1932

Abstract

Sub-Saharan Africa's (SSA's) iconic biodiversity is of immense potential global value but is jeopardized by increasing anthropogenic pressures. Elevated consumption in wealthier countries and the demands of international corporations manifest in significant resource extraction from SSA. Biodiversity in SSA also faces increasing domestic pressures, including rapidly growing human populations. The demographic transition to lower fertility rates is occurring later and slower in SSA than elsewhere, and the continent's human population may quadruple by 2100. SSA's biodiversity will therefore pass through a bottleneck of growing anthropogenic pressures, while also experiencing intensifying effects of climate change. SSA's biodiversity could be severely diminished over the coming decades and numerous species pushed to extinction. However, the prospects for nature conservation in SSA should improve in the long term, and we predict that the region will eventually enter a Green Anthropocene. Here, we outline critical steps needed to shepherd SSA's biodiversity into the Green Anthropocene epoch.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-120920-125536
2022-10-17
2024-07-20
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-120920-125536.html?itemId=/content/journals/10.1146/annurev-environ-120920-125536&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bradshaw CJA, Di Minin E. 2019. Socio-economic predictors of environmental performance among African nations. Sci. Rep. 9:19306
    [Google Scholar]
  2. 2.
    Tilman D, Clark M, Williams DR, Kimmel K, Polasky S, Packer C. 2017. Future threats to biodiversity and pathways to their prevention. Nature 546:765673–81
    [Google Scholar]
  3. 3.
    AU, UNEP (Afr. Union, United Nations Environ. Program) 2019. African Ministerial Conference on the Environment—a note by the secretariat Meet. Doc. Durban: S. Afr https://wedocs.unep.org/handle/20.500.11822/30652;jsessionid=B8B955D4FC7AEC5B8237D23868D966B3
    [Google Scholar]
  4. 4.
    UNEP-WCMC (United Nations Environ. Program. World Conserv. Monit. Cent.), IUCN (Int. Union Conserv. Nat.) 2019. The World Database on Protected Areas (WDPA). Protected Planet. https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA
    [Google Scholar]
  5. 5.
    Stolton S, Dudley N. 2019. The New Lion Economy: Unlocking the Value of Lions Bristol, UK: Equilibrium Res.
    [Google Scholar]
  6. 6.
    World Travel Tour. Counc 2019. The Economic Impact of Global Wildlife Tourism: Travel and Tourism as an Economic Tool for the Protection of Wildlife London: World Travel Tour. Counc.
    [Google Scholar]
  7. 7.
    Galvani AP, Bauch CT, Anand M, Singer BH, Levin SA. 2016. Human–environment interactions in population and ecosystem health. PNAS 113:5114502–6
    [Google Scholar]
  8. 8.
    AMCEN (Afr. Minist. Conf. Environ.) 2015. Managing Africa's natural capital for sustainable development and poverty reduction March 2–6. AMCEN 15th sess. https://wedocs.unep.org/bitstream/handle/20.500.11822/20557/AMCEN_153NaturalCapital.pdf?sequence=1&isAllowed=y
    [Google Scholar]
  9. 9.
    Macdonald EA, Burnham D, Hinks AE, Dickman AJ, Malhi Y, Macdonald DW. 2015. Conservation inequality and the charismatic cat: Felis felicis. Glob. Ecol. Conserv. 3:851–66
    [Google Scholar]
  10. 10.
    Dasgupta P. 2020. The Economics of Biodiversity: The Dasgupta Review London: HM Treas.
    [Google Scholar]
  11. 11.
    Royal Soc 2021. Reversing biodiversity loss. Royal Society https://royalsociety.org/topics-policy/projects/biodiversity/
    [Google Scholar]
  12. 12.
    Hull V, Liu J. 2018. Telecoupling: a new frontier for global sustainability. Ecol. Soc. 23:441
    [Google Scholar]
  13. 13.
    Liu J, Yang W, Li S 2016. Framing ecosystem services in the telecoupled Anthropocene. Front. Ecol. Environ. 14:127–36
    [Google Scholar]
  14. 14.
    Wada Y, Flörke M, Hanasaki N, Eisner S, Fischer G et al. 2016. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9:1175–222
    [Google Scholar]
  15. 15.
    Whitnall T, Pitts N. 2019. Global trends in meat consumption. Agric. Commod. 9:196–99
    [Google Scholar]
  16. 16.
    York R, Bell SE. 2019. Energy transitions or additions?: Why a transition from fossil fuels requires more than the growth of renewable energy. Energy Res. Soc. Sci. 51:40–43
    [Google Scholar]
  17. 17.
    Carrasco LR, Chan J, McGrath FL, Nghiem LTP. 2017. Biodiversity conservation in a telecoupled world. Ecol. Soc. 22:324
    [Google Scholar]
  18. 18.
    Dou Y, da Silva RFB, Yang H, Liu J 2018. Spillover effect offsets the conservation effort in the Amazon. J. Geogr. Sci. 28:111715–32
    [Google Scholar]
  19. 19.
    Kapsar KE, Hovis CL, da Silva RFB, Buchholtz EK, Carlson AK et al. 2019. Telecoupling research: the first five years. Sustainability 11:41033
    [Google Scholar]
  20. 20.
    Selles H. 2013. The relative impact of countries on global natural resource consumption and ecological degradation. Int. J. Sustain. Dev. World Ecol. 20:297–108
    [Google Scholar]
  21. 21.
    Cumming GS, Von Cramon-Taubadel S. 2018. Linking economic growth pathways and environmental sustainability by understanding development as alternate social-ecological regimes. PNAS 115:389533–38
    [Google Scholar]
  22. 22.
    WWF (World Wildl. Fund) 2020. Living Planet Report 2020: Bending the Curve of Biodiversity Loss Gland, Switz.: WWF
    [Google Scholar]
  23. 23.
    Gao J, Tian M. 2016. Analysis of over-consumption of natural resources and the ecological trade deficit in China based on ecological footprints. Ecol. Indic. 61:899–904
    [Google Scholar]
  24. 24.
    Peterson I, Selinske M, Lenzen M, Moilanen A. 2019. The ecological cost of consumption. Res. Sq. https://doi.org/10.21203/rs.3.rs-46089/v1
    [Crossref] [Google Scholar]
  25. 25.
    Mol APJ. 2011. China's ascent and Africa's environment. Glob. Environ. Chang. 21:3785–94
    [Google Scholar]
  26. 26.
    Malhi Y, Gardner TA, Goldsmith GR, Silman MR, Zelazowski P. 2014. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39:125–59
    [Google Scholar]
  27. 27.
    Assa BSK. 2018. Foreign direct investment, bad governance and forest resources degradation: evidence in Sub-Saharan Africa. Econ. Politica 35:1107–25
    [Google Scholar]
  28. 28.
    Ordway EM, Asner GP, Lambin EF. 2017. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 12:4044015
    [Google Scholar]
  29. 29.
    Ngwira S, Watanabe T. 2019. An analysis of the causes of deforestation in Malawi: a case of Mwazisi. Land 8:348
    [Google Scholar]
  30. 30.
    Alder J, Sumaila UR. 2004. Western Africa: a fish basket of Europe past and present. J. Environ. Dev. 13:2156–78
    [Google Scholar]
  31. 31.
    Edwards DP, Sloan S, Weng L, Dirks P, Sayer J, Laurance WF. 2014. Mining and the African environment. Conserv. Lett. 7:3302–11
    [Google Scholar]
  32. 32.
    Laurance WF, Sloan S, Weng L, Sayer JA. 2015. Estimating the environmental costs of Africa's massive “development corridors. .” Curr. Biol. 25:243202–8
    [Google Scholar]
  33. 33.
    WWF (World Wildl. Fund) 2020. Living Planet Report 2020—Bending the Curve of Biodiversity Loss Gland, Switz: World Wildl. Fund
    [Google Scholar]
  34. 34.
    United Nations 2019. World Population Prospects, the 2019 Revision: Volume 1: Comprehensive Tables New York: United Nations
    [Google Scholar]
  35. 35.
    Chandra-Mouli V, Svanemyr J, Amin A, Fogstad H, Say L et al. 2015. Twenty years after International Conference on Population and Development: Where are we with adolescent sexual and reproductive health and rights?. J. Adolesc. Health 56:1S1–6
    [Google Scholar]
  36. 36.
    Ackerson K, Zielinski R. 2017. Factors influencing use of family planning in women living in crisis affected areas of Sub-Saharan Africa: a review of the literature. Midwifery 54:35–60
    [Google Scholar]
  37. 37.
    Aljazeera 2019.. ‘ Set your ovaries free’: Tanzania leader seeks population growth. Aljazeera July 10. https://www.aljazeera.com/news/2019/7/10/set-your-ovaries-free-tanzania-leader-seeks-population-growth
    [Google Scholar]
  38. 38.
    Ed. Board 2018. Nigeria's population as a blessing. Guardian April 25. https://guardian.ng/opinion/nigerias-population-as-a-blessing/
    [Google Scholar]
  39. 39.
    Tulchinsky TH, Varavikova EA. 2014. Measuring, monitoring, and evaluating the health of a population. New Public Health 2014:91–147
    [Google Scholar]
  40. 40.
    Bongaarts J, Casterline J. 2013. Fertility transition: Is sub-Saharan Africa different?. Popul. Dev. Rev. 38:Suppl. 1153–68
    [Google Scholar]
  41. 41.
    Bongaarts J. 2017. Africa's unique fertility transition. Popul. Dev. Rev. 43:39–58
    [Google Scholar]
  42. 42.
    Channon MD, Harper S. 2019. Educational differentials in the realisation of fertility intentions: Is sub-Saharan Africa different?. PLOS ONE 14:7e0219736
    [Google Scholar]
  43. 43.
    Moultrie TA, Sayi TS, Timæus IM. 2012. Birth intervals, postponement, and fertility decline in Africa: a new type of transition?. Popul. Stud. 66:3241–58
    [Google Scholar]
  44. 44.
    Afr. Dev. Bank 2012. Briefing notes for AfDB's long-term strategy: Africa's demographic trends. African Development Bank https://www.afdb.org/en/documents/document/briefing-note-for-afdbs-long-term-strategy-africas-demographic-trends-26788
    [Google Scholar]
  45. 45.
    Kebede YB, Geremew TT, Mehretie Y, Abejie AN, Bewket L, Dellie E. 2019. Associated factors of modern contraceptive use among women infected with human immunodeficiency virus in Enemay District, Northwest Ethiopia: a facility-based cross-sectional study. BMC Public Health 19:1584
    [Google Scholar]
  46. 46.
    Morland P. 2019. The Human Tide: How Population Shaped the Modern World London: John Murray
    [Google Scholar]
  47. 47.
    Howse K. 2014. What is fertility stalling and why does it matter?. Popul. Horiz. 12:13–23
    [Google Scholar]
  48. 48.
    Vollset SE, Goren E, Yuan C, Cao J, Smith AE et al. 2020. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. Lancet 396:102581285–306
    [Google Scholar]
  49. 49.
    Ika L, Saint-Macary J. 2014. Special issue: Why do projects fail in Africa?. J. Afr. Bus. 15:3151–55
    [Google Scholar]
  50. 50.
    Signé L. 2020. Unlocking Africa's Business Potential: Trends, Opportunities, Risks, and Strategies Washington, DC: Brookings Inst.
    [Google Scholar]
  51. 51.
    IMF (Int. Monet. Fund) 2021. Sub-Saharan Africa: One planet, two worlds, three stories Press Release Oct. 21. https://www.imf.org/en/News/Articles/2021/10/20/pr21306-sub-saharan-africa-one-planet-two-worlds-three-stories
    [Google Scholar]
  52. 52.
    Economist 2020. Africa's population will double by 2050. Economist March 26. https://www.economist.com/special-report/2020/03/26/africas-population-will-double-by-2050
    [Google Scholar]
  53. 53.
    Pritchett L. 2013. The Rebirth of Education: Schooling Ain't Learning, Vol. 123 Washington, DC: Cent. Glob. Dev.
    [Google Scholar]
  54. 54.
    Caldwell JC. 1980. Mass education as a determinant of the timing of fertility decline. Popul. Dev. Rev. 6:2225–55
    [Google Scholar]
  55. 55.
    Diamond I, Newby M, Varle S 1999. Female education and fertility: examining the links. Critical Perspectives on Schooling and Fertility in the Developing World C Bledsoe, J Casterline, J Johnson Kuhn, J Haaga 23–48 Washington, DC: Natl. Acad.
    [Google Scholar]
  56. 56.
    Basu AM, Stephenson R. 2005. Low levels of maternal education and the proximate determinants of childhood mortality: A little learning is not a dangerous thing. Soc. Sci. Med. 60:92011–23
    [Google Scholar]
  57. 57.
    Jejeebhoy SJ. 1995. Women's Education, Autonomy, and Reproductive Behaviour: Experience from Developing Countries Oxford, UK: Clarendon
    [Google Scholar]
  58. 58.
    NJ MED 2022. International Education Database. World Top 20 Project https://worldtop20.org/education-database
    [Google Scholar]
  59. 59.
    Bongaarts J. 2020. Trends in fertility and fertility preferences in sub-Saharan Africa: the roles of education and family planning programs. Genus 76:32
    [Google Scholar]
  60. 60.
    Bakken IV, Rustad SA. 2018. Conflict Trends in Africa, 1989–2017 Oslo, Norway: Peace Res. Inst. Oslo
    [Google Scholar]
  61. 61.
    Bongaarts J. 2016. Development: Slow down population growth. Nature 530:7591409–12
    [Google Scholar]
  62. 62.
    Ezeh A, Kissling F, Singer P. 2020. Why sub-Saharan Africa might exceed its projected population size by 2100. Lancet 396:102581131–33
    [Google Scholar]
  63. 63.
    Crist E, Kopnina H, Cafaro P, Gray J, Ripple WJ et al. 2021. Protecting half the planet and transforming human systems are complementary goals. Front. Conserv. Sci. 2:91
    [Google Scholar]
  64. 64.
    Canning D, Schultz TP. 2012. The economic consequences of reproductive health and family planning. Lancet 380:9837165–71
    [Google Scholar]
  65. 65.
    Karra M, Canning D, Wilde J. 2017. The effect of fertility decline on economic growth in Africa: a macrosimulation model. Popul. Dev. Rev. 43:237–63
    [Google Scholar]
  66. 66.
    Goldstone JA. 2019. Africa 2050: demographic truth and consequences. Governance in an Emerging New World Jan. 14. https://www.hoover.org/research/africa-2050-demographic-truth-and-consequences
    [Google Scholar]
  67. 67.
    Crist E, Mora C, Engelman R. 2017. The interaction of human population, food production, and biodiversity protection. Science 356:6335260–64
    [Google Scholar]
  68. 68.
    Jha S, Bawa KS. 2006. Population growth, human development, and deforestation in biodiversity hotspots. Conserv. Biol. 20:3906–12
    [Google Scholar]
  69. 69.
    Sanderson EW, Walston J, Robinson JG. 2018. From bottleneck to breakthrough: urbanization and the future of biodiversity conservation. Bioscience 68:6412–26
    [Google Scholar]
  70. 70.
    Pettorelli N, Chauvenet ALM, Duffy JP, Cornforth WA, Meillere A, Baillie JEM. 2012. Tracking the effect of climate change on ecosystem functioning using protected areas: Africa as a case study. Ecol. Indic. 20:269–76
    [Google Scholar]
  71. 71.
    UNCTAD (United Nations Conf. Trade Dev.) 2018. Economic Development in Africa Report 2018 New York: United Nations
    [Google Scholar]
  72. 72.
    Crespo Cuaresma J, Fengler W, Kharas H, Bekhtiar K, Brottrager M, Hofer M. 2018. Will the Sustainable Development Goals be fulfilled? Assessing present and future global poverty. Palgrave Commun 4:29
    [Google Scholar]
  73. 73.
    Laborde D. 2020. Poverty and food insecurity could grow dramatically as COVID-19 spreads. COVID-19 & Global Food Security J Swinnen, J McDermott 16–20 Washington, DC: Int. Food Policy Res. Inst.
    [Google Scholar]
  74. 74.
    World Bank 2007. World Development Report 2008: Agriculture for Development Washington, DC: World Bank
    [Google Scholar]
  75. 75.
    Obura DO, Katerere Y, Mayet M, Kaelo D, Msweli S et al. 2021. Integrate biodiversity targets from local to global levels. Science 373:6556746–48
    [Google Scholar]
  76. 76.
    Bare M, Kauffman C, Miller DC. 2015. Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa. Environ. Res. Lett. 10:12125010
    [Google Scholar]
  77. 77.
    Perrings C, Halkos G. 2015. Agriculture and the threat to biodiversity in Sub-Saharan Africa. Environ. Res. Lett. 10:9095015
    [Google Scholar]
  78. 78.
    Zougmoré RB, Partey ST, Ouédraogo M, Torquebiau E, Campbell BM. 2018. Facing climate variability in sub-Saharan Africa: analysis of climate-smart agriculture opportunities to manage climate-related risks. Cah. Agric. 27:334001
    [Google Scholar]
  79. 79.
    Hong C, Burney JA, Pongratz J, Nabel JEMS, Mueller ND et al. 2021. Global and regional drivers of land-use emissions in 1961–2017. Nature 589:7843554–61
    [Google Scholar]
  80. 80.
    Mnaya B, Elisa M, Kihwele E, Kiwango H, Kiwango Y et al. 2021. Are Tanzanian national parks affected by the water crisis? Findings and ecohydrology solutions. Ecohydrol. Hydrobiol. 21:3425–42
    [Google Scholar]
  81. 81.
    Lindsey PA, Balme G, Becker M, Begg C, Bento C et al. 2013. The bushmeat trade in African savannas: impacts, drivers, and possible solutions. Biol. Conserv. 160:80–96
    [Google Scholar]
  82. 82.
    Benítez-López A, Santini L, Schipper AM, Busana M, Huijbregts MAJ. 2019. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol 17:5e3000247
    [Google Scholar]
  83. 83.
    Courchamp F, Angulo E, Rivalan P, Hall RJ, Signoret L et al. 2006. Rarity value and species extinction: the anthropogenic Allee effect. PLOS Biol 4:122405–10
    [Google Scholar]
  84. 84.
    Branch TA, Lobo AS, Purcell SW. 2013. Opportunistic exploitation: an overlooked pathway to extinction. Trends Ecol. Evol. 28:7409–13
    [Google Scholar]
  85. 85.
    Geldmann J, Barnes M, Coad L, Craigie ID, Hockings M, Burgess ND. 2013. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161:230–38
    [Google Scholar]
  86. 86.
    Robson AS, Trimble MJ, Bauer D, Loveridge AJ, Thomson P et al. 2021. Over 80% of Africa's savannah conservation land is failing or deteriorating according to lions as an indicator species. Conserv. Lett. 15:1e12844
    [Google Scholar]
  87. 87.
    Lindsey PA, Miller JRB, Petracca LS, Coad L, Dickman AJ et al. 2018. More than $1 billion needed annually to secure Africa's protected areas with lions. PNAS 115:45E10788–96
    [Google Scholar]
  88. 88.
    Lindsey PA, Petracca LS, Funston PJ, Bauer H, Dickman A et al. 2017. The performance of African protected areas for lions and their prey. Biol. Conserv. 209:137–49
    [Google Scholar]
  89. 89.
    Packer C, Loveridge A, Canney S, Caro T, Garnett ST et al. 2013. Conserving large carnivores: dollars and fence. Ecol. Lett. 16:5635–41
    [Google Scholar]
  90. 90.
    Di Minin E, Slotow R, Fink C, Bauer H, Packer C. 2021. A pan-African spatial assessment of human conflicts with lions and elephants. Nat. Commun. 12:2978
    [Google Scholar]
  91. 91.
    Melillo JM, Lu X, Kicklighter DW, Reilly JM, Cai Y, Sokolov AP. 2016. Protected areas’ role in climate-change mitigation. Ambio 45:2133–45
    [Google Scholar]
  92. 92.
    Shumway CA. 1999. Forgotten Waters: Freshwater and Marine Ecosystems in Africa. Strategies for Biodiversity Conservation and Sustainable Development Boston: Biodivers. Support Prog.
    [Google Scholar]
  93. 93.
    Craigie ID, Baillie JEM, Balmford A, Carbone C, Collen B et al. 2010. Large mammal population declines in Africa's protected areas. Biol. Conserv. 143:92221–28
    [Google Scholar]
  94. 94.
    Robson AS, Trimble MJ, Purdon A, Young-Overton KD, Pimm SL, Van Aarde RJ. 2017. Savanna elephant numbers are only a quarter of their expected values. PLOS ONE 12:4e0175942
    [Google Scholar]
  95. 95.
    Gizachew B, Rizzi J, Shirima DD, Zahabu E. 2020. Deforestation and connectivity among protected areas of Tanzania. Forests 11:2170
    [Google Scholar]
  96. 96.
    Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B et al. 2011. Has the Earth's sixth mass extinction already arrived?. Nature 471:733651–57
    [Google Scholar]
  97. 97.
    Bauer H, Chardonnet B, Scholte P, Kamgang SA, Tiomoko DA et al. 2021. Consider divergent regional perspectives to enhance wildlife conservation across Africa. Nat. Ecol. Evol. 5:2149–52
    [Google Scholar]
  98. 98.
    Boonzaier EA, Hoffman MT, Archer FM, Smith AB. 1990. Communal land use and the ‘tragedy of the commons’: some problems and development perspectives with specific reference to semi-arid regions of southern Africa. J. Grassl. Soc. South. Africa 7:277–80
    [Google Scholar]
  99. 99.
    Balmford A, Bruner A, Cooper P, Costanza R, Farber S et al. 2002. Economic reasons for conserving wild nature. Science 297:5583950–53
    [Google Scholar]
  100. 100.
    Bremner J, Carr DL, Suter L, Davis J. 2010. Population, poverty, environment, and climate dynamics in the developing world. Interdiscip. Environ. Rev. 11:2/3112–26
    [Google Scholar]
  101. [Google Scholar]
  102. 102.
    Hauenstein S, Kshatriya M, Blanc J, Dormann CF, Beale CM. 2019. African elephant poaching rates correlate with local poverty, national corruption and global ivory price. Nat. Commun. 10:2242
    [Google Scholar]
  103. 103.
    Dasgupta S, Laplante B, Wang H, Wheeler D. 2002. Confronting the environmental Kuznets curve. J. Econ. Perspect. 16:1147–68
    [Google Scholar]
  104. 104.
    Brashares JS, Golden CD, Weinbaum KZ, Barrett CB, Okello GV. 2011. Economic and geographic drivers of wildlife consumption in rural Africa. PNAS 108:3413931–36
    [Google Scholar]
  105. 105.
    Strindberg S, Maisels F, Williamson EA, Blake S, Stokes EJ et al. 2018. Guns, germs, and trees determine density and distribution of gorillas and chimpanzees in Western Equatorial Africa. Sci. Adv. 4:4eaar2964
    [Google Scholar]
  106. 106.
    Lee TM, Sigouin A, Pinedo-Vasquez M, Nasi R. 2020. The harvest of tropical wildlife for bushmeat and traditional medicine. Annu. Rev. Environ. Resour. 45:145–70
    [Google Scholar]
  107. 107.
    May JF, Turbat V. 2017. The demographic dividend in sub-Saharan Africa: two issues that need more attention. J. Demogr. Econ. 83:177–84
    [Google Scholar]
  108. 108.
    Harper S. 2016. How Population Change Will Transform Our World Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  109. 109.
    Güneralp B, Lwasa S, Masundire H, Parnell S, Seto KC. 2017. Urbanization in Africa: challenges and opportunities for conservation. Environ. Res. Lett. 13:1015002
    [Google Scholar]
  110. 110.
    Ramin B. 2009. Slums, climate change and human health in sub-Saharan Africa. Bull. World Health Organ. 361:8741–43
    [Google Scholar]
  111. 111.
    Waldron A, Adams V, Allan J, Arnell A, Asner G et al. 2020. Protecting 30% of the planet for nature: costs, benefits and economic implications Rep. Campaign Nat. Helsinki: https://helda.helsinki.fi/bitstream/handle/10138/326470/Waldron_Report_FINAL_sml.pdf?sequence=1&isAllowed=y
    [Google Scholar]
  112. 112.
    Space Giants, Conservation Capital 2019. Building a wildlife economy Work. Pap. 1 Space Giants Nanyuki, Kenya:
    [Google Scholar]
  113. 113.
    Lindsey P, Allan J, Brehony P, Dickman A, Robson A et al. 2020. Conserving Africa's wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 4:101300–10
    [Google Scholar]
  114. 114.
    UNCTAD (United Nations Conf. Trade Dev.) 2019. The Gambia targets African tourists for more sustainable growth. UNCTAD https://unctad.org/news/gambia-targets-african-tourists-more-sustainable-growth
    [Google Scholar]
  115. 115.
    Baghai M, Miller JRB, Blanken LJ, Dublin HT, Fitzgerald KH et al. 2018. Models for the collaborative management of Africa's protected areas. Biol. Conserv. 218:73–82
    [Google Scholar]
  116. 116.
    Lindsey P, Baghai M, Bigurube G, Cunliffe S, Dickman A et al. 2021. Attracting investment for Africa's protected areas by creating enabling environments for collaborative management partnerships. Biol. Conserv. 255:108979
    [Google Scholar]
  117. 117.
    Ricke K, Drouet L, Caldeira K, Tavoni M. 2018. Country-level social cost of carbon. Nat. Clim. Chang. 8:10895–900
    [Google Scholar]
  118. 118.
    Wilson EO. 2016. Half-Earth: Our Planet's Fight for Life New York: Liveright
    [Google Scholar]
  119. 119.
    Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND et al. 2017. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67:6534–45
    [Google Scholar]
  120. 120.
    Venter O, Sanderson EW, Magrach A, Allan JR, Beher J et al. 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7:12558
    [Google Scholar]
  121. 121.
    Boesenach E. 2018. World Cash Report 2018 Utrecht, Neth.: G4S
    [Google Scholar]
  122. 122.
    Jeffries G, Withers O, Barichievy C, Gordon C. 2019. The rhino impact investment project—a new, outcomes-based finance mechanism for selected AfRSG-rated ‘key’ black rhino populations. Pachyderm 2019:6088–95
    [Google Scholar]
  123. 123.
    Khan ZR, Midega CAO, Pittchar JO, Murage AW, Birkett MA et al. 2014. Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philos. Trans. R. Soc. B 369:163920120284
    [Google Scholar]
  124. 124.
    Ogunniyi A, Oluseyi OK, Adeyemi O, Kabir SK, Philips F. 2017. Scaling up agricultural innovation for inclusive livelihood and productivity outcomes in sub-Saharan Africa: the case of Nigeria. African Dev. Rev. 29:121–34
    [Google Scholar]
  125. 125.
    Dawson N, Martin A, Sikor T. 2016. Green Revolution in Sub-Saharan Africa: implications of imposed innovation for the wellbeing of rural smallholders. World Dev 78:204–18
    [Google Scholar]
  126. 126.
    Queiroz C, Beilin R, Folke C, Lindborg R. 2014. Farmland abandonment: threat or opportunity for biodiversity conservation? A global review. Front. Ecol. Environ. 12:5288–96
    [Google Scholar]
  127. 127.
    Samir KC, Lutz W. 2017. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Chang. 42:181–92
    [Google Scholar]
  128. 128.
    Powers RP, Jetz W. 2019. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9:4323–29
    [Google Scholar]
  129. 129.
    Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520:754545–50
    [Google Scholar]
  130. 130.
    Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W et al. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Geneva: IPCC
    [Google Scholar]
  131. 131.
    Clark MA, Domingo NGG, Colgan K, Thakrar SK, Tilman D et al. 2020. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science 370:6517705–8
    [Google Scholar]
  132. 132.
    Lee-Smith D. 2015. Cities feeding people: an update on urban agriculture in equatorial Africa. Environ. Urban. 22:2483–99
    [Google Scholar]
  133. 133.
    Williams DR, Clark M, Buchanan GM, Ficetola GF, Rondinini C, Tilman D. 2021. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4:4314–22
    [Google Scholar]
  134. 134.
    Phalan BT. 2018. What have we learned from the land sparing-sharing model?. Sustainability 10:61760
    [Google Scholar]
  135. 135.
    Balmford A. 2021. Concentrating vs. spreading our footprint: how to meet humanity's needs at least cost to nature. J. Zool. 315:279–109
    [Google Scholar]
  136. 136.
    Green RE, Cornell SJ, Scharlemann JPW. 2016. Farming and the fate of wild nature. Science 307:5709550–55
    [Google Scholar]
  137. 137.
    Luskin MS, Lee JSH, Edwards DP, Gibson L, Potts MD. 2018. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Sec. 16:29–35
    [Google Scholar]
  138. 138.
    Williams DR, Phalan B, Feniuk C, Green RE, Balmford A. 2018. Carbon storage and land-use strategies in agricultural landscapes across three continents. Curr. Biol. 28:152500–5
    [Google Scholar]
  139. 139.
    Taylor CA, Rising J. 2021. Tipping point dynamics in global land use. Environ. Res. Lett. 16:12125012
    [Google Scholar]
  140. 140.
    Chimhowu A. 2019. The ‘new’ African customary land tenure. Characteristic, features and policy implications of a new paradigm. Land Use Policy 81:897–903
    [Google Scholar]
  141. 141.
    FAO (Food Agric. Organ.) 2012. Smallholders and family farmers Sustainability Pathways Fact Sheet, FAO Rome: https://www.fao.org/fileadmin/templates/nr/sustainability_pathways/docs/Factsheet_SMALLHOLDERS.pdf
    [Google Scholar]
  142. 142.
    Alewell C, Ringeval B, Borrelli P, Ballabio C, Robinson DA, Panagos P. 2020. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 11:4546
    [Google Scholar]
  143. 143.
    Vanlauwe B, Coyne D, Gockowski J, Hauser S, Huising J et al. 2014. Sustainable intensification and the African smallholder farmer. Curr. Opin. Environ. Sustain. 8:15–22
    [Google Scholar]
  144. 144.
    Chibwana C, Jumbe CBL, Shively G. 2013. Agricultural subsidies and forest clearing in Malawi. Environ. Conserv. 40:160–70
    [Google Scholar]
  145. 145.
    Pelletier J, Ngoma H, Mason NM, Barrett CB. 2020. Does smallholder maize intensification reduce deforestation? Evidence from Zambia. Glob. Environ. Chang. 63:102127
    [Google Scholar]
  146. 146.
    Sheahan M, Barrett CB. 2014. Understanding the agricultural input landscape in Sub-Saharan Africa: recent plot, household, and community-level evidence Work. Pap. 7014 World Bank Policy Res.
    [Google Scholar]
  147. 147.
    Blakeney M. 2019. Food Loss and Food Waste: Causes and Solutions Cheltenham, UK: Elgar
    [Google Scholar]
  148. 148.
    Lamidi RO, Jiang L, Wang Y, Pathare PB, Aguilar MC et al. 2019. Techno-economic analysis of a cogeneration system for post-harvest loss reduction: a case study in sub-Saharan rural community. Energies 12:5872
    [Google Scholar]
  149. 149.
    MET/NACSO (Minist. Environ. Tour./Namibian Assoc. CBNRM Support Organ.) 2018. The state of community conservation in Namibia Rep. MET/NACSO Windhoek, Namibia: https://www.nacso.org.na/sites/default/files/State%20of%20Community%20Conservation%20book%20web_0.pdf
    [Google Scholar]
  150. 150.
    KWCA (Kenya Wildl. Conserv. Assoc.) 2016. State of wildlife conservancies in Kenya Rep. KWCA Nairobi: https://kwcakenya.com/download/state-of-wildlife-conservancies-in-kenya-report/
    [Google Scholar]
  151. 151.
    Ekroos J, Ödman AM, Andersson GKS, Birkhofer K, Herbertsson L et al. 2016. Sparing land for biodiversity at multiple spatial scales. Front. Ecol. Evol. 3:145
    [Google Scholar]
  152. 152.
    Tittonell P, Giller KE. 2013. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res 143:76–90
    [Google Scholar]
  153. 153.
    Zingore S, Manyame C, Nyamugafata P, Giller KE. 2005. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe. Eur. J. Soil Sci. 56:6727–36
    [Google Scholar]
  154. 154.
    Bond I, Cumming DHM 2006. Wildlife Research and Development. Zimbabwe's Agricultural Revolution Revisited M Rukuni, P Tawonezvi, M Munyuki-Hungwe, PB Matondi 477 Harare, Zimbabwe: Univ. Zimbabwe Publ.
    [Google Scholar]
  155. 155.
    Masters WA, Andersson A, De Haan C, Hazell P, Jayne T et al. 2013. Urbanization and farm size in Asia and Africa: implications for food security and agricultural research. Glob. Food Sec. 2:3156–65
    [Google Scholar]
  156. 156.
    Arnall A. 2018.. “ Employment until the end of the world”: exploring the role of manipulation in a Mozambican land deal. Land Use Policy 81:862–70
    [Google Scholar]
  157. 157.
    Dowuona-Hammond C. 2019. Rationalising the basis for utilization of compulsorily acquired property in Ghana: issues arising. Land Use Policy 81:546–52
    [Google Scholar]
  158. 158.
    Martin-Guay M, Paquette A, Dupras J, Rivest D. 2018. The new Green Revolution: sustainable intensification of agriculture by intercropping. Sci. Total Environ. 615:767–72
    [Google Scholar]
  159. 159.
    Sela S, van Es HM, Moebius-Clune BN, Marjerison R, Melkonian J et al. 2016. Adapt-N outperforms grower-selected nitrogen rates in Northeast and Midwestern United States strip trials. Agron. J. 108:41726–34
    [Google Scholar]
  160. 160.
    Pekor A, Miller JRB, Flyman MV, Kasiki S, Kesch MK et al. 2019. Fencing Africa's protected areas: costs, benefits, and management issues. Biol. Conserv. 229:67–75
    [Google Scholar]
  161. 161.
    Ahmed AI, Bryant RG, Edwards DP. 2021. Where are mines located in sub Saharan Africa and how have they expanded overtime?. Land Degrad. Dev. 32:1112–22
    [Google Scholar]
  162. 162.
    Giugni M, Grasso MT. 2015. Environmental movements in advanced industrial democracies: heterogeneity, transformation, and institutionalization. Annu. Rev. Environ. Resour. 40:337–61
    [Google Scholar]
  163. 163.
    Crowley C, Flood K, Caffrey B, Dunford B, Fitzpatrick Ú et al. 2020. Engaging and empowering people in biodiversity conservation: lessons from practice. Biol. Environ. 120B:2175–85
    [Google Scholar]
  164. 164.
    UNEP (United Nations Environ. Prog.) 2021. Addressing Single-Use Plastic Products Pollution Using a Life Cycle Approach, Vol. 3 Nairobi: UNEP
    [Google Scholar]
  165. 165.
    Raworth K. 2017. Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist White River Junction, VT: Chelsea Green
    [Google Scholar]
  166. 166.
    Ouyang Z, Song C, Zheng H, Polasky S, Xiao Y et al. 2020. Using gross ecosystem product (GEP) to value nature in decision making. PNAS 117:2514593–601
    [Google Scholar]
  167. 167.
    Brautigam D. 2011. The Dragon's Gift: The Real Story of China in Africa Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  168. 168.
    Pityana S. 2019. How Africa can secure its long-term economic growth. World Econ. Forum Sep. 4. https://www.weforum.org/agenda/2019/09/how-africa-can-secure-its-long-term-economic-growth/
    [Google Scholar]
  169. 169.
    Afr. Dev. Bank 2019. African Economic Outlook 2019: Macroeconomic Performance and Prospects Abidjan, Côte d'Ivoire: Afr. Dev. Bank
    [Google Scholar]
  170. 170.
    Afr. Union 2015. Agenda 2063, background note. Note, Afr. Union Comm Addis Ababa Ethiopia: https://au.int/sites/default/files/documents/33126-doc-01_background_note.pdf
    [Google Scholar]
  171. 171.
    Jonas HD, Ahmadia GN, Bingham HC, Briggs J, Butchart SHM et al. 2021. Equitable and effective area-based conservation: towards the conserved areas paradigm. PARKS 27:171–84
    [Google Scholar]
  172. 172.
    Pringle RM. 2017. Upgrading protected areas to conserve wild biodiversity. Nature 546:765691–99
    [Google Scholar]
  173. 173.
    Lindsey PA, Nyirenda VR, Barnes JI, Becker MS, McRobb R et al. 2014. Underperformance of African protected area networks and the case for new conservation models: insights from Zambia. PLOS One 9:5e94109
    [Google Scholar]
  174. 174.
    Jones B, Weaver LC 2021. CBNRM in Namibia: growth, trends, lessons and constraints. Evolution and Innovation in Wildlife Conservation B Child, H Suich, A Spenceley 241–60 London: Routledge
    [Google Scholar]
  175. 175.
    Cockerill KA, Hagerman SM. 2020. Historical insights for understanding the emergence of community-based conservation in Kenya: international agendas, colonial legacies, and contested worldviews. Ecol. Soc. 25:215
    [Google Scholar]
  176. 176.
    Dickman AJ, Macdonald EA, Macdonald DW. 2011. A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. PNAS 108:3413937–44
    [Google Scholar]
  177. 177.
    Law EA. 2016. Is international conservation aid enough?. Environ. Res. Lett. 11:22–5
    [Google Scholar]
  178. 178.
    Lindsey PA, Chapron G, Petracca LS, Burnham D, Hayward MW et al. 2017. Relative efforts of countries to conserve world's megafauna. Glob. Ecol. Conserv. 10:243–52
    [Google Scholar]
  179. 179.
    UNEP-WCMC (United Nations Environ. Program. World Conserv. Monit. Cent.), IUCN (Int. Union Conserv. Nat.), NGS (Natl. Geogr. Soc.) 2018. Protected Planet Report 2018. Washington, DC: UNEP-WCMC, IUCN, NGS
    [Google Scholar]
  180. 180.
    Simmons BA, Ray R, Yang H, Gallagher KP 2021. China can help solve the debt and environmental crises. Science 371:6528468–70
    [Google Scholar]
  181. 181.
    Dahir AL. 2019. Gabon will be paid by Norway to preserve its forests. Quartz Africa Sep. 23. https://qz.com/africa/1714104/gabon-to-get-150-million-from-norway-to-protect-its-forests/
    [Google Scholar]
  182. 182.
    Perumal L, New MG, Jonas M, Liu W 2021. The impact of roads on sub-Saharan African ecosystems: a systematic review. Environ. Res. Lett. 16:11113001
    [Google Scholar]
  183. 183.
    Packer C, Polasky S. 2018. Reconciling corruption with conservation triage: Should investments shift from the last best places?. PLOS Biol 16:8e2005620
    [Google Scholar]
  184. 184.
    Burroughs R, Hofmeyr M, Morkel P, Kock M, Kock R, Meltzer D 2012. Chemical immobilization—individual species requirements. Chemical and Physical Restraint of Wild Animals M Kock, R Burroughs 168–70 Greyton, S. Africa: IWVS
    [Google Scholar]
  185. 185.
    Naidoo R, Stuart-Hill G, Weaver LC, Tagg J, Davis A, Davidson A 2011. Effect of diversity of large wildlife species on financial benefits to local communities in northwest Namibia. Environ. Resour. Econ. 48:2321–35
    [Google Scholar]
  186. [Google Scholar]
  187. 187.
    Lindsey PA, du Toit R, Pole A, Romañach SS 2012. Savé Valley Conservancy: a large-scale African experiment in cooperative wildlife management. Evolution and Innovation in Wildlife Conservation B Child, H Suich, A Spenceley 181–202 London: Routledge
    [Google Scholar]
  188. 188.
    Lorimer J, Sandom C, Jepson P, Doughty C, Barua M, Kirby KJ. 2015. Rewilding: science, practice, and politics. Annu. Rev. Environ. Resour. 40:39–62
    [Google Scholar]
  189. 189.
    Searchinger TD, Estes L, Thornton PK, Beringer T, Notenbaert A et al. 2015. High carbon and biodiversity costs from converting Africa's wet savannahs to cropland. Nat. Clim. Chang. 5:5481–86
    [Google Scholar]
/content/journals/10.1146/annurev-environ-120920-125536
Loading
/content/journals/10.1146/annurev-environ-120920-125536
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error