1932

Abstract

This article revisits the economics of insurance using insights from derivatives pricing and hedging. Applying this perspective, I emphasize the following insights applicable to insurance. First, I provide a valid justification for the use of arbitrage-free insurance premiums. This justification applies in both complete and incomplete markets. Second, I demonstrate the importance of diversifiable idiosyncratic risk for the determination of insurance premiums. And third, analyzing the insurance industry using the functional approach, I show the importance of derivatives and the synthetic construction of derivatives for reducing an insurance company's insolvency risk.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-financial-040721-075128
2021-11-01
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/financial/13/1/annurev-financial-040721-075128.html?itemId=/content/journals/10.1146/annurev-financial-040721-075128&mimeType=html&fmt=ahah

Literature Cited

  1. Aït-Sahalia Y, Lo A. 1998. Nonparametric estimation of state-price densities implicit in financial asset prices. J. Finance 53:2499–547
    [Google Scholar]
  2. Arrow K. 1974. Optimal insurance and generalized deductibles. Scand. Actuar. J. 1:1–42
    [Google Scholar]
  3. Asmussen W, Taksar M. 1997. Controlled diffusion models for optimal dividend pay-out. Insur. Math. Econ. 20:11–15
    [Google Scholar]
  4. Barbarin J. 2008. Heath–Jarrow–Morton modelling of longevity bonds and the risk minimization of life insurance portfolios. Insur. Math. Econ. 43:41–55
    [Google Scholar]
  5. Billingsley P. 1986. Probability and Measure. Hoboken, NJ: John Wiley & Sons. , 2nd ed..
    [Google Scholar]
  6. Bodie Z. 1989. Pensions as retirement income insurance NBER Work. Pap. 2917
    [Google Scholar]
  7. Bodie Z, Detemple J, Rindisbacher M. 2009. Life-cycle finance and the design of pension plans. Annu. Rev. Financ. Econ. 1:249–86
    [Google Scholar]
  8. Bodie Z, Merton R 1993. Pension benefit guarantees in the United States: a functional analysis. The Future of Pensions in the United States R Schmitt Philadelphia: Univ. Pennsylvania Press
    [Google Scholar]
  9. Boland P. 2007. Statistical and Probabilistic Methods in Actuarial Science Boca Raton, FL: CRC Press
    [Google Scholar]
  10. Booth P, Chadburn R, Haberman S, James D, Khorasanee Z et al. 2005. Modern Actuarial Theory and Practice. Boca Raton, FL: CRC Press. , 2nd ed..
    [Google Scholar]
  11. Borch K. 1983. The optimal insurance contract in a competitive market. Econ. Lett. 11:327–30
    [Google Scholar]
  12. Borowiak D, Shapiro A. 2014. Financial and Actuarial Statistics: An Introduction. Boca Raton, FL: CRC Press. , 2nd ed..
    [Google Scholar]
  13. Calomiris CW, Jaremski M. 2016. Deposit insurance: theories and facts. Annu. Rev. Financ. Econ. 8:97–120
    [Google Scholar]
  14. Dana R, Jeanblanc M. 1998. Financial Markets in Continuous Time Berlin: Springer
    [Google Scholar]
  15. Duffie D, Jarrow R, Purnanandam A, Yang W 2003. Market pricing of deposit insurance. J. Financ. Serv. Res. 24:2/393–119
    [Google Scholar]
  16. Feng R. 2018. An Introduction to Computational Risk Management of Equity-Linked Insurance Financ. Math. Ser. Boca Raton, FL: CRC Press
    [Google Scholar]
  17. Figlewski S. 2018. Risk-neutral densities: a review. Annu. Rev. Financ. Econ. 10:329–59
    [Google Scholar]
  18. Froot K. 2001. The market for catastrophe risk: a clinical examination. J. Financ. Econ. 60:529–71
    [Google Scholar]
  19. Guler O. 2010. Foundations of Optimization New York: Springer
    [Google Scholar]
  20. Hubalek F, Schachermayer W. 2004. Optimizing expected utility of dividend payments for a Brownian risk process and a peculiar nonlinear ODE. Insur. Math. Econ. 34:193–225
    [Google Scholar]
  21. Jackwerth J, Rubinstein M. 1996. Recovering probability distributions from option prices. J. Finance 51:51611–31
    [Google Scholar]
  22. Jarrow RA. 2009. Credit risk models. Annu. Rev. Financ. Econ. 1:37–68
    [Google Scholar]
  23. Jarrow RA. 2019. Continuous-Time Asset Pricing Theory: A Martingale-Based Approach Cham, Switz: Springer
    [Google Scholar]
  24. Jarrow RA, Larsson M. 2018. On aggregation and representative agent equilibria. J. Math. Econ. 74:119–27
    [Google Scholar]
  25. Jarrow RA, Li S 2021. Concavity, stochastic utility, and risk aversion. Finance Stoch. 25:311–30
    [Google Scholar]
  26. Jorion P. 2000. Value at Risk. New York: McGraw Hill. , 2nd ed..
    [Google Scholar]
  27. Kassberger S, Kiesel R, Liebmann T. 2008. Fair valuation of insurance contracts under Lévy process specifications. Insur. Math. Econ. 42:419–33
    [Google Scholar]
  28. Kreps D. 1990. A Course in Microeconomic Theory Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  29. Kuhn M, Wrzaczek S, Prskawetz A, Feichtinger G. 2015. Optimal choice of health and retirement in a life-cycle model. J. Econ. Theory 158:186–212
    [Google Scholar]
  30. Lee H. 2003. Pricing equity-indexed annuities with path-dependent options. Insur. Math. Econ. 33:677–90
    [Google Scholar]
  31. Mas-Colell A, Whinston M, Green J. 1995. Microeconomic Theory Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  32. Melnikov A. 2011. Risk Analysis in Finance and Insurance Financ. Math. Ser. Boca Raton, FL: CRC Press. , 2nd ed..
    [Google Scholar]
  33. Merton RC. 1976. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3:125–44
    [Google Scholar]
  34. Merton RC. 1977. An analytic derivation of the cost of deposit insurance and loan guarantees. J. Bank. Finance 1:3–11
    [Google Scholar]
  35. Merton RC. 1983. On consumption indexed public pension plans. Financial Aspects of the United States Pension System Z Bodie, J Shoven 259–90 Chicago: Univ. Chicago Press
    [Google Scholar]
  36. Merton RC. 1995. Financial innovation and the management and regulation of financial institutions. J. Bank. Finance 19:3–4461–81
    [Google Scholar]
  37. Nielsen P, Steffensen M. 2008. Optimal investment and life insurance strategies under minimum and maximum constraints. Insur. Math. Econ. 43:15–28
    [Google Scholar]
  38. Paulsen J. 1998. Ruin theory with compounding assets—a survey. Insur. Math. Econ. 22:13–16
    [Google Scholar]
  39. Pliska S, Ye J. 2007. Optimal life insurance purchase and consumption/investment under uncertain lifetime. J. Bank. Finance 31:1307–19
    [Google Scholar]
  40. Protter P. 2005. Stochastic Integration and Differential Equations. New York: Springer-Verlag. , 2nd ed..
    [Google Scholar]
  41. Raviv A. 1979. The design of an optimal insurance policy. Am. Econ. Rev. 69:184–96
    [Google Scholar]
  42. Richard S. 1975. Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model. J. Financ. Econ. 2:187–203
    [Google Scholar]
  43. Ross S. 1976. The arbitrage theory of capital asset pricing. J. Econ. Theory 13:341–60
    [Google Scholar]
  44. Rothschild M, Stiglitz J. 1976. Equilibrium in competitive insurance markets: an essay on the economics of imperfect competition. Q. J. Econ. 90:4629–49
    [Google Scholar]
  45. Rubinstein M. 1994. Implied binomial trees. J. Finance 49:3771–818
    [Google Scholar]
  46. Stiglitz JE. 1983. Risk, incentives and insurance: the pure theory of moral hazard. Geneva Pap. Risk Insur. 8:264–33
    [Google Scholar]
  47. Stiglitz J, Yun J 2013. Optimality and equilibrium in a competitive insurance market under adverse selection and moral hazard NBER Work. Pap. 19317
    [Google Scholar]
  48. Tanskanen A, Lukkarinen J. 2003. Fair valuation of path-dependent participating life insurance contracts. Insur. Math. Econ. 33:595–609
    [Google Scholar]
  49. Varian H. 1978. Microeconomic Analysis New York: W.W. Norton & Company
    [Google Scholar]
  50. Waldmann K. 1988. On optimal dividend payments and related problems. Insur. Math. Econ. 7:4237–49
    [Google Scholar]
  51. Zaglauer K, Bauer D. 2008. Risk-neutral valuation of participating life insurance contracts in a stochastic interest rate environment. Insur. Math. Econ. 43:29–40
    [Google Scholar]
  52. Zhou C, Wu C, Zhang S, Huang X. 2008. An optimal insurance strategy for an individual under an intertemporal equilibrium. Insur. Math. Econ. 42:255–60
    [Google Scholar]
/content/journals/10.1146/annurev-financial-040721-075128
Loading
/content/journals/10.1146/annurev-financial-040721-075128
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error