1932

Abstract

There are large disparities in access to green technologies between countries and among different demographic groups within countries. Unless carefully managed, the energy transition risks exacerbating some of these inequalities, for example, by burdening those who are excluded from efficient new technologies with the costs of maintaining legacy infrastructure. The energy transition will create new interdependencies between sectors—for example, between buildings, the power sector, and transportation—requiring integrated design of policies and infrastructure in different sectors. The equitable adoption of new technologies is contingent on broadening access to enabling technologies such as the Internet and payment systems. Decisionmakers must focus on new technologies that remove disparities in access to services but do not replicate current inefficiencies in providing those services (e.g., equitable access to mobility—not only to motorized personal vehicles). Data at higher resolutions and with broader coverage are needed to design equitable technology deployment strategies and evaluate their success.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-120920-101002
2023-11-13
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/energy/48/1/annurev-environ-120920-101002.html?itemId=/content/journals/10.1146/annurev-environ-120920-101002&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    US Environ. Prot. Agency 2021. Environmental justice. United States Environmental Protection Agency https://www.epa.gov/environmentaljustice
    [Google Scholar]
  2. 2.
    Reames TG, Reiner MA, Stacey MB. 2018. An incandescent truth: disparities in energy-efficient lighting availability and prices in an urban U.S. county. Appl. Energy 218:95–103
    [Google Scholar]
  3. 3.
    Bednar DJ, Reames TG, Keoleian GA. 2017. The intersection of energy and justice: modeling the spatial, racial/ethnic and socioeconomic patterns of urban residential heating consumption and efficiency in Detroit, Michigan. Energy Build. 143:25–34
    [Google Scholar]
  4. 4.
    Debnath R, Simoes GMF, Bardhan R, Leder SM, Lamberts R, Sunikka-Blank M. 2020. Energy justice in slum rehabilitation housing: an empirical exploration of built environment effects on socio-cultural energy demand. Sustainability 12:73027
    [Google Scholar]
  5. 5.
    Mahajan A, Harish SP, Urpelainen J. 2020. The behavioral impact of basic energy access: a randomized controlled trial with solar lanterns in rural India. Energy Sustain. Dev. 57:214–25
    [Google Scholar]
  6. 6.
    Mohai P, Pellow D, Roberts JT. 2009. Environmental justice. Annu. Rev. Environ. Resour. 34:405–30
    [Google Scholar]
  7. 7.
    Cartwright ED. 2020. Rethinking energy generation, siting, and equity. Clim. Energy 37:215–16
    [Google Scholar]
  8. 8.
    Fraser T, Chapman AJ. 2018. Social equity impacts in Japan's mega-solar siting process. Energy Sustain. Dev. 42:136–51
    [Google Scholar]
  9. 9.
    Mulvaney D. 2013. Opening the black box of solar energy technologies: exploring tensions between innovation and environmental justice. Sci. Cult. 22:2230–37
    [Google Scholar]
  10. 10.
    Mulvaney D. 2014. Are green jobs just jobs? Cadmium narratives in the life cycle of photovoltaics. Geoforum 54:178–86
    [Google Scholar]
  11. 11.
    Banza CLN, Nawrot TS, Haufroid V, Decrée S, De Putter T et al. 2009. High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ. Res. 109:6745–52
    [Google Scholar]
  12. 12.
    Ichihara M, Harding A. 1995. Human rights, the environment and radioactive waste: a study of the Asian rare earth case in Malaysia. Rev. Eur. Comm. Int. Environ. Law 4:11–14
    [Google Scholar]
  13. 13.
    Ottinger G. 2011. Environmentally just technology. Environ. Justice 4:181–85
    [Google Scholar]
  14. 14.
    Bhadra M. 2013. Fighting nuclear energy, fighting for India's democracy. Sci. Cult. 22:2238–46
    [Google Scholar]
  15. 15.
    Ramana M. 2011. The Power of Promise: Examining Nuclear Power in India Delhi: Viking Penguin
    [Google Scholar]
  16. 16.
    Raman S. 2013. Fossilizing renewable energies. Sci. Cult. 22:2172–80
    [Google Scholar]
  17. 17.
    Kok K, Widergren S. 2016. A society of devices: integrating intelligent distributed resources with transactive energy. IEEE Power Energy Mag. 14:334–45
    [Google Scholar]
  18. 18.
    McCauley D, Heffron R. 2018. Just transition: integrating climate, energy and environmental justice. Energy Policy 119:1–7
    [Google Scholar]
  19. 19.
    Oswald Y, Owen A, Steinberger JK. 2020. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat. Energy 5:3231–39
    [Google Scholar]
  20. 20.
    Crenshaw K. 1989. Demarginalizing the intersection of race and sex: a black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics. Univ. Chic. Legal Forum 1989:8
    [Google Scholar]
  21. 21.
    Int. Energy Agency 2021. Tracking SDG7: The Energy Progress Report, 2021. Rep. IEA Paris:
    [Google Scholar]
  22. 22.
    Wang P, Zhao S, Dai T, Peng K, Zhang Q et al. 2022. Regional disparities in steel production and restrictions to progress on global decarbonization: a cross-national analysis. Renew. Sustain. Energy Rev. 161:112367
    [Google Scholar]
  23. 23.
    Wilson C, Grubler A, Bento N, Healey S, De Stercke S, Zimm C. 2020. Granular technologies to accelerate decarbonization. Science 368:648636–39
    [Google Scholar]
  24. 24.
    Gonzalez CG. 2016. The environmental justice implications of biofuels. UCLA J. Int. Law Foreign Aff. 20:1229–74
    [Google Scholar]
  25. 25.
    Haeri H, Horkitz K, Lee H, Wang J, Hardman T et al. 2018. Assessment of barriers to demand response in the northwest's public power sector. Rep. Bonneville Power Adm. Portland:
    [Google Scholar]
  26. 26.
    White LV, Sintov ND. 2020. Health and financial impacts of demand-side response measures differ across sociodemographic groups. Nat. Energy 5:150–60
    [Google Scholar]
  27. 27.
    Vaishnav P, Horner N, Azevedo IL. 2017. Was it worthwhile? Where have the benefits of rooftop solar photovoltaic generation exceeded the cost?. Environ. Res. Lett. 12:9094015
    [Google Scholar]
  28. 28.
    Grainger CA, Kolstad CD. 2010. Who pays a price on carbon?. Environ. Resour. Econ. 46:3359–76
    [Google Scholar]
  29. 29.
    Int. Energy Agency 2022. Buildings. International Energy Agency https://www.iea.org/energy-system/buildings
    [Google Scholar]
  30. 30.
    Goldstein B, Reames TG, Newell JP. 2022. Racial inequity in household energy efficiency and carbon emissions in the United States: an emissions paradox. Energy Res. Soc. Sci. 84:102365
    [Google Scholar]
  31. 31.
    Kamat AS, Khosla R, Narayanamurti V. 2020. Illuminating homes with LEDs in India: rapid market creation towards low-carbon technology transition in a developing country. Energy Res. Soc. Sci. 66:101488
    [Google Scholar]
  32. 32.
    California Air Resources Board 2022. Proposed 2022 State Strategy for the State Implementation Plan. California Air Resources Board
  33. 33.
    Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D et al. 2018. Net-zero emissions energy systems. Science 360:6396eaas9793
    [Google Scholar]
  34. 34.
    Koster E, Kruit K, Teng M, Hesselink F. 2022. The natural gas phase-out in the Netherlands Rep. CE Delft
    [Google Scholar]
  35. 35.
    New York State Senate 2021. Senate Bill S6843C (the All-Electric Building Act). 2021–2022 Legis. sess., May 19. https://legislation.nysenate.gov/pdf/bills/2021/S6843C
    [Google Scholar]
  36. 36.
    Blumsack S, Brownson J, Witmer L. 2009. Efficiency, economic and environmental assessment of ground source heat pumps in central Pennsylvania. Proceedings of the 2009 42nd Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 20091–7. New York: IEEE
    [Google Scholar]
  37. 37.
    Deetjen TA, Walsh L, Vaishnav P. 2021. US residential heat pumps: the private economic potential and its emissions, health, and grid impacts. Environ. Res. Lett. 16:8084024
    [Google Scholar]
  38. 38.
    Vaishnav P, Fatimah AM. 2020. The environmental consequences of electrifying space heating. Environ. Sci. Technol. 54:169814–23
    [Google Scholar]
  39. 39.
    Bednar DJ, Reames TG. 2020. Recognition of and response to energy poverty in the United States. Nat. Energy 5:6432–39
    [Google Scholar]
  40. 40.
    EIA (US Energy Inf. Adm.) 2022. Table HC11.1 Household energy insecurity, 2020 2020 RECS Survey Data EIA Washington, DC: https://www.eia.gov/consumption/residential/data/2020/hc/pdf/HC%2011.1.pdf
    [Google Scholar]
  41. 41.
    Waite M, Modi V. 2020. Electricity load implications of space heating decarbonization pathways. Joule 4:2376–94
    [Google Scholar]
  42. 42.
    Faruqui A, Bourbonnais C. 2020. The tariffs of tomorrow: innovations in rate designs. IEEE Power Energy Mag. 18:318–25
    [Google Scholar]
  43. 43.
    Cong S, Nock D, Qiu YL, Xing B. 2022. Unveiling hidden energy poverty using the energy equity gap. Nat. Commun. 13:12456
    [Google Scholar]
  44. 44.
    Hernández D, Bird S. 2010. Energy burden and the need for integrated low-income housing and energy policy. Poverty Public Policy 2:45–25
    [Google Scholar]
  45. 45.
    Summit Blue Consulting 2007. Evaluation of the 2006 Energy-Smart Pricing PlanSM: final report Rep. CNT Energy Chicago:
    [Google Scholar]
  46. 46.
    Fowlie M, Greenstone M, Wolfram C. 2018. Do energy efficiency investments deliver? Evidence from the weatherization assistance program. Q. J. Econ. 133:31597–644
    [Google Scholar]
  47. 47.
    Raissi S, Reames TG. 2020.. “ If we had a little more flexibility.” Perceptions of programmatic challenges and opportunities implementing government-funded low-income energy efficiency programs. Energy Policy 147:111880
    [Google Scholar]
  48. 48.
    DOE (US Dep. Energy) 2019. Weatherization Program Notice 19–5 Sept. 6. DOE Doc. WPN-19-5. https://www.energy.gov/sites/default/files/2019/09/f66/WPN-19-5.pdf
    [Google Scholar]
  49. 49.
    Hernández D, Phillips D. 2015. Benefit or burden? Perceptions of energy efficiency efforts among low-income housing residents in New York City. Energy Res. Soc. Sci. 8:52–59
    [Google Scholar]
  50. 50.
    Howden-Chapman P, Matheson A, Crane J, Viggers H, Cunningham M et al. 2007. Effect of insulating existing houses on health inequality: cluster randomised study in the community. BMJ 334:7591460
    [Google Scholar]
  51. 51.
    Tonn B, Hawkins B, Rose E, Marincic M. 2021. Income, housing and health: poverty in the United States through the prism of residential energy efficiency programs. Energy Res. Soc. Sci. 73:101945
    [Google Scholar]
  52. 52.
    Walker I, Less B, Casquero-Modrego N, Rainer L 2021. The cost of decarbonization and energy upgrade retrofits for US homes Rep. Lawrence Berkeley Natl. Lab. Berkeley, CA:
    [Google Scholar]
  53. 53.
    DOE (US Dep. Energy) 2020. WAP Memorandum 060 March 25. DOE Doc. F 1325.8. https://www.energy.gov/sites/prod/files/2020/03/f73/wap-memo-060.pdf
    [Google Scholar]
  54. 54.
    Bianco V, Sonvilla PM. 2021. Supporting energy efficiency measures in the residential sector. The case of on-bill schemes. Energy Rep. 7:4298–307
    [Google Scholar]
  55. 55.
    Davis LW, Hausman C. 2022. Who will pay for legacy utility costs?. J. Assoc. Environ. Resour. Econ. 9:61047–85
    [Google Scholar]
  56. 56.
    Kikstra JS, Mastrucci A, Min J, Riahi K, Rao ND. 2021. Decent living gaps and energy needs around the world. Environ. Res. Lett. 16:9095006
    [Google Scholar]
  57. 57.
    Rao ND, Min J, Mastrucci A. 2019. Energy requirements for decent living in India, Brazil and South Africa. Nat. Energy 4:121025–32
    [Google Scholar]
  58. 58.
    Grubler A, Wilson C, Bento N, Boza-Kiss B, Krey V et al. 2018. A low energy demand scenario for meeting the 1.5°C target and sustainable development goals without negative emission technologies. Nat. Energy 3:6515–27
    [Google Scholar]
  59. 59.
    Millward-Hopkins J, Steinberger JK, Rao ND, Oswald Y. 2020. Providing decent living with minimum energy: a global scenario. Glob. Environ. Change 65:102168
    [Google Scholar]
  60. 60.
    Hickel J, Slamersak A. 2022. Existing climate mitigation scenarios perpetuate colonial inequalities. Lancet Planet. Health 6:7e628–31
    [Google Scholar]
  61. 61.
    Cullen JM, Allwood JM, Borgstein EH. 2011. Reducing energy demand: What are the practical limits?. Environ. Sci. Technol. 45:41711–18
    [Google Scholar]
  62. 62.
    Debnath R, Bardhan R, Sunikka-Blank M. 2019. How does slum rehabilitation influence appliance ownership? A structural model of non-income drivers. Energy Policy 132:418–28
    [Google Scholar]
  63. 63.
    Debnath R, Bardhan R, Sunikka-Blank M. 2019. Discomfort and distress in slum rehabilitation: investigating a rebound phenomenon using a backcasting approach. Habitat Int. 87:75–90
    [Google Scholar]
  64. [Google Scholar]
  65. 65.
    Sunikka-Blank M, Bardhan R, Haque AN. 2019. Gender, domestic energy and design of inclusive low-income habitats: a case of slum rehabilitation housing in Mumbai, India. Energy Res. Soc. Sci. 49:53–67
    [Google Scholar]
  66. 66.
    Haque AN, Lemanski C, de Groot J. 2021. Why do low-income urban dwellers reject energy technologies? Exploring the socio-cultural acceptance of solar adoption in Mumbai and Cape Town. Energy Res. Soc. Sci. 74:101954
    [Google Scholar]
  67. 67.
    Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM et al. 2020. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:102581223–49
    [Google Scholar]
  68. 68.
    Gill-Wiehl A, Kammen DM. 2022. A pro-health cookstove strategy to advance energy, social and ecological justice. Nat. Energy 7:999–1002
    [Google Scholar]
  69. 69.
    Afrane G, Ntiamoah A. 2011. Comparative life cycle assessment of charcoal, biogas, and liquefied petroleum gas as cooking fuels in Ghana. J. Ind. Ecol. 15:4539–49
    [Google Scholar]
  70. 70.
    Bailis R, Ezzati M, Kammen DM. 2005. Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa. Science 308:571898–103
    [Google Scholar]
  71. 71.
    EPA (US Environ. Prot. Agency) 2017. Life cycle assessment of cookstoves and fuels in India, China, Kenya, and Ghana Doc. EPA/600/R-17/225 EPA Washington, DC:
    [Google Scholar]
  72. 72.
    Singh P, Gundimeda H, Stucki M. 2014. Environmental footprint of cooking fuels: a life cycle assessment of ten fuel sources used in Indian households. Int. J. Life Cycle Assess. 19:51036–48
    [Google Scholar]
  73. 73.
    Bailis R, Drigo R, Ghilardi A, Masera O. 2015. The carbon footprint of traditional woodfuels. Nat. Clim. Change 5:3266–72
    [Google Scholar]
  74. 74.
    Bouckaert S, Pales AF, McGlade C, Remme U, Wanner B et al. 2021. Net zero by 2050: a roadmap for the global energy sector Rep. Int. Energy Agency Paris:
    [Google Scholar]
  75. 75.
    Mastrucci A, Byers E, Pachauri S, Rao ND. 2019. Improving the SDG energy poverty targets: residential cooling needs in the Global South. Energy Build. 186:405–15
    [Google Scholar]
  76. 76.
    Xu C, Kohler TA, Lenton TM, Svenning J-C, Scheffer M. 2020. Future of the human climate niche. PNAS 117:2111350–55
    [Google Scholar]
  77. 77.
    Khosla R, Renaldi R, Mazzone A, McElroy C, Palafox-Alcantar G. 2022. Sustainable cooling in a warming world: technologies, cultures, and circularity. Annu. Rev. Environ. Resourc. 47:449–78
    [Google Scholar]
  78. 78.
    Clack CTM, Choukulkar A, Coté B, McKee SA. 2020. Why local solar for all costs less: a new roadmap for the lowest cost grid Tech. Rep. Vibrant Clean Energy Boulder, CO:
    [Google Scholar]
  79. 79.
    IEA (Int. Energy Agency) 2022. Access to electricity. SDG7: data and projections—analysis Rep. IEA Paris:
    [Google Scholar]
  80. 80.
    Mitra S, Buluswar S. 2015. Universal access to electricity: closing the affordability gap. Annu. Rev. Environ. Resour. 40:261–83
    [Google Scholar]
  81. 81.
    Zerriffi H, Wilson E. 2010. Leapfrogging over development? Promoting rural renewables for climate change mitigation. Energy Policy 38:41689–700
    [Google Scholar]
  82. 82.
    Brass JN, Carley S, MacLean LM, Baldwin E. 2012. Power for development: a review of distributed generation projects in the developing world. Annu. Rev. Environ. Resour. 37:107–36
    [Google Scholar]
  83. 83.
    Aklin M, Urpelainen J. 2021. The evolving role of solar-based lighting solutions in rural India: global lessons for distributed renewables. Energy Sustain. Dev. 63:113–18
    [Google Scholar]
  84. 84.
    Jain A, Tripathi S, Mani S, Patnaik S, Shahidi T, Ganesan K. 2018. Access to clean cooking energy and electricity: Survey of States 2018 (ACCESS) Harvard Dataverse, Cambridge, MA/India Energy Access Dataverse, Council on Energy, Environment and Water Delhi: https://doi.org/10.7910/DVN/AHFINM
    [Google Scholar]
  85. 85.
    Agutu C, Egli F, Williams NJ, Schmidt TS, Steffen B. 2022. Accounting for finance in electrification models for sub-Saharan Africa. Nat. Energy 7:7631–41
    [Google Scholar]
  86. 86.
    Rennert K, Errickson F, Prest BC, Rennels L, Newell RG et al. 2022. Comprehensive evidence implies a higher social cost of CO2. Nature 610:687–92
    [Google Scholar]
  87. 87.
    Mohan A, Sengupta S, Vaishnav P, Tongia R, Ahmed A, Azevedo IL. 2022. Sustained cost declines in solar PV and battery storage needed to eliminate coal generation in India. Environ. Res. Lett. 17:11114043
    [Google Scholar]
  88. 88.
    Cook JJ, Shah M. 2018. Reducing energy burden with solar: Colorado's strategy and roadmap for states Tech. Rep. NREL/TP-6A20–70965 Natl. Renew. Energy Lab. Golden, CO:
    [Google Scholar]
  89. 89.
    Lukanov BR, Krieger EM. 2019. Distributed solar and environmental justice: exploring the demographic and socio-economic trends of residential PV adoption in California. Energy Policy 134:110935
    [Google Scholar]
  90. 90.
    Borenstein S. 2017. Private net benefits of residential solar PV: the role of electricity tariffs, tax incentives, and rebates. J. Assoc. Environ. Resour. Econ. 4:S1
    [Google Scholar]
  91. 91.
    Barbose G, Darghouth N, Hoen B, Wiser R. 2018. Income trends of residential PV adopters: an analysis of household-level income estimates. Rep. Lawrence Berkeley Natl. Lab. Berkeley:
    [Google Scholar]
  92. 92.
    Reames TG. 2020. Distributional disparities in residential rooftop solar potential and penetration in four cities in the United States. Energy Res. Soc. Sci. 69:101612
    [Google Scholar]
  93. 93.
    Gagnon P, Margolis R, Melius J, Phillips C, Elmore R. 2016. Rooftop solar photovoltaic technical potential in the United States: a detailed assessment Tech. Rep. NREL/TP-6A20-65298 Natl. Renew. Energy Lab. Golden, CO:
    [Google Scholar]
  94. 94.
    Sigrin BO, Mooney ME. 2018. Rooftop solar technical potential for low-to-moderate income households in the United States Tech. Rep. NREL/TP-6A20–70901 Natl. Renew. Energy Lab. Golden, CO:
    [Google Scholar]
  95. 95.
    Darghouth NR, O'Shaughnessy E, Forrester S, Barbose G 2022. Characterizing local rooftop solar adoption inequity in the US. Environ. Res. Lett. 17:3034028
    [Google Scholar]
  96. 96.
    Brockway AM, Conde J, Callaway D. 2021. Inequitable access to distributed energy resources due to grid infrastructure limits in California. Nat. Energy 6:9892–903
    [Google Scholar]
  97. 97.
    Heeter J, Xu K, Chan G. 2021. Sharing the sun: community solar deployment, subscription savings, and energy burden reduction Tech. Rep. NREL/PR-6A20-80246 Natl. Renew. Energy Lab. Golden, CO:
    [Google Scholar]
  98. 98.
    NREL (Natl. Renew. Energy Lab.) 2021. Equitable access to community solar: program design and subscription considerations. Tech. Rep. NREL/FS-6A20-79548 Natl. Renew. Energy Lab. Golden, CO:
    [Google Scholar]
  99. 99.
    New York State Department of Public Service 2021. Case 20-E-0249 (In the Matter of a Renewable Energy Facility Host Community Benefit Program) 2021 Public Serv. Comm. sess., Febr. 11. https://documents.dps.ny.gov/public/MatterManagement/CaseMaster.aspx?MatterSeq=62773
    [Google Scholar]
  100. 100.
    Heeter J, Reames T. 2022. Incorporating energy justice into utility-scale photovoltaic deployment: a policy framework. Renew. Energy Focus 42:1–7
    [Google Scholar]
  101. 101.
    Cohen M. 2021. A new Microsoft solar project shows how climate and racial equity are getting connected. CNBC Aug. 11. https://www.cnbc.com/2021/08/11/new-microsoft-solar-project-shows-climate-racial-equity-are-connected.html
    [Google Scholar]
  102. 102.
    IEA (Int. Energy Agency) 2022. Global Energy Review: CO2 emissions in 2021—analysis Rep. IEA Paris:
    [Google Scholar]
  103. 103.
    Weiss DJ, Nelson A, Gibson HS, Temperley W, Peedell S et al. 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553:7688333–36
    [Google Scholar]
  104. 104.
    Canning D, Fay M. 1993. The effects of transportation networks on economic growth Discuss. Pap. 653a Dep. Econ., Univ. Columbia New York:
    [Google Scholar]
  105. 105.
    Eom J, Schipper L, Thompson L. 2012. We keep on truckin’: trends in freight energy use and carbon emissions in 11 IEA countries. Energy Policy 45:327–41
    [Google Scholar]
  106. 106.
    Kaack LH, Vaishnav P, Morgan MG, Azevedo IL, Rai S. 2018. Decarbonizing intraregional freight systems with a focus on modal shift. Environ. Res. Lett. 13:8083001
    [Google Scholar]
  107. 107.
    Ayres RU, Warr B. 2010. The Economic Growth Engine: How Energy and Work Drive Material Prosperity Cheltenham, UK: Edward Elgar
    [Google Scholar]
  108. 108.
    Nkiriki J, Jaramillo P, Williams N, Davis A, Armanios DE. 2022. Estimating global demand for land-based transportation services using the shared socioeconomic pathways scenario framework. Environ. Res. Infrastruct. Sustain. 2:3035009
    [Google Scholar]
  109. 109.
    Williams JH, DeBenedictis A, Ghanadan R, Mahone A, Moore J et al. 2012. The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335:606453–59
    [Google Scholar]
  110. 110.
    Miotti M, Supran GJ, Kim EJ, Trancik JE. 2016. Personal vehicles evaluated against climate change mitigation targets. Environ. Sci. Technol. 50:2010795–804
    [Google Scholar]
  111. 111.
    Calif. Franchise Tax Board 2021. State reports on median income for 2019: December 2021 tax news. California Franchise Tax Board. https://www.ftb.ca.gov/about-ftb/newsroom/tax-news/december-2021/california-median-household-income.html
    [Google Scholar]
  112. 112.
    Lee JH, Hardman SJ, Tal G. 2019. Who is buying electric vehicles in California? Characterising early adopter heterogeneity and forecasting market diffusion. Energy Res. Soc. Sci. 55:218–26
    [Google Scholar]
  113. 113.
    Farkas ZA, Shin H-S, Nickkar A. 2018.. Environmental attributes of electric vehicle ownership and commuting behavior in Maryland: public policy and equity considerations. Rep. Morgan State Univ. Baltimore:
    [Google Scholar]
  114. 114.
    Sovacool BK, Kester J, Noel L, de Rubens GZ. 2018. The demographics of decarbonizing transport: the influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. Glob. Environ. Change 52:86–100
    [Google Scholar]
  115. 115.
    Bureau Transp. Stat 2022. New and used passenger car and light truck sales and leases. United States Department of Transportation. https://www.bts.gov/content/new-and-used-passenger-car-sales-and-leases-thousands-vehicles
    [Google Scholar]
  116. 116.
    State of California 2018. Assembly Bill AB-193 (Zero-Emission Assurance Project) 2017–2018 Reg. sess., Sept. 13. https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720180AB193&quot%253B=
    [Google Scholar]
  117. 117.
    US Dep. Transp, US Environ. Prot. Agency 2022. Federal tax credits for plug-in electric and fuel cell electric vehicles purchased in 2023 or after. United States Department of Energy https://www.fueleconomy.gov/feg/tax2023.shtml
    [Google Scholar]
  118. 118.
    Sheldon TL. 2022. Evaluating electric vehicle policy effectiveness and equity. Annu. Rev. Resour. Econ. 14:669–88
    [Google Scholar]
  119. 119.
    Liu H, Dai Z, Rodgers MO, Guensler R. 2022. Equity issues associated with U.S. plug-in electric vehicle income tax credits. Transp. Res. D 102:103159
    [Google Scholar]
  120. 120.
    Kong N, Hardman S. 2019. Electric vehicle incentives in 13 leading electric vehicle markets. Rep. UCD-ITS-RR-19-04 Univ. Calif. Davis:
    [Google Scholar]
  121. 121.
    Green D, Melzer BT, Parker JA, Rojas A. 2020. Accelerator or brake? Cash for clunkers, household liquidity, and aggregate demand. Am. Econ. J. Econ. Policy 12:4178–211
    [Google Scholar]
  122. 122.
    Hardman S, Fleming K, Khare E, Ramadan MM. 2021. A perspective on equity in the transition to electric vehicle. MIT Sci. Policy Rev. 2:46–54
    [Google Scholar]
  123. 123.
    Lopez-Behar D, Tran M, Mayaud JR, Froese T, Herrera OE, Merida W. 2019. Putting electric vehicles on the map: a policy agenda for residential charging infrastructure in Canada. Energy Res. Soc. Sci. 50:29–37
    [Google Scholar]
  124. 124.
    Bellon T, Lienert P, Bellon T. 2021. Factbox: five facts on the state of the U.S. electric vehicle charging network. Reuters Sep. 1. https://www.reuters.com/world/us/five-facts-state-us-electric-vehicle-charging-network-2021-09-01/
    [Google Scholar]
  125. 125.
    Telang R, Singh A, Le H, Higashi A. 2021. Electric vehicles and the charging infrastructure: a new mindset. PwC. https://www.pwc.com/us/en/industries/industrial-products/library/electric-vehicles-charging-infrastructure.html
    [Google Scholar]
  126. 126.
    Hsu C-W, Fingerman K. 2021. Public electric vehicle charger access disparities across race and income in California. Transp. Policy 100:59–67
    [Google Scholar]
  127. 127.
    Khan HAU, Price S, Avraam C, Dvorkin Y. 2022. Inequitable access to EV charging infrastructure. Electr. J. 35:3107096
    [Google Scholar]
  128. 128.
    Rempel D, Cullen C, Bryan MM, Cezar GV. 2022. Reliability of open public electric vehicle direct current fast chargers SSRN Work. Pap. 4077554
    [Google Scholar]
  129. 129.
    Buttigieg P. 2022. National Consumer Law Center – Comments Comment FHWA-2022-0008-0273 Fed. Highway Adm., US Dep. Transp. Washington, DC: https://www.regulations.gov/comment/FHWA-2022-0008-0273
    [Google Scholar]
  130. 130.
    Cheung A. 2022. Zero-emission vehicles progress dashboard. BloombergNEF Sept. 21. https://about.bnef.com/blog/zero-emission-vehicles-progress-dashboard/
    [Google Scholar]
  131. 131.
    Zi W. 2021. In 2020, the number of motor vehicles in the country will reach 372 million, and the number of motor vehicle drivers will reach 456 million. Xinhuanet Jan. 8. http://www.xinhuanet.com/auto/2021-01/08/c_1126958570.htm
    [Google Scholar]
  132. 132.
    Ou S, Lin Z, He X, Przesmitzki S, Bouchard J. 2020. Modeling charging infrastructure impact on the electric vehicle market in China. Transp. Res. D 81:102248
    [Google Scholar]
  133. 133.
    McKerracher C. 2022. Electric vehicles have China's massive middle market surrounded. Bloomberg Aug. 30. https://www.bloomberg.com/news/articles/2022-08-30/electric-vehicles-have-china-s-massive-middle-market-surrounded?leadSource=uverify%20wall
    [Google Scholar]
  134. 134.
    Hertzke P, Khanna J, Mittal B, Richter F. 2020. Global emergence of electric two-wheelers and three-wheelers. McKinsey & Company Oct. 6. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/global-emergence-of-electrified-small-format-mobility
    [Google Scholar]
  135. 135.
    IEA (Int. Energy Agency) 2022. Global EV Outlook 2022—analysis. Rep. IEA Paris:
    [Google Scholar]
  136. 136.
    Paladugula AL, Kholod N, Chaturvedi V, Ghosh PP, Pal S et al. 2018. A multi-model assessment of energy and emissions for India's transportation sector through 2050. Energy Policy 116:10–18
    [Google Scholar]
  137. 137.
    Sripad S, Mehta T, Srivastava A, Viswanathan V. 2019. The future of vehicle electrification in India may ride on two wheels. ACS Energy Lett. 4:112691–94
    [Google Scholar]
  138. 138.
    Vanatta M, Rathod B, Calzavara J, Courtright T, Sims T et al. 2022. Emissions impacts of electrifying motorcycle taxis in Kampala, Uganda. Transp. Res. D 104:103193
    [Google Scholar]
  139. 139.
    BNEF (BloombergNEF) 2022. Electric Vehicle Outlook 2022 Rep. BNEF, Bloomberg Finance New York:
    [Google Scholar]
  140. 140.
    Boehm S, Jeffery L, Levin K, Hecke J, Schumer C et al. 2022. State of Climate Action 2022 Rep. World Res. Inst. Washington, DC:
    [Google Scholar]
  141. 141.
    Freehafer L, Lazer L. 2023. The state of electric school bus adoption in the US. World Resources Institute Febr. 13. https://www.wri.org/insights/where-electric-school-buses-us
    [Google Scholar]
  142. 142.
    Bur. Transp. Stat 2021. The longer route to school. Bureau of Transportation Statistics Jan. 12. https://www.bts.gov/topics/passenger-travel/back-school-2019
    [Google Scholar]
  143. 143.
    Alarfaj AF, Griffin WM, Samaras C. 2020. Decarbonizing US passenger vehicle transport under electrification and automation uncertainty has a travel budget. Environ. Res. Lett. 15:90940c2
    [Google Scholar]
  144. 144.
    Milovanoff A, Minet L, Cheah L, Posen ID, MacLean HL, Balasubramanian R. 2021. Greenhouse gas emission mitigation pathways for urban passenger land transport under ambitious climate targets. Environ. Sci. Technol. 55:128236–46
    [Google Scholar]
  145. 145.
    Sheller M 2021. Mobility justice in urban studies. Handbook of Urban Mobilities OB Jensen, C Lassen, V Kaufmann, M Freudendal-Pedersen, IS Gøtzsche Lange Abington, UK: Routledge https://www.taylorfrancis.com/chapters/edit/10.4324/9781351058759-1/mobility-justice-urban-studies-mimi-sheller?context=ubx&refId=df438936-7f69-4e98-87a8-2e815355fffe
    [Google Scholar]
  146. 146.
    Arioli M, Fulton L, Lah O. 2020. Transportation strategies for a 1.5°C world: a comparison of four countries. Transp. Res. D 87:102526
    [Google Scholar]
  147. 147.
    Dutta PK. 2013. Taking the car out of carbon: mass transit and emission avoidance. Transport Beyond Oil JL Renne, B Fields 126–40. Washington, DC: Island Press
    [Google Scholar]
  148. 148.
    Soomauroo Z, Blechinger P, Creutzig F. 2020. Unique opportunities of island states to transition to a low-carbon mobility system. Sustainability 12:41435
    [Google Scholar]
  149. 149.
    Funk JL. 2015. IT and sustainability: new strategies for reducing carbon emissions and resource usage in transportation. Telecommun. Policy 39:10861–74
    [Google Scholar]
  150. 150.
    Docherty I, Marsden G, Anable J. 2018. The governance of smart mobility. Transp. Res. A 115:114–25
    [Google Scholar]
  151. 151.
    Golub A, Satterfield V, Serritella M, Singh J, Phillips S. 2019. Assessing the barriers to equity in smart mobility systems: a case study of Portland, Oregon. Case Stud. Transp. Policy 7:4689–97
    [Google Scholar]
  152. 152.
    FHWA (US Fed. Highway Adm.), US Dep. Transp 2019. Travel. Status of the Nation's Highways, Bridges, and Transit: Conditions & Performance San Francisco: FHA. , 23rd ed..
    [Google Scholar]
  153. 153.
    Dargay J, Gately D. 1999. Income's effect on car and vehicle ownership, worldwide: 1960–2015. Transp. Res. A 33:2101–38
    [Google Scholar]
  154. 154.
    Mattioli G, Colleoni M 2016. Transport disadvantage, car dependence and urban form. Understanding Mobilities for Designing Contemporary Cities P Pucci, M Colleoni 171–90. Cham, Switz.: Springer Int.
    [Google Scholar]
  155. 155.
    Kramer A, Goldstein A. 2015. Meeting the public's need for transit options: characteristics of socially equitable transit networks. Inst. Transp. Eng. ITE J. 85:923–30
    [Google Scholar]
  156. 156.
    McGuckin NA, Fucci A. 2018. Summary of travel trends: 2017 National Household Travel Survey Tech. Rep. FHWA-PL-18-019 US Fed. Highway Adm., US Dep. Transp. San Francisco:
    [Google Scholar]
  157. 157.
    Kutzbach M, Lloro A, Weinstein J, Karyen C. 2020. How America banks: household use of banking and financial services. Federal Deposit Insurance Corporation. https://www.fdic.gov/analysis/household-survey/2019/index.html
    [Google Scholar]
  158. 158.
    Horrigan JB, Duggan M. 2015. Home Broadband 2015: The share of Americans with broadband at home has plateaued, and more rely only on their smartphones for online access. Pew Research Center Dec. 21. https://www.pewresearch.org/internet/2015/12/21/home-broadband-2015/
    [Google Scholar]
  159. 159.
    Pazarbasioglu C, Mora AG, Uttamchandani M, Natarajan H, Feyen E, Saal M. 2020. Digital financial services Rep. World Bank Washington, DC:
    [Google Scholar]
  160. 160.
    Copes H, Kerley KR, Huff R, Kane J. 2010. Differentiating identity theft: an exploratory study of victims using a national victimization survey. J. Crim. Justice 38:51045–52
    [Google Scholar]
  161. 161.
    DeLiema M, Burnes D, Langton L. 2021. The financial and psychological impact of identity theft among older adults. Innov. Aging 5:4igab043
    [Google Scholar]
  162. 162.
    Blumenberg E, Agrawal AW. 2014. Getting around when you're just getting by: transportation survival strategies of the poor. J. Poverty 18:4355–78
    [Google Scholar]
  163. 163.
    El-Geneidy A, Levinson D, Diab E, Boisjoly G, Verbich D, Loong C. 2016. The cost of equity: assessing transit accessibility and social disparity using total travel cost. Transp. Res. A 91:302–16
    [Google Scholar]
  164. 164.
    Loveless S. 2000. Access to jobs: intersection of transportation, social, and economic development policies – challenge for transportation planning in the 21st century Paper presented at the Refocusing Transportation Planning for the 21st Century conference Washington, DC: February 7–10
    [Google Scholar]
  165. 165.
    Caplovitz D. 1963. The Poor Pay More: Consumer Practices of Low-Income Families New York: Free Press
    [Google Scholar]
  166. 166.
    Brakewood C, Kocur G. 2013. Unbanked transit riders and open payment fare collection. Transp. Res. Record 2351:1133–41
    [Google Scholar]
  167. 167.
    Pike SC, D'Agostino MC 2022. What will a transition to digital transit payments mean for un- and underbanked transit passengers? Policy Brief, Natl. Cent. Sustain. Transp., Univ. Calif. Davis:
    [Google Scholar]
  168. 168.
    Shaheen SA, Guzman S, Zhang H. 2010. Bikesharing in Europe, the Americas, and Asia: past, present, and future. Transp. Res. Record 2143:1159–67
    [Google Scholar]
  169. 169.
    Mooney SJ, Hosford K, Howe B, Yan A, Winters M et al. 2019. Freedom from the station: spatial equity in access to dockless bike share. J. Transp. Geogr. 74:91–96
    [Google Scholar]
  170. 170.
    Smith CS, Oh J-S, Lei C. 2015. Exploring the equity dimensions of US bicycle sharing systems Tech. Rep. TRCLC 14–01 West Mich. Univ. Kalamazoo:
    [Google Scholar]
  171. 171.
    Ursaki J, Aultman-Hall L. 2015. Quantifying the equity of bikeshare access in U.S. Cities Rep. 15–011 Transp. Res. Cent., Univ. Vt. Burlington:
    [Google Scholar]
  172. 172.
    Pal A, Zhang Y. 2017. Free-floating bike sharing: solving real-life large-scale static rebalancing problems. Transp. Res. C 80:92–116
    [Google Scholar]
  173. 173.
    Shaheen SA, Martin EW, Chan ND, Cohen AP, Pogodzinski M. 2014. Public bikesharing in North America during a period of rapid expansion: understanding business models, industry trends and user impacts Rep. 12-29 Mineta Transp. Inst., San Jose State Univ. San Jose, Calif:.
    [Google Scholar]
  174. 174.
    Pritchard JP, Stępniak M, Geurs KT 2019. Equity analysis of dynamic bike-and-ride accessibility in the Netherlands. Measuring Transport Equity K Lucas, K Martens, F Di Ciommo, A Dupont-Kieffer 73–83. Amsterdam: Elsevier
    [Google Scholar]
  175. 175.
    Lee RJ, Sener IN, Jones SN. 2017. Understanding the role of equity in active transportation planning in the United States. Transp. Rev. 37:2211–26
    [Google Scholar]
  176. 176.
    Nair R, Miller-Hooks E, Hampshire RC, Bušić A. 2013. Large-scale vehicle sharing systems: analysis of Vélib. ’. Int. J. Sustain. Transp. 7:185–106
    [Google Scholar]
  177. 177.
    Loukaitou-Sideris A. 2020. A gendered view of mobility and transport: next steps and future directions. Engendering Cities: Designing Sustainable Urban Spaces for All I SM, M Neuman 19–37. Abingdon, UK: Routledge
    [Google Scholar]
  178. 178.
    Steinbach R, Green J, Datta J, Edwards P. 2011. Cycling and the city: a case study of how gendered, ethnic and class identities can shape healthy transport choices. Soc. Sci. Med. 72:71123–30
    [Google Scholar]
  179. 179.
    Kelly CM, Schootman M, Baker EA, Barnidge EK, Lemes A. 2007. The association of sidewalk walkability and physical disorder with area-level race and poverty. J. Epidemiol. Community Health 61:11978–83
    [Google Scholar]
  180. 180.
    Grant TL, Edwards N, Sveistrup H, Andrew C, Egan M. 2010. Inequitable walking conditions among older people: examining the interrelationship of neighbourhood socio-economic status and urban form using a comparative case study. BMC Public Health 10:11–16
    [Google Scholar]
  181. 181.
    Sperling D, Salon D. 2002. Transportation in developing countries: an overview of greenhouse gas reduction strategies. Rep. Cent. Clim. Energy. Solut. Arlington, VA:
    [Google Scholar]
  182. 182.
    Takagi K. 2015. The Japanese Cool Biz campaign: increasing comfort in the workplace. EESI Sept. 30. https://www.eesi.org/articles/view/the-japanese-cool-biz-campaign-increasing-comfort-in-the-workplace
    [Google Scholar]
  183. 183.
    BBC News 2011. Japan promotes “Super Cool Biz” energy saving campaign. BBC News June 1. https://www.bbc.com/news/business-13620900
    [Google Scholar]
  184. 184.
    Neukomm M, Nubbe V, Fares R. 2019. Grid-interactive efficient buildings technical report series: overview of research challenges and gaps. Tech. Rep. US Dep. Energy Off. Energy Effic. Renew. Energy Washington, DC:
    [Google Scholar]
  185. 185.
    Fotheringham AS, Wong DWS. 1991. The modifiable areal unit problem in multivariate statistical analysis. Environ. Plan A 23:71025–44
    [Google Scholar]
  186. 186.
    Clark LP, Harris MH, Apte JS, Marshall JD. 2022. National and intraurban air pollution exposure disparity estimates in the United States: impact of data-aggregation spatial scale. Environ. Sci. Technol. Lett. 9:9786–91
    [Google Scholar]
  187. 187.
    Off. NEPA Policy Compliance 2021. Executive Order EO 14008 (Tackling the Climate Crisis at Home and Abroad). 2021 sess., Jan. 27. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/
    [Google Scholar]
  188. 188.
    The White House 2022. Justice40: a whole-of-government initiative. The White House https://www.whitehouse.gov/environmentaljustice/justice40/
    [Google Scholar]
  189. 189.
    Cocklin J. 2022. Research Guides: Economics: Indian National Sample Survey. Dartmouth Library. https://researchguides.dartmouth.edu/c.php?g=59344&p=7265712
    [Google Scholar]
  190. 190.
    The World Bank 2022. Gini index. The World Bank https://data.worldbank.org/indicator/SI.POV.GINI
    [Google Scholar]
  191. 191.
    Chancel L. 2022. Global carbon inequality over 1990–2019. Nat. Sustain. 5:11931–38
    [Google Scholar]
  192. 192.
    Bruckner B, Hubacek K, Shan Y, Zhong H, Feng K. 2022. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 5:4311–20
    [Google Scholar]
  193. 193.
    Chancel L, Bothe P, Voituriez T. 2023. Climate Inequality Report 2023 Study 2023/1 World Inequal. Lab. Paris Sch. Econ.:
    [Google Scholar]
/content/journals/10.1146/annurev-environ-120920-101002
Loading
/content/journals/10.1146/annurev-environ-120920-101002
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error