1932

Abstract

Arctic sea ice decline has led to an amplification of surface warming and is projected to continue to decline from anthropogenic forcing, although the exact timing of ice-free summers is uncertain owing to large natural variability. Sea ice reductions affect surface heating patterns and the atmospheric pressure distribution, which may alter midlatitude extreme weather patterns. Increased light penetration and nutrient availability during spring from earlier ice breakup enhances primary production in the Arctic Ocean and its adjacent shelf seas. Ice-obligate marine mammals may be losers, whereas seasonally migrant species may be winners from rapid sea ice decline. Tundra greening is occurring across most of the Arctic, driven primarily by warming temperatures, and is displaying complex spatial patterns that are likely tied to other factors. Sea ice changes are affecting greenhouse gas exchanges as well as halogen chemistry in the Arctic. This review highlights the heterogeneous nature of Arctic change, which is vital for researchers to better understand.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-122012-094357
2014-10-17
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/energy/39/1/annurev-environ-122012-094357.html?itemId=/content/journals/10.1146/annurev-environ-122012-094357&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Natl. Snow Ice Data Cent 2012. Arctic sea ice settles at record seasonal minimum. Arctic Sea Ice News Anal. Sept. 19. http://nsidc.org/arcticseaicenews/2012/09/arctic-sea-ice-extent-settles-at-record-seasonal-minimum
  2. Overland JE, Wang M. 2.  2013. When will the summer Arctic be nearly sea ice free?. Geophys. Res. Lett. 40:102097–101 [Google Scholar]
  3. Hansen J, Ruedy R, Sato M, Lo K. 3.  2010. Global surface temperature change. Rev. Geophys. 48:4RG4004 [Google Scholar]
  4. Stocker TF, Dahe Q, Plattner GK, Tignor MMB, Allen SK. 4.  et al. 2013. Climate Change 2013: The Physical Science Basis Cambridge, MA: Cambridge Univ. Press
  5. Bekryaev RV, Polyakov IV, Alexeev VA. 5.  2010. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim. 23:143888–906 [Google Scholar]
  6. Serreze MC, Barry RG. 6.  2011. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77:85–96 [Google Scholar]
  7. Polyakov IV, Bhatt US, Walsh JE, Abrahamsen EP, Pnyushkov AV, Wassmann PF. 7.  2013. Recent oceanic changes in the Arctic in the context of longer term observations. Ecol. Appl. 23:1745–64 [Google Scholar]
  8. Alexeev VA, Langen PL, Bates JR. 8.  2005. Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim. Dynam. 24:7–8655–66 [Google Scholar]
  9. Screen JA, Deser C, Simmonds I. 9.  2012. Local and remote controls on observed Arctic warming. Geophys. Res. Lett. 39:10L10709 [Google Scholar]
  10. Screen JA, Simmonds I, Deser C, Tomas R. 10.  2013. The atmospheric response to three decades of observed Arctic sea ice loss. J. Clim. 26:41230–48 [Google Scholar]
  11. Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T. 11.  et al. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39:16L16502 [Google Scholar]
  12. Wang M, Overland JE. 12.  2012. A sea ice free summer Arctic within 30 years: an update from CMIP5 models. Geophys. Res. Lett. 39:18L13501 [Google Scholar]
  13. Holland MM, Bitz CM, Tremblay B. 13.  2006. Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett. 33:L23503 [Google Scholar]
  14. Notz D, Marotzke J. 14.  2012. Observations reveal external driver for Arctic sea-ice retreat. Geophys. Res. Lett. 39:8L08502 [Google Scholar]
  15. Kay JE, Holland MM, Jahn A. 15.  2011. Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett. 38:15L15708 [Google Scholar]
  16. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M. 16.  2007. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34:9L09501 [Google Scholar]
  17. Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R. 17.  et al. 2013. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 40:4732–37 [Google Scholar]
  18. Kwok R, Rothrock DA. 18.  2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett. 36:15L15501 [Google Scholar]
  19. Goosse H, Arzel O, Bitz CM, de Montety A, Vancoppenolle M. 19.  2009. Increased variability of the Arctic summer ice extent in a warmer climate. Geophys. Res. Lett. 36:23L23702 [Google Scholar]
  20. Maslowski W, Clement Kinney J, Higgins M, Roberts A. 20.  2012. The future of Arctic sea ice. Annu. Rev. Earth Planet. Sci. 40:1625–54 [Google Scholar]
  21. Overland JE, Wang M. 21.  2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62:11–9 [Google Scholar]
  22. Francis JA, Vavrus SJ. 22.  2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39:6L06801 [Google Scholar]
  23. Screen JA, Simmonds I. 23.  2013. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 40:5959–64 [Google Scholar]
  24. Barnes EA. 24.  2013. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett 40:174734–39 [Google Scholar]
  25. Hopsch S, Cohen J, Dethloff K. 25.  2012. Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A 64:18624 [Google Scholar]
  26. Honda M, Inoue J, Yamane S. 26.  2009. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 36:8L08707 [Google Scholar]
  27. 27. Natl. Res. Counc 2014. Linkages Between Arctic Warming and Mid-Latitude Weather Patterns: Summary of a Workshop. Washington, DC: Natl. Acad. Press
  28. Petoukhov V, Semenov VA. 28.  2010. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res.: Oceans 115:D21111 [Google Scholar]
  29. Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE. 29.  2012. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett. 7:1014007 [Google Scholar]
  30. Liu J, Curry JA, Wang H, Song M, Horton RM. 30.  2012. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 109:114074–79 [Google Scholar]
  31. Cohen J, Barlow M, Kushner PJ, Saito K. 31.  2007. Stratosphere–troposphere coupling and links with Eurasian land surface variability. J. Clim. 20:215335–43 [Google Scholar]
  32. Carmack E, McLaughlin F, Whiteman G, Homer-Dixon T. 32.  2012. Detecting and coping with disruptive shocks in Arctic marine systems: a resilience approach to place and people. AMBIO 41:156–65 [Google Scholar]
  33. McLaughlin FA, Carmack EC, Macdonald RW, Bishop JKB. 33.  1996. Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin. J. Geophys. Res.: Oceans 101:C11183–97 [Google Scholar]
  34. McLaughlin FA, Carmack EC, Williams WJ, Zimmermann S, Shimada K, Itoh M. 34.  2009. Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993–2007. J. Geophys. Res.: Oceans 114:C1C00A12 [Google Scholar]
  35. Polyakov IV, Alexeev VA, Ashik IM, Bacon S, Beszczynska-Möller A. 35.  et al. 2011. Fate of early 2000s Arctic warm water pulse. Bull. Am. Meteorol. Soc. 92:5561–66 [Google Scholar]
  36. Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E. 36.  et al. 2006. Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett. 33:8L08605 [Google Scholar]
  37. Woodgate RA, Weingartner T, Lindsay R. 37.  2010. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett. 37:1L01602 [Google Scholar]
  38. Yang J. 38.  2009. Seasonal and interannual variability of downwelling in the Beaufort Sea. J. Geophys. Res.: Oceans 114:C00A14 [Google Scholar]
  39. Kwok R, Spreen G, Pang S. 39.  2013. Arctic sea ice circulation and drift speed: decadal trends and ocean currents. J. Geophys. Res.: Oceans 118:52408–25 [Google Scholar]
  40. Lien VS, Vikebø FB, Skagseth Ø. 40.  2013. One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nat. Commun. 4:1488 [Google Scholar]
  41. Proshutinsky A, Krishfield R, Timmermans M-L, Toole J, Carmack E. 41.  et al. 2009. Beaufort Gyre freshwater reservoir: state and variability from observations. J. Geophys. Res.: Oceans 114:C00A10 [Google Scholar]
  42. Krishfield RA, Proshutinsky A, Tateyama K, Williams WJ, Carmack EC. 42.  et al. 2014. Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle. J. Geophys. Res.: Oceans 119:1271–305 [Google Scholar]
  43. Jackson JM, Allen SE, Mclaughlin FA, Woodgate RA, Carmack EC. 43.  2011. Changes to the near-surface waters in the Canada Basin, Arctic Ocean from 1993–2009: a basin in transition. J. Geophys. Res.: Oceans 116:C10008 [Google Scholar]
  44. Toole JM, Timmermans ML, Perovich DK, Krishfield RA, Proshutinsky A, Richter-Menge JA. 44.  2010. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. J. Geophys. Res.: Oceans 115:C10018 [Google Scholar]
  45. Arrigo KR, van Dijken G, Pabi S. 45.  2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35:19L19603 [Google Scholar]
  46. Tremblay J-É, Gagnon J. 46.  2009. The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change. NATO Science for Peace and Security Series C: Environmental Security JJ Nihoul, A Kostianoy 73–93 Dordrecht, Neth: Springer [Google Scholar]
  47. Carmack E, Chapman DC. 47.  2003. Wind-driven shelf/basin exchange on an Arctic shelf: the joint roles of ice cover extent and shelf-break bathymetry. Geophys. Res. Lett. 30:141778 [Google Scholar]
  48. McLaughlin FA, Carmack EC. 48.  2010. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009. Geophys. Res. Lett. 37:24L24602 [Google Scholar]
  49. Li WKW, Mclaughlin FA, Lovejoy C, Carmack EC. 49.  2009. Smallest algae thrive as the Arctic ocean freshens. Science 326:5952539–39 [Google Scholar]
  50. Yamamoto-Kawai M, Mclaughlin FA, Carmack EC, Nishino S, Shimada K. 50.  2009. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:59561098–100 [Google Scholar]
  51. Tremblay , Bélanger S, Barber DG, Asplin M, Martin J. 51.  et al. 2011. Climate forcing multiplies biological productivity in the coastal Arctic Ocean. Geophys. Res. Lett. 38:18 [Google Scholar]
  52. Yamamoto-Kawai M, McLaughlin F, Carmack E. 52.  2013. Ocean acidification in the three oceans surrounding northern North America. J. Geophys. Res.: Oceans 118:116274–84 [Google Scholar]
  53. Arrigo KR, van Dijken GL. 53.  2011. Secular trends in Arctic Ocean net primary production. J. Geophys. Res.: Oceans 116:C09011 [Google Scholar]
  54. Kahru M, Brotas V, Manzano-Sarabia M, Mitchell BG. 54.  2011. Are phytoplankton blooms occurring earlier in the Arctic?. Glob. Change Biol. 17:41733–39 [Google Scholar]
  55. Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC. 55.  1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Res. Part II: Top. Stud. Oceanogr. 44:81623–44 [Google Scholar]
  56. Slagstad D, Ellingsen IH, Wassmann P. 56.  2011. Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: An experimental simulation approach. Prog. Oceanogr. 90:1–4117–31 [Google Scholar]
  57. Moore SE, Huntington HP. 57.  2008. Arctic marine mammals and climate change: impacts and resilience. Ecol. Appl. 18:Suppl. 2S157–65 [Google Scholar]
  58. Kovacs KM, Lydersen C, Overland JE, Moore SE. 58.  2010. Impacts of changing sea-ice conditions on Arctic marine mammals. Mar. Biodiv. 41:1181–94 [Google Scholar]
  59. Rode KD, Regehr EV, Douglas DC, Durner G, Derocher AE. 59.  et al. 2013. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Glob. Change Biol. 20:176–88 [Google Scholar]
  60. MacCracken JG. 60.  2012. Pacific walrus and climate change: observations and predictions. Ecol. Evol. 2:82072–90 [Google Scholar]
  61. Jay C, Marcot B, Douglas D. 61.  2011. Projected status of the Pacific walrus (Odobenus rosmarus divergens) in the twenty-first century. Polar Sci. 34:71065–84 [Google Scholar]
  62. Harwood LA, Smith TG, Melling H, Alikamik J, Kingsley M. 62.  2012. Ringed seals and sea ice in Canada's Western Arctic: harvest-based monitoring 1992–2011. Arctic 65:4377–90 [Google Scholar]
  63. Clarke JT, Christman CL, Brower AA, Ferguson M. 63.  2013. Distribution and relative abundance of marine mammals in the northeastern Chukchi and western Beaufort seas, 2012 Annu. Rep., BOEM 2013–00117, Natl. Mar. Mamm. Lab., Alsk. Fish. Sci. Cent., Seattle, WA. http://www.afsc.noaa.gov/nmml/PDF/COMIDA-2012-Report.pdf
  64. Higdon JW, Hauser DDW, Ferguson SH. 64.  2011. Killer whales (Orcinus orca) in the Canadian Arctic: distribution, prey items, group sizes, and seasonality. Mar. Mamm. Sci. 28:2E93–109 [Google Scholar]
  65. Moore SE, Logerwell E, Eisner L, Farley E, Harwood LA. 65.  et al. 2014. Marine fishes, birds and mammals as sentinels of ecosystem variability and reorganization in the Pacific Arctic Region. The Pacific Arctic Region: Ecosystem Status and Trends in a Rapidly Changing Environment JM Grebmeier, W Maslowski 337–92 Dordrecht, Neth: Springer [Google Scholar]
  66. Moore SE, Laidre KL. 66.  2006. Trends in sea ice cover within habitats used by bowhead whales in the western Arctic. Ecol. Appl. 16:3932–44 [Google Scholar]
  67. Romanovsky VE, Sazonova TS, Balobaev VT, Shender NI, Sergueev DO. 67.  2007. Past and recent changes in air and permafrost temperatures in eastern Siberia. Glob. Planet. Change 56:3–4399–413 [Google Scholar]
  68. Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL. 68.  et al. 2010. Thermal state of permafrost in Russia. Permafr. Periglac. Process. 21:2136–55 [Google Scholar]
  69. Osterkamp TE, Zhang T, Romanovsky VE. 69.  1994. Evidence for a cyclic variation of permafrost temperatures in northern Alaska. Permafr. Periglac. Process. 5:3137–44 [Google Scholar]
  70. Smith SL, Romanovsky VE, Lewkowicz AG, Burn CR, Allard M. 70.  et al. 2010. Thermal state of permafrost in North America: a contribution to the international polar year. Permafr. Periglac. Process. 21:2117–35 [Google Scholar]
  71. Romanovsky VE, Kholodov AL, Smith SL, Christiansen HH, Shiklomanov NI. 71.  et al. 2013. Permafrost. State of the Climate in 2012 J Blunden, DS Arndt, Spec. Suppl Bull. Am. Meteorol. Soc. 94:8S123–24 [Google Scholar]
  72. Romanovsky VE, Smith SL, Christiansen HH. 72.  2010. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafr. Periglac. Process. 21:2106–16 [Google Scholar]
  73. Walker DA, Raynolds MK, Daniels FJA, Einarsson E, Elvebakk A. 73.  et al. 2005. The Circumpolar Arctic Vegetation Map. J. Veg. Sci. 16:267–82 [Google Scholar]
  74. Walker DA. 74.  1987. Height and growth-ring response of Salix lanata ssp. richardsonii along the coastal temperature gradient of northern Alaska. Can. J. Bot. 65:988–93 [Google Scholar]
  75. Walker DA, Epstein HE, Raynolds MK, Kuss P, Kopecky MA. 75.  et al. 2012. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environ. Res. Lett. 7:1015504 [Google Scholar]
  76. Tucker CJ, Sellers PJ. 76.  1986. Satellite remote sensing of primary production. Int. J. Remote Sens. 7:1395–416 [Google Scholar]
  77. Stow DA, Hope A, McGuire D, Verbyla D, Gamon J. 77.  et al. 2004. Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens. Environ. 89:3281–308 [Google Scholar]
  78. Raynolds MK, Walker DA, Epstein HE, Pinzon JE, Tucker CJ. 78.  2012. A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens. Lett. 3:5403–11 [Google Scholar]
  79. Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE. 79.  et al. 2010. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interact. 14:81–20 [Google Scholar]
  80. Bhatt US. 80.  2013. Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote Sens. 5:94229–54 [Google Scholar]
  81. Dutrieux LP, Bartholomeus H, Herold M, Verbesselt J. 81.  2012. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11). Environ. Res. Lett. 7:4044028 [Google Scholar]
  82. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD. 82.  et al. 2012. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15:2164–75 [Google Scholar]
  83. Walker DA, Leibman MO, Epstein HE, Forbes BC, Bhatt US. 83.  et al. 2009. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index. Environ. Res. Lett. 4:045004 [Google Scholar]
  84. Walker DA, Raynolds MK, Gould WA. 84.  2008. Fred Daniëls, Subzone A, and the North American Arctic Transect. Abh. Westfäl. Mus. Naturkd. 70:3/4387–400 [Google Scholar]
  85. Post E, Bhatt US, Bitz CM, Brodie JF, Fulton TL. 85.  et al. 2013. Ecological consequences of sea-ice decline. Science 341:6145519–24 [Google Scholar]
  86. Schliebe S, Rode KD, Gleason JS, Wilder J, Proffitt K. 86.  et al. 2008. Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall open-water period in the Southern Beaufort Sea. Polar Sci. 31:8999–1010 [Google Scholar]
  87. Fischbach AS, Amstrup SC, Douglas DC. 87.  2007. Landward and eastward shift of Alaskan polar bear denning associated with recent sea ice changes. Polar Sci. 30:111395–405 [Google Scholar]
  88. Derocher AE, Andersen M, Wiig Ø, Aars J, Hansen E, Biuw M. 88.  2011. Sea ice and polar bear den ecology at Hopen Island, Svalbard. Mar. Ecol. Prog. Ser. 441:273–79 [Google Scholar]
  89. Regehr EV, Lunn NJ, Amstrup SC, Stirling I. 89.  2007. Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay. J. Wildl. Manag. 71:82673–83 [Google Scholar]
  90. Atkinson SN, Stirling I, Ramsay MA. 90.  1996. Growth in early life and relative body size among adult polar bears (Ursus maritimus). J. Zool. 239:2225–34 [Google Scholar]
  91. Rode KD, Amstrup SC, Regehr EV. 91.  2010. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20:3768–82 [Google Scholar]
  92. Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR. 92.  et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325:59461355–58 [Google Scholar]
  93. Ferguson SH, Stirling I, McLoughlin P. 93.  2005. Climate change and ringed seal (Phoca hispida) recruitment in western Hudson Bay. Mar. Mamm. Sci. 21:1121–35 [Google Scholar]
  94. Smith TG, Stirling I. 94.  1975. The breeding habitat of the ringed seal (Phoca hispida). The birth lair and associated structures. Can. J. Zool. 53:91297–305 [Google Scholar]
  95. Hezel PJ, Zhang X, Bitz CM, Kelly BP, Massonnet F. 95.  2012. Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze-up this century. Geophys. Res. Lett. 39:L17505 [Google Scholar]
  96. Gilchrist HG, Mallory ML. 96.  2005. Declines in abundance and distribution of the ivory gull (Pagophila eburnea) in Arctic Canada. Biol. Conserv. 121:2303–9 [Google Scholar]
  97. Gilg O, Boertmann D, Merkel F, Aebischer A, Sabard B. 97.  2009. Status of the endangered ivory gull, Pagophila eburnea, in Greenland. Polar Sci. 32:91275–86 [Google Scholar]
  98. Forchhammer M, Boertmann D. 98.  1993. The muskoxen Ovibos moschatus in north and northeast Greenland: population trends and the influence of abiotic parameters on population dynamics. Ecography 16:4299–308 [Google Scholar]
  99. Gauthier G, Berteaux D, Bêty J, Tarroux A, Therrien J-F. 99.  et al. 2011. The tundra food web of Bylot Island in a changing climate and the role of exchanges between ecosystems. Ecoscience 18:3223–35 [Google Scholar]
  100. Hansen BB, Grøtan V, Aanes R, Sæther B-E, Stien A. 100.  et al. 2013. Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic. Science 339:6117313–15 [Google Scholar]
  101. Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP. 101.  2013. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497:615–18 [Google Scholar]
  102. McGuire AD, Christensen TR, Hayes D, Heroult A, Euskirchen E. 102.  et al. 2012. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9:83185–204 [Google Scholar]
  103. Parmentier F-JW, Christensen TR, Sørensen LL, Rysgaard S, McGuire AD. 103.  et al. 2013. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nat. Clim. Change 3:195–202 [Google Scholar]
  104. Vonk JE, Gustafsson Ö. 104.  2013. Permafrost-carbon complexities. Nat. Geosci. 6:9675–76 [Google Scholar]
  105. Schuur EA, Abbott B. 105.  2011. High risk of permafrost thaw. Nature 480:32–33 [Google Scholar]
  106. Schuster U, McKinley GA, Bates N, Chevallier F, Doney SC. 106.  et al. 2013. An assessment of the Atlantic and Arctic sea–air CO2 fluxes, 1990–2009. Biogeosciences 10:1607–27 [Google Scholar]
  107. Bates NR, Mathis JT. 107.  2009. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6:112433–59 [Google Scholar]
  108. Cai WJ, Chen L, Chen B, Gao Z, Lee SH. 108.  et al. 2010. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329:5991556–59 [Google Scholar]
  109. Rysgaard S, Bendtsen J, Pedersen LT, Ramløv H, Glud RN. 109.  2009. Increased CO2 uptake due to sea ice growth and decay in the Nordic Seas. J. Geophys. Res.: Oceans 114:C09011 [Google Scholar]
  110. Rysgaard S, Glud RN, Lennert K, Cooper M, Halden N. 110.  et al. 2012. Ikaite crystals in melting sea ice—implications for pCO2 and pH levels in Arctic surface waters. Cryosphere 6:4901–8 [Google Scholar]
  111. Miller LA, Papakyriakou TN, Collins RE, Deming JW, Ehn JK. 111.  et al. 2011. Carbon dynamics in sea ice: a winter flux time series. J. Geophys. Res.: Oceans 116:C02028 [Google Scholar]
  112. Else BGT, Papakyriakou TN, Asplin MG, Barber DG, Galley RJ. 112.  et al. 2013. Annual cycle of air-sea CO2 exchange in an Arctic Polynya Region. Glob. Biogeochem. Cycles 27:2388–98 [Google Scholar]
  113. Berndt C, Feseker T, Treude T, Krastel S, Liebetrau V. 113.  et al. 2014. Temporal constraints on hydrate-controlled methane seepage off Svalbard. Science 343:6168284–87 [Google Scholar]
  114. Marín-Moreno H, Minshull TA, Westbrook GK, Sinha B, Sarkar S. 114.  2013. The response of methane hydrate beneath the seabed offshore Svalbard to ocean warming during the next three centuries. Geophys. Res. Lett. 40:195159–63 [Google Scholar]
  115. Shakhova N, Semiletov I, Leifer I, Sergienko V, Salyuk A. 115.  et al. 2013. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 7:64–70 [Google Scholar]
  116. Dmitrenko IA, Kirillov SA, Tremblay LB, Kassens H, Anisimov OA. 116.  et al. 2011. Recent changes in shelf hydrography in the Siberian Arctic: potential for subsea permafrost instability. J. Geophys. Res.: Oceans 116:C10027 [Google Scholar]
  117. Parmentier F-JW, Christensen TR. 117.  2013. Arctic: speed of methane release. Nature 500:7464529 [Google Scholar]
  118. Simpson WR, von Glasow R, Riedel K, Anderson P, Ariya P. 118.  et al. 2007. Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 7:164375–418 [Google Scholar]
  119. Abbatt JPD, Thomas JL, Abrahamsson K, Boxe C, Granfors A. 119.  et al. 2012. Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmos. Chem. Phys. 12:146237–71 [Google Scholar]
  120. Oltmans SJ, Johnson BJ, Harris JM. 120.  2012. Springtime boundary layer ozone depletion at Barrow, Alaska: meteorological influence, year-to-year variation, and long-term change. J. Geophys. Res.: Oceans 117:D00R18 [Google Scholar]
  121. Barrie LA, Bottenheim JW, Schnell RC, Crutzen PJ, Rasmussen RA. 121.  1988. Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334:6178138–41 [Google Scholar]
  122. Lindberg SE, Brooks S, Lin CJ, Scott KJ, Landis MS. 122.  et al. 2002. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environ. Sci. Technol. 36:61245–56 [Google Scholar]
  123. Steffen A, Douglas T, Amyot M, Ariya P, Aspmo K. 123.  et al. 2008. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos. Chem. Phys. 8:61445–82 [Google Scholar]
  124. Wennberg P. 124.  1999. Atmospheric chemistry: bromine explosion. Nature 397:6717299–301 [Google Scholar]
  125. Fan S-M, Jacob DJ. 125.  1992. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols. Nature 359:6395522–24 [Google Scholar]
  126. McElroy CT, McLinden CA, McConnell JC. 126.  1999. Evidence for bromine monoxide in the free troposphere during the Arctic polar sunrise. Nature 397:338–41 [Google Scholar]
  127. Rankin AM. 127.  2002. Frost flowers: implications for tropospheric chemistry and ice core interpretation. J. Geophys. Res.: Oceans 107:D234683 [Google Scholar]
  128. Simpson WR, Carlson D, Hönninger G, Douglas TA, Sturm M. 128.  et al. 2007. First-year sea-ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact. Atmos. Chem. Phys. 7:3621–27 [Google Scholar]
  129. Pratt KA, Custard KD, Shepson PB, Douglas TA, Pohler D. 129.  et al. 2013. Photochemical production of molecular bromine in Arctic surface snowpacks. Nat. Geosci. 6:5351–56 [Google Scholar]
  130. Jones AE, Anderson PS, Begoin M, Brough N, Hutterli MA. 130.  et al. 2009. BrO, blizzards, and drivers of polar tropospheric ozone depletion events. Atmos. Chem. Phys. 9:144639–52 [Google Scholar]
  131. Liao J, Huey LG, Liu Z, Tanner DJ, Cantrell CA. 131.  et al. 2014. High levels of molecular chlorine in the Arctic atmosphere. Nat. Geosci. 7:1291–94 [Google Scholar]
  132. Moore CW, Obrist D, Steffen A, Staebler RM. 132.  2014. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice. Nature 506:81–84 [Google Scholar]
  133. Zhang X, He J, Zhang J, Polyakov I, Gerdes R. 133.  et al. 2012. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Clim. Change 3:147–51 [Google Scholar]
  134. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W. 134.  et al. 2008. Tipping elements in the Earth's climate system. Proc. Natl. Acad. Sci. USA 105:61786–93 [Google Scholar]
  135. Zhang X, Sorteberg A, Zhang J, Gerdes R, Comiso JC. 135.  2008. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett. 35:22L22701 [Google Scholar]
  136. Overland JE, Wood KR, Wang M. 136.  2011. Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea. Polar Res. 30:04045 [Google Scholar]
  137. Francis OP, Panteleev GG, Atkinson DE. 137.  2011. Ocean wave conditions in the Chukchi Sea from satellite and in situ observations. Geophys. Res. Lett. 38:L24610 [Google Scholar]
  138. Overeem I, Anderson RS, Wobus CW, Clow GD, Urban FE, Matell N. 138.  2011. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38:L17503 [Google Scholar]
  139. Meier WN, Stroeve J, Barrett A, Fetterer F. 139.  2012. A simple approach to providing a more consistent Arctic sea ice extent time series from the 1950s to present. Cryosphere 6:61359–68 [Google Scholar]
  140. Carmack E, Wassmann P. 140.  2006. Food webs and physical–biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Prog. Oceanogr. 71:446–77 [Google Scholar]
  141. Wassmann P, Reigstad M. 141.  2011. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24:3220–31 [Google Scholar]
  142. Frey KE, Arrigo KR, Gradinger RR. 142.  2011. Arctic Ocean primary productivity. Arctic Report Card 2011 MO Jeffries, JA Richter-Menge, JE Overland 69–71 Washington, DC: NOAA http://www.arctic.noaa.gov/report11/ArcticReportCard_full_report.pdf [Google Scholar]
/content/journals/10.1146/annurev-environ-122012-094357
Loading
/content/journals/10.1146/annurev-environ-122012-094357
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error