. https://eur-lex.europa.eu/resource.html?uri=cellar:2bafa0d9-2dde-11e8-b5fe-01aa75ed71a1.0017.02/DOC_1&format=PDF
    [Google Scholar]
  175. 175.
    Prüfer J. 2020. Competition policy and data sharing on data-driven markets Friedrich-Ebert-Stiftung Proj., Tilburg Univ. Tilburg, Neth:.
    [Google Scholar]
  176. 176.
    Jackman JA, Gentile DA, Cho N-J, Park Y. 2021. Addressing the digital skills gap for future education. Nat. Hum. Behav. 5:542–45
    [Google Scholar]
  177. 177.
    Meadows DH. 1999. Leverage points: places to intervene in a system Rep., Sustain. Inst. Hartland, VT: https://donellameadows.org/wp-content/userfiles/Leverage_Points.pdf
    [Google Scholar]
  178. 178.
    Potters JI, Termeer C, Opdam PFM, eds. 2016. Organising Sustainability in the Digital Age: Results of the Research Programme Informational Governance for Sustainability 2012–2016. Wageningen, Neth: Wageningen Univ.
    [Google Scholar]
  179. 179.
    Bai X, van der Leeuw S, O'Brien K, Berkhout F, Fiermann F et al. 2016. Plausible and desirable futures in the Anthropocene: a new research agenda. Glob. Environ. Change 39:351–62
    [Google Scholar]
  180. 180.
    Creutzig F, Niamir L, Bai X, Callaghan M, Cullen J et al. 2021. Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nat. Clim. Change 12:36–46
    [Google Scholar]
  181. 181.
    Creutzig F. 2020. Limits to liberalism: considerations for the Anthropocene. Ecol. Econ. 177:106763
    [Google Scholar]
  182. 182.
    Szilard L. 1929. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys. 53:840–56
    [Google Scholar]
  183. 183.
    Wiener N. 1950. Cybernetics. Bull. Am. Acad. Arts Sci. 3:2–4
    [Google Scholar]
  184. 184.
    Jauch JM, Báron JG 1990. Entropy, information and Szilard's Paradox. Maxwell's Demon: Entropy, Information, Computing HS Leff, AR Rex 160–72 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  185. 185.
    Creutzig F. 2008. Sufficient encoding of dynamical systems PhD Thesis, Humboldt Univ. Berlin:
    [Google Scholar]
  186. 186.
    Tishby N, Pereira FC, Bialek W. 2000. The information bottleneck method. arXiv:physics/0004057
  187. 187.
    Kleidon A, Lorenz R 2005. Entropy production by Earth system processes. Non-Equilibrium Thermodynamics and the Production of Entropy A Kleidon, RD Lorenz 1–20 Berlin: Springer
    [Google Scholar]
  188. 188.
    Haff PK 2014. Maximum entropy production by technology. Beyond the Second Law RC Dewar, CH Lineweaver, RK Nguyen, K Regenauer-Lieb 397–414 Berlin: Springer
    [Google Scholar]
/content/journals/10.1146/annurev-environ-120920-100056
Loading
/content/journals/10.1146/annurev-environ-120920-100056
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error