1932

Abstract

Economic and population growth result in increasing use of biophysical resources, including land and biomass. Human activities influence the biological productivity of land, altering material and energy flows in the biosphere. The human appropriation of net primary production (HANPP) is an integrated socioecological indicator quantifying effects of human-induced changes in productivity and harvest on ecological biomass flows. We discuss how HANPP is defined, measured, and interpreted. Two principal approaches for constructing HANPP assessments exist: () In an area-specific approach, HANPP serves as an indicator of land-use intensity, gauging impacts on terrestrial ecosystems in a defined area; and () the consumption-based “embodied HANPP” approach allows assessment of impacts related to individual products or the aggregate consumption of nation-states. The HANPP framework can help to estimate upper limits for the biosphere's capacity to provide humanity with biomass for food, fiber, and bioenergy and to analyze systemic feedbacks between the delivery of these resources. We outline HANPP's global patterns and trajectories and how HANPP relates to planetary boundaries, global resource use, and pressures on biodiversity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-121912-094620
2014-10-17
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/energy/39/1/annurev-environ-121912-094620.html?itemId=/content/journals/10.1146/annurev-environ-121912-094620&mimeType=html&fmt=ahah

Literature Cited

  1. Turner BL, Lambin EF, Reenberg A. 1.  2007. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 104:20666–71 [Google Scholar]
  2. 2. GLP 2005. Global land project: science plan and implementation strategy. IGBP Rep. No. 53/IHDP Rep. No. 19, IGBP Secr., Stockholm [Google Scholar]
  3. Foley JA, DeFries R, Asner GP, Barford C, Bonan G. 3.  et al. 2005. Global consequences of land use. Science 309:570–74 [Google Scholar]
  4. Crutzen PJ. 4.  2002. Geology of mankind. Nature 415:23 [Google Scholar]
  5. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS. 5.  et al. 2011. Solutions for a cultivated planet. Nature 478:337–42 [Google Scholar]
  6. Whittaker RH, Likens GE. 6.  1973. Primary production: the biosphere and man. Hum. Ecol. 1:4357–69 [Google Scholar]
  7. Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA. 7.  1986. Human appropriation of the products of photosynthesis. Bioscience 36:6363–73 [Google Scholar]
  8. 8. Daly HE 1993. Sustainable growth: an impossibility theorem. Valuing the Earth: Economics, Ecology, Ethics HE Daly, KN Townsend 267–73 Boston: MIT Press [Google Scholar]
  9. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 9.  1997. Human domination of Earth's ecosystems. Science 277:494–99 [Google Scholar]
  10. Wright DH. 10.  1990. Human impacts on energy flow through natural ecosystems, and implications for species endangerment. Ambio 19:4189–94 [Google Scholar]
  11. Haberl H. 11.  1997. Human appropriation of net primary production as an environmental indicator: implications for sustainable development. Ambio 26:3143–46 [Google Scholar]
  12. Imhoff ML, Bounoua L, Ricketts T, Loucks C, Harriss R, Lawrence WT. 12.  2004. Global patterns in human consumption of net primary production. Nature 429:870–73 [Google Scholar]
  13. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A. 13.  et al. 2007. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 104:12942–47 [Google Scholar]
  14. Erb K-H, Haberl H, Jepsen MR, Kuemmerle T, Lindner M. 14.  et al. 2013. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 5:5464–70 [Google Scholar]
  15. Kuemmerle T, Erb K, Meyfroidt P, Müller D, Verburg PH. 15.  et al. 2013. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5:5484–93 [Google Scholar]
  16. Krausmann F, Erb K-H, Gingrich S, Haberl H, Bondeau A. 16.  et al. 2013. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. USA 110:10324–29 [Google Scholar]
  17. Cardoch L, Day JW, Ibàñez C. 17.  2002. Net primary productivity as an indicator of sustainability in the Ebro and Mississippi deltas. Ecol. Appl. 12:41044–55 [Google Scholar]
  18. Krausmann F, Haberl H, Erb K-H, Wiesinger M, Gaube V, Gingrich S. 18.  2009. What determines geographical patterns of the global human appropriation of net primary production?. J. Land Use Sci. 4:1–215–33 [Google Scholar]
  19. Haberl H, Kastner T, Schaffartzik A, Ludwiczek N, Erb K-H. 19.  2012. Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000. Ecol. Econ. 84:66–73 [Google Scholar]
  20. Haberl H, Steinberger JK, Plutzar C, Erb K-H, Gaube V. 20.  et al. 2012. Natural and socioeconomic determinants of the embodied human appropriation of net primary production and its relation to other resource use indicators. Ecol. Indic. 23:222–31 [Google Scholar]
  21. Lotka AJ. 21.  1925. Elements of Physical Biology Baltimore: Williams & Wilkins [Google Scholar]
  22. Lindeman RL. 22.  1942. The trophic-dynamic aspect of ecology. Ecology 23:399–418 [Google Scholar]
  23. Odum EP. 23.  1971. Fundamentals of Ecology Philadelphia: Saunders [Google Scholar]
  24. Odum HT. 24.  1971. Environment, Power and Society New York: Wiley-Intersci. [Google Scholar]
  25. Lieth H, Whittaker RH. 25.  1975. Primary Productivity of the Biosphere Berlin/Heidelberg/New York: Springer [Google Scholar]
  26. Sagoff M. 26.  1995. Carrying capacity and ecological economics. BioScience 45:9610–20 [Google Scholar]
  27. Meadows DH, Meadows DL, Randers J. 27.  1992. Beyond the Limits: Global Collapse or a Sustainable Future London: Earthscan [Google Scholar]
  28. Davidson C. 28.  2000. Economic growth and the environment: alternatives to the limits paradigm. BioScience 50:5433–40 [Google Scholar]
  29. Krausmann F. 29.  2001. Land use and industrial modernization: an empirical analysis of human influence on the functioning of ecosystems in Austria 1830–1995. Land Use Policy 18:117–26 [Google Scholar]
  30. Haberl H, Krausmann F. 30.  2001. Changes in population, affluence, and environmental pressures during industrialization: the case of Austria 1830–1995. Popul. Environ. 23:149–70 [Google Scholar]
  31. DeFries R. 31.  2002. Past and future sensitivity of primary production to human modification of the landscape. Geophys. Res. Lett. 29:71132 [Google Scholar]
  32. Rojstaczer S, Sterling SM, Moore NJ. 32.  2001. Human appropriation of photosynthesis products. Science 294:2549–52 [Google Scholar]
  33. Field CB. 33.  2001. Sharing the garden. Science 294:2490–91 [Google Scholar]
  34. Haberl H, Krausmann F, Erb K-H, Schulz NB, Rojstaczer S. 34.  et al. 2002. Human appropriation of net primary production. Science 296:1968–69 [Google Scholar]
  35. Smil V. 35.  2011. Harvesting the biosphere: the human impact. Popul. Dev. Rev. 37:4613–36 [Google Scholar]
  36. Smil V. 36.  2013. Harvesting the Biosphere. What We Have Taken from Nature Cambridge, MA: MIT Press [Google Scholar]
  37. Haberl H, Erb K-H, Krausmann F, Loibl W, Schulz N, Weisz H. 37.  2001. Changes in ecosystem processes induced by land use: human appropriation of aboveground NPP and its influence on standing crop in Austria. Glob. Biogeochem. Cycles. 15:4929–42 [Google Scholar]
  38. Haberl H, Gaube V, Díaz-Delgado R, Krauze K, Neuner A. 38.  et al. 2009. Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms. Ecol. Econ. 68:61797–812 [Google Scholar]
  39. O'Neill DW, Tyedmers PH, Beazley KF. 39.  2007. Human appropriation of net primary production (HANPP) in Nova Scotia, Canada. Reg. Environ. Change 7:11–14 [Google Scholar]
  40. Vačkář D, Chobot K, Orlitová E. 40.  2012. Spatial relationship between human population density, land use intensity and biodiversity in the Czech Republic. Landsc. Ecol. 27:91279–90 [Google Scholar]
  41. Erb K-H, Krausmann F, Gaube V, Gingrich S, Bondeau A. 41.  et al. 2009. Analyzing the global human appropriation of net primary production—processes, trajectories, implications. Ecol. Econ. 69:2250–59 [Google Scholar]
  42. Wackernagel M, Rees WE. 42.  1997. Our Ecological Footprint: Reducing Human Impact on the Earth Gabriola Island, BC: New Soc. Publ. [Google Scholar]
  43. Haberl H, Wackernagel M, Krausmann F, Erb K-H, Monfreda C. 43.  2004. Ecological footprints and human appropriation of net primary production: a comparison. Land Use Policy 21:3279–88 [Google Scholar]
  44. Erb K-H, Krausmann F, Lucht W, Haberl H. 44.  2009. Embodied HANPP: mapping the spatial disconnect between global biomass production and consumption. Ecol. Econ. 69:2328–34 [Google Scholar]
  45. Haberl H, Erb K-H, Krausmann F, Berecz S, Ludwiczek N. 45.  et al. 2009. Using embodied HANPP to analyze teleconnections in the global land system: conceptual considerations. Geogr. Tidsskr.–Danish J. Geogr. 109:2119–30 [Google Scholar]
  46. Esser G. 46.  1987. Sensitivity of global carbon pools and fluxes to human and potential climatic impacts. Tellus Ser. B39B3245–60 [Google Scholar]
  47. Alexandrov GA, Oikawa T, Esser G. 47.  1999. Estimating terrestrial NPP: What the data say and how they may be interpreted?. Ecol. Model. 117:2–3361–69 [Google Scholar]
  48. Lieth H. 48.  1975. Modeling the primary productivity of the world. See Ref. 25 237–63
  49. Zaks DPM, Ramankutty N, Barford CC, Foley JA. 49.  2007. From Miami to Madison: investigating the relationship between climate and terrestrial net primary production. Glob. Biogeochem. Cycles 21:3GB3004 [Google Scholar]
  50. Cannell MGR. 50.  1982. World Forest Biomass and Primary Production Data 67 New York: Academic [Google Scholar]
  51. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A. 51.  et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9:2161–85 [Google Scholar]
  52. Krausmann F, Erb K-H, Gingrich S, Lauk C, Haberl H. 52.  2008. Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecol. Econ. 65:3471–87 [Google Scholar]
  53. Fischer-Kowalski M, Krausmann F, Giljum S, Lutter S, Mayer A. 53.  et al. 2011. Methodology and indicators of economy-wide material flow accounting—state of the art and reliability across sources. J. Ind. Ecol. 15:6855–76 [Google Scholar]
  54. Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL. 54.  et al. 2010. The European carbon balance. Part 2: Croplands. Glob. Change Biol. 16:51409–28 [Google Scholar]
  55. Erb K-H, Gaube V, Krausmann F, Plutzar C, Bondeau A, Haberl H. 55.  2007. A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J. Land Use Sci. 2:3191–224 [Google Scholar]
  56. Ito A. 56.  2011. A historical meta-analysis of global terrestrial net primary productivity: Are estimates converging?. Glob. Change Biol. 17:103161–75 [Google Scholar]
  57. Cramer W, Kicklighter DW, Bondeau A, Moore B III, Churkina G. 57.  et al. 1999. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5:S11–15 [Google Scholar]
  58. Wirsenius S. 58.  2003. The biomass metabolism of the food system: a model-based survey of the global and regional turnover of food biomass. J. Ind. Ecol. 7:147–80 [Google Scholar]
  59. Bouwman AF, Van Der Hoek KW, Eickhout B, Soenario I. 59.  2005. Exploring changes in world ruminant production systems. Agric. Syst. 84:2121–53 [Google Scholar]
  60. Lauk C, Erb K-H. 60.  2009. Biomass consumed in anthropogenic vegetation fires: global patterns and processes. Ecol. Econ. 69:2301–9 [Google Scholar]
  61. Fetzel T, Gradwohl M, Erb K-H. 61.  2014. Conversion, intensification, and abandonment: a human appropriation of net primary production approach to analyze historic land-use dynamics in New Zealand 1860–2005. Ecol. Econ. 97:201–8 [Google Scholar]
  62. Niedertscheider M, Erb K. 62.  2014. Land system change in Italy from 1884 to 2007: analysing the north–south divergence on the basis of an integrated indicator framework. Land Use Policy 39:366–75 [Google Scholar]
  63. Krausmann F, Gingrich S, Haberl H, Erb K-H, Musel A. 63.  et al. 2012. Long-term trajectories of the human appropriation of net primary production: lessons from six national case studies. Ecol. Econ. 77:129–38 [Google Scholar]
  64. Krausmann F. 64.  2004. Milk, manure, and muscle power. Livestock and the transformation of preindustrial agriculture in central Europe. Hum. Ecol. 32:6735–72 [Google Scholar]
  65. O'Neill DW, Abson DJ. 65.  2009. To settle or protect? A global analysis of net primary production in parks and urban areas. Ecol. Econ. 69:2319–27 [Google Scholar]
  66. Singh SJ, Krausmann F, Gingrich S, Haberl H, Erb K-H. 66.  et al. 2012. India's biophysical economy, 1961–2008. Sustainability in a national and global context. Ecol. Econ. 76:60–69 [Google Scholar]
  67. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. 67.  2012. Closing yield gaps through nutrient and water management. Nature 490:254–57 [Google Scholar]
  68. Lobell DB, Cassman KG, Field CB. 68.  2009. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34:179–204 [Google Scholar]
  69. Smith WK, Cleveland CC, Reed SC, Running SW. 69.  2014. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity. Geophys. Res. Lett. 41:449–55 [Google Scholar]
  70. Zika M, Erb KH. 70.  2009. The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol. Econ. 69:2310–18 [Google Scholar]
  71. Meyfroidt P, Lambin EF, Erb K-H, Hertel TW. 71.  2013. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5:5438–44 [Google Scholar]
  72. Kastner T, Schaffartzik A, Eisenmenger N, Erb K-H, Haberl H, Krausmann F. 72.  2014. Cropland area embodied in international trade: contradictory results from different approaches. Ecol. Econ. 104:140–44 [Google Scholar]
  73. Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Goldewijk KK, Verburg PH. 73.  2013. Used planet: a global history. Proc. Natl. Acad. Sci. USA 110:7978–85 [Google Scholar]
  74. Goldewijk KK, Ramankutty N. 74.  2004. Land cover change over the last three centuries due to human activities: the availability of new global data sets. GeoJournal 61:4335–44 [Google Scholar]
  75. Krausmann F, Gingrich S, Eisenmenger N, Erb K-H, Haberl H, Fischer-Kowalski M. 75.  2009. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 68:102696–705 [Google Scholar]
  76. Musel A. 76.  2009. Human appropriation of net primary production in the United Kingdom, 1800–2000: changes in society's impact on ecological energy flows during the agrarian-industrial transition. Ecol. Econ. 69:2270–81 [Google Scholar]
  77. Schwarzlmüller E. 77.  2009. Human appropriation of aboveground net primary production in Spain, 1955–2003: an empirical analysis of the industrialization of land use. Ecol. Econ. 69:2282–91 [Google Scholar]
  78. Kohlheb N, Krausmann F. 78.  2009. Land use change, biomass production and HANPP: the case of Hungary 1961–2005. Ecol. Econ. 69:2292–300 [Google Scholar]
  79. Vačkář D, Orlitová E. 79.  2010. Human appropriation of aboveground photosynthetic production in the Czech Republic. Reg. Environ. Change 11:3519–29 [Google Scholar]
  80. Kastner T. 80.  2009. Trajectories in human domination of ecosystems: human appropriation of net primary production in the Philippines during the 20th century. Ecol. Econ. 69:2260–69 [Google Scholar]
  81. Niedertscheider M, Gingrich S, Erb K-H. 81.  2012. Changes in land use in South Africa between 1961 and 2006: an integrated socio-ecological analysis based on the human appropriation of net primary production framework. Reg. Environ. Change 12:4715–27 [Google Scholar]
  82. Fischer-Kowalski M, Haberl H. 82.  2007. Socioecological Transitions and Global Change. Trajectories of Social Metabolism and Land Use Cheltenham, UK/Northampton, MA: Edward Elgar [Google Scholar]
  83. Singh SJ, Haberl H, Chertow M, Mirtl M, Schmid M. 83.  2013. Long-Term Socio-Ecological Research Dordrecht, Neth: Springer [Google Scholar]
  84. Evenson RE, Gollin D. 84.  2003. Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–62 [Google Scholar]
  85. Pearse A. 85.  1980. Seeds of Plenty, Seeds of Want. Social and Economic Implications of the Green Revolution. Oxford, UK: Oxford Univ. Press [Google Scholar]
  86. Mather A. 86.  1992. The forest transition. Area 24:4367–79 [Google Scholar]
  87. Meyfroidt P, Lambin EF. 87.  2011. Global forest transition: prospects for an end to deforestation. Annu. Rev. Environ. Resour. 36:1343–71 [Google Scholar]
  88. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P. 88.  et al. 2012. Bioenergy. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation O Edenhofer, R Pichs-Madruga, Y Sokona, K Seyboth, P Matschoss 209–332 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  89. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D. 89.  et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327:5967812–18 [Google Scholar]
  90. Tilman D, Balzer C, Hill J, Befort BL. 90.  2011. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 108:20260–64 [Google Scholar]
  91. McIntyre BD, Herren HR, Wakhungu J, Watson RT. 91.  2009. Agriculture at a Crossroads: International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD), Global Report Washington, DC: Island [Google Scholar]
  92. Pimentel D, Hurd LE, Bellotti AC, Forster MJ, Oka IN. 92.  et al. 1973. Food production and the energy crisis. Science 182:443–49 [Google Scholar]
  93. Giampietro M, Pimentel D. 93.  1991. Energy efficiency: assessing the interaction between humans and their environment. Ecol. Econ. 4:2117–44 [Google Scholar]
  94. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC. 94.  et al. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:56251560–63 [Google Scholar]
  95. Zhao M, Running SW. 95.  2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–43 [Google Scholar]
  96. Running SW. 96.  2012. A measurable planetary boundary for the biosphere. Science 337:1458–59 [Google Scholar]
  97. Houghton RA. 97.  2013. Keeping management effects separate from environmental effects in terrestrial carbon accounting. Glob. Change Biol. 19:92609–12 [Google Scholar]
  98. Coelho S, Agbenyega O, Agostini A, Erb KH, Haberl H. 98.  et al. 2012. Land and water: linkages to bioenergy. See Ref. 129 1459–525
  99. Odum EP. 99.  1969. The strategy of ecosystem development. Science 164:262–70 [Google Scholar]
  100. Erb K-H. 100.  2004. Land use-related changes in aboveground carbon stocks of Austria's terrestrial ecosystems. Ecosystems 7:5563–72 [Google Scholar]
  101. Gingrich S, Erb K-H, Krausmann F, Gaube V, Haberl H. 101.  2007. Long-term dynamics of terrestrial carbon stocks in Austria: a comprehensive assessment of the time period from 1830 to 2000. Reg. Environ. Change 7:137–47 [Google Scholar]
  102. Erb K-H, Haberl H, Krausmann F. 102.  2007. The fossil fuel-powered carbon sink: carbon flows and Austria's energetic metabolism in a long-term perspective. See Ref. 82 60–82
  103. Erb K, Gingrich S, Krausmann F, Haberl H. 103.  2008. Industrialization, fossil fuels, and the transformation of land use. J. Ind. Ecol. 12:5–6686–703 [Google Scholar]
  104. Haberl H, Erb K-H, Gingrich S, Kastner T, Krausmann F. 104.  2013. Human appropriation of net primary production, stocks and flows of carbon, and biodiversity. Ecosystem Services and Carbon Sequestration in the Biosphere R Lal, K Lorenz, RF Hüttl, B-U Schneider, J von Braun 313–31 Berlin: Springer [Google Scholar]
  105. Erb K-H, Kastner T, Luyssaert S, Houghton RA, Kuemmerle T. 105.  et al. 2013. Bias in the attribution of forest carbon sinks. Nature Clim. Change 3:10854–56 [Google Scholar]
  106. Le Quere C, Raupach MR, Canadell JG, Marland G. 106.  et al. 2009. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2:12831–36 [Google Scholar]
  107. Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS. 107.  et al. 2012. Carbon emissions from land use and land-cover change. Biogeosciences 9:125125–42 [Google Scholar]
  108. Wright DH. 108.  1983. Species-energy theory: an extension of species-area theory. Oikos 41:3496–506 [Google Scholar]
  109. Hutchinson GE. 109.  1959. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93:870145–59 [Google Scholar]
  110. Brown JH. 110.  1981. Two decades of homage to Santa Rosalia: toward a general theory of diversity. Am. Zool. 21:4877–88 [Google Scholar]
  111. Gaston KJ. 111.  2000. Global patterns in biodiversity. Nature 405:220–27 [Google Scholar]
  112. Brown JH. 112.  2014. Why are there so many species in the tropics?. J. Biogeogr. 41:18–22 [Google Scholar]
  113. Evans KL, Warren PH, Gaston KJ. 113.  2005. Species–energy relationships at the macroecological scale: a review of the mechanisms. Biol. Rev. 80:11–25 [Google Scholar]
  114. Rosenzweig ML, Abramsky Z. 114.  1993. How are diversity and productivity related?. In Species Diversity on Ecological Communities RE Ricklefs, D Schluter 52–65 Chicago/London: Univ. Chicago Press [Google Scholar]
  115. Whittaker RJ, Willis KJ, Field R. 115.  2001. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28:4453–70 [Google Scholar]
  116. Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L. 116.  et al. 1999. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 30:1257–300 [Google Scholar]
  117. Cusens J, Wright SD, McBride PD, Gillman LN. 117.  2012. What is the form of the productivity-animal-species-richness relationship? A critical review and meta-analysis. Ecology 93:102241–52 [Google Scholar]
  118. Haberl H, Schulz NB, Plutzar C, Erb KH, Krausmann F. 118.  et al. 2004. Human appropriation of net primary production and species diversity in agricultural landscapes. Agric. Ecosyst. Environ. 102:2213–18 [Google Scholar]
  119. Haberl H, Plutzar C, Erb K-H, Gaube V, Pollheimer M, Schulz NB. 119.  2005. Human appropriation of net primary production as determinant of avifauna diversity in Austria. Agric. Ecosyst. Environ. 110:3–4119–31 [Google Scholar]
  120. Rockström J, Steffen W, Noone K, Persson AA, Chapin FS. 120.  et al. 2009. A safe operating space for humanity. Nature 461:472–75 [Google Scholar]
  121. Erb K-H, Haberl H, DeFries R, Ellis E, Krausmann F. 121.  et al. 2012. Pushing the planetary boundaries. Science 338:1419–20 [Google Scholar]
  122. Haberl H, Erb K-H, Krausmann F, Running S, Searchinger TD, Smith WK. 122.  2013. Bioenergy: how much can we expect for 2050?. Environ. Res. Lett. 8:031004 [Google Scholar]
  123. Schulze E, Körner C, Law BE, Haberl H, Luyssaert S. 123.  2012. Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy 4:6611–16 [Google Scholar]
  124. Kleidon A. 124.  2006. The climate sensitivity to human appropriation of vegetation productivity and its thermodynamic characterization. Glob. Planet. Change 54:1–2109–27 [Google Scholar]
  125. Haberl H, Erb K-H, Krausmann F, Bondeau A, Lauk C. 125.  et al. 2011. Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass Bioenergy 35:124753–69 [Google Scholar]
  126. Erb K-H, Haberl H, Plutzar C. 126.  2012. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy 47:260–69 [Google Scholar]
  127. Powell TWR, Lenton TM. 127.  2012. Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energy Environ. Sci. 5:8116–33 [Google Scholar]
  128. Smith WK, Zhao M, Running SW. 128.  2012. Global bioenergy capacity as constrained by observed biospheric productivity rates. BioScience 62:10911–22 [Google Scholar]
  129. 129. GEA Writing Team 2012. Global Energy Assessment: Toward a Sustainable Future Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  130. Smith P, Haberl H, Popp A, Erb K, Lauk C. 130.  et al. 2013. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Glob. Change Biol. 19:2285–302 [Google Scholar]
  131. De Ponti T, Rijk B, van Ittersum MK. 131.  2012. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108:1–9 [Google Scholar]
  132. Seufert V, Ramankutty N, Foley JA. 132.  2012. Comparing the yields of organic and conventional agriculture. Nature 485:229–34 [Google Scholar]
  133. Guzmán GI, González de Molina M, Alonso AM. 133.  2011. The land cost of agrarian sustainability: an assessment. Land Use Policy 28:4825–35 [Google Scholar]
  134. Erb K-H, Haberl H, Krausmann F, Lauk C, Plutzar C. 134.  et al. 2009. Eating the planet: feeding and fuelling the world sustainably, fairly and humanely—a scoping study Soc. Ecol. Work. Pap. No. 116, Soc. Ecol. Vienna, IFF, Potsdam Inst. Climate Impact Res., Alpen-Adria Univ. Klagenfurt, Austria [Google Scholar]
  135. Haberl H, Geissler S. 135.  2000. Cascade utilization of biomass: strategies for a more efficient use of a scarce resource. Ecol. Eng. 16:Suppl.111–21 [Google Scholar]
  136. Blanco-Canqui H, Lal R. 136.  2009. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 28:139–63 [Google Scholar]
  137. Hoekstra A. 137.  2009. Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecol. Econ. 68:71963–74 [Google Scholar]
  138. Costanza R, d'Arge R, De Groot R, Farber S, Grasso M. 138.  et al. 1997. The value of the world's ecosystem services and natural capital. Nature 387:253–60 [Google Scholar]
  139. Hoekstra AY, Chapagain AK. 139.  2007. Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour. Manag. 21:135–48 [Google Scholar]
  140. Postel SL, Daily GC, Ehrlich PR. 140.  1996. Human appropriation of renewable fresh water. Science 271:785–88 [Google Scholar]
  141. Weiß M, Schaldach R, Alcamo J, Flörke M. 141.  2009. Quantifying the human appropriation of fresh water by African agriculture. Ecol. Soc. 14:225 [Google Scholar]
  142. Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G. 142.  2002. The human footprint and the last of the wild. BioScience 52:10891–904 [Google Scholar]
  143. Erb K-H. 143.  2004. Actual land demand of Austria 1926–2000: a variation on ecological footprint assessments. Land Use Policy 21:3247–59 [Google Scholar]
  144. Kastner T, Rivas MJI, Koch W, Nonhebel S. 144.  2012. Global changes in diets and the consequences for land requirements for food. Proc. Natl. Acad. Sci. USA 109:6868–72 [Google Scholar]
  145. Hertwich EG, Peters GP. 145.  2009. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43:166414–20 [Google Scholar]
  146. Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S. 146.  et al. 2013. The material footprint of nations. Proc. Natl. Acad. Sci. USA. In press. doi: 10.1073/pnas.1220362110 [Google Scholar]
  147. Kitzes J, Wackernagel M, Loh J, Peller A, Goldfinger S. 147.  et al. 2008. Shrink and share: humanity's present and future ecological footprint. Philos. Trans. R. Soc. B 363:1491467–75 [Google Scholar]
  148. Pauly D, Christensen V. 148.  1995. Primary production required to sustain global fisheries. Nature 374:255–56 [Google Scholar]
  149. Swartz W, Sala E, Tracey S, Watson R, Pauly D. 149.  2010. The spatial expansion and ecological footprint of fisheries (1950 to present). PLOS ONE 5:12e15143 [Google Scholar]
  150. Haberl H, Weisz H. 150.  2007. The potential use of the materials and energy flow analysis (MEFA) framework to evaluate the environmental costs of agricultural production systems and possible applications to aquaculture. Comparative Assessment of the Environmental Costs of Aquaculture and Other Food Production Sectors: Methods for Meaningful Comparisons FAO Fish. Proc. No. 10, ed. DM Bartley, C Brugere, D Soto, P Gerber, B Harvey 97–120 Rome: Food Agric. Organ. United Nations [Google Scholar]
  151. Elton CS. 151.  1958. The Ecology of Invasions by Animals and Plants London: Methuen [Google Scholar]
  152. Tüxen R. 152.  1956. Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew. Pflanzensoziol. 13:5–42 [Google Scholar]
/content/journals/10.1146/annurev-environ-121912-094620
Loading
/content/journals/10.1146/annurev-environ-121912-094620
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error