There is large uncertainty in the radiative forcing induced by aircraft contrails, particularly after they transform to cirrus. It has recently become possible to simulate contrail evolution for long periods after their formation. We review the main physical processes and simulation efforts in the four phases of contrail evolution, namely the jet, vortex, vortex dissipation, and diffusion phases. Recommendations for further work are given.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ackerman AS, Hobbs PV, Toon OB. 1995. A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements. J. Atmos. Sci. 52:1204–36 [Google Scholar]
  2. Appleman H. 1953. The formation of exhaust condensation trails by jet aircraft. Bull. Am. Meteorol. Soc. 34:14–20 [Google Scholar]
  3. Atlas D, Wang Z, Duda DP. 2006. Contrails to cirrus—morphology, microphysics and radiative properties. J. Appl. Meteorol. Climatol. 45:5–19 [Google Scholar]
  4. Barker H, Cole J, Morcrette JJ, Pincus R, Räisänen P. et al. 2008. The Monte Carlo Independent Column Approximation: an assessment using several global atmospheric models. Q. J. R. Meteorol. Soc. 134:1463–78 [Google Scholar]
  5. Batchelor GK. 1964. Axial flow in trailing line vortices. J. Fluid Mech. 20:645–58 [Google Scholar]
  6. Batchelor GK. 1967. An Introduction to Fluid Mechanics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  7. Bayly BJ. 1986. Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57:2160–63 [Google Scholar]
  8. Brethouwer G, Billant P, Lindborg E, Chomaz JM. 2007. Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585:343–68 [Google Scholar]
  9. Brunet S, Garnier F, Jacquin L. 1999. Numerical/experimental simulation of exhaust jet mixing in wake vortex Presented at AIAA Fluid Dyn. Conf., 30th, Norfolk, VA, AIAA Pap. 1999-3418 [Google Scholar]
  10. Burkhardt U, Kärcher B. 2009. Process-based simulation of contrail cirrus in a global climate model. J. Geophys. Res. 114:D16201 [Google Scholar]
  11. Burkhardt U, Kärcher B. 2011. Global radiative forcing from contrail cirrus. Nat. Clim. Change 1:54–58 [Google Scholar]
  12. Burkhardt U, Kärcher B, Schumann U. 2010. Global modeling of the contrail and contrail cirrus climate impact. Bull. Am. Meteorol. Soc. 91:479–84 [Google Scholar]
  13. Busen R, Schumann U. 1995. Visible contrail formation from fuels with different sulfur content. Geophys. Res. Lett. 22:1357–60 [Google Scholar]
  14. Cess RD, Potter GL, Blanchet JP, Boer GJ, Del Genio AD. et al. 1990. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res. 95:16601–15 [Google Scholar]
  15. Chlond A. 1998. Large eddy simulation of contrails. J. Atmos. Sci. 55:796–819 [Google Scholar]
  16. Crow SC. 1970. Stability theory for a pair of trailing vortices. AIAA J. 8:2172–79 [Google Scholar]
  17. Dobbie S, Jonas P. 2001. Radiative influences on the structure and lifetimes of cirrus clouds. Q. J. R. Meteorol. Soc. 127:2663–82 [Google Scholar]
  18. Dürbeck T, Gerz T. 1996. Dispersion of aircraft exhausts in the free atmosphere. J. Geophys. Res. 101:26007–16 [Google Scholar]
  19. Ebert EE, Curry JA. 1992. A parameterization of ice cloud optical properties for climate models. J. Geophys. Res. 97:3831–36 [Google Scholar]
  20. Evans KF. 1998. The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci. 55:429–46 [Google Scholar]
  21. Fahey DW, Schumann U, Ackerman S, Artaxo P, Boucher O. et al. 1999. Aviation-produced aerosols and cloudiness. See Penner et al. 1999 65–120
  22. Febvre G, Gayet J-F, Minikin A, Schlager H, Shcherbakov V. et al. 2009. On optical and microphysical characteristics of contrails and cirrus. J. Geophys. Res. 114:D02204 [Google Scholar]
  23. Ferreira Gago C, Brunet S, Garnier F. 2002. Numerical investigation of turbulent mixing in a jet/wake vortex interaction. AIAA J. 40:276–84 [Google Scholar]
  24. Forster L, Emde C, Unterstrasser S, Mayer B. 2012. Effects of three-dimensional photon transport on the radiative forcing of realistic contrails. J. Atmos. Sci. 69:2243–55 [Google Scholar]
  25. Freudenthaler V, Homburg F, Jäger H. 1995. Contrail observation by ground-based scanning lidar: cross-sectional growth. Geophys. Res. Lett. 22:3501–4 [Google Scholar]
  26. Fu Q. 1996. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Clim. 9:2058–82 [Google Scholar]
  27. Fu Q, Liou KN. 1993. Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci. 50:2008–25 [Google Scholar]
  28. Fu Q, Yang P, Sun WB. 1998. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Clim. 11:2223–36 [Google Scholar]
  29. Fuglestvedt JS, Marquart S, Sausen R, Lee DS. 2003. Metrics of climatic change: assessing radiative forcing and emission indices. Clim. Change 58:267–331 [Google Scholar]
  30. Garnier F, Brunet S, Jacquin L. 1997. Modelling exhaust plume mixing in the near field of an aircraft. Ann. Geophys. 15:1468–77 [Google Scholar]
  31. Garten JF, Werne J, Fritts DC, Arendt S. 2001. Direct numerical simulation of the crow instability and subsequent vortex reconnection in a stratified fluid. J. Fluid Mech. 426:1–45 [Google Scholar]
  32. Gayet JF, Febvre G, Larsen H. 1996. The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Ocean. Technol. 13:1300–10 [Google Scholar]
  33. Gayet JF, Shcerbakov V, Voigt C, Schumann U, Schäuble D. et al. 2012. The evolution of microphysical and optical properties of an A380 contrail in the vortex phase. Atmos. Chem. Phys. 12:6629–43 [Google Scholar]
  34. Gerz T, Dürbeck T, Konopka P. 1998. Transport and effective diffusion of aircraft emissions. J. Geophys. Res. 103:25905–14 [Google Scholar]
  35. Gerz T, Ehret T. 1997. Wingtip vortices and exhaust jet during the jet regime of aircraft wakes. Aerosp. Sci. Technol. 1:463–74 [Google Scholar]
  36. Gerz T, Holzäpfel F, Darracq D. 2002. Commercial aircraft wake vortices. Prog. Aerosp. Sci. 38:181–208 [Google Scholar]
  37. Gierens K, Dilger F. 2013. A climatology of formation conditions for aerodynamic contrails. Atmos. Chem. Phys. 13:10847–57 [Google Scholar]
  38. Gierens K, Jensen E. 1998. A numerical study of the contrail-to-cirrus transition. Geophys. Res. Lett. 25:4341–44 [Google Scholar]
  39. Gierens K, Kärcher B, Mannstein H, Mayer B. 2009. Aerodynamic contrails: phenomenology and flow physics. J. Atmos. Sci. 66:217–26 [Google Scholar]
  40. Gierens K, Spichtinger P. 2000. On the size distribution of ice-supersaturated regions in the upper troposphere and lowermost stratosphere. Ann. Geophys. 18:499–504 [Google Scholar]
  41. Gounou A, Hogan RJ. 2007. A sensitivity study of the effect of horizontal photon transport on the radiative forcing of contrails. J. Atmos. Sci. 64:1706–16 [Google Scholar]
  42. Haller G, Sapsis T. 2008. Where do inertial particles go in fluid flows?. Physica D 237:573–83 [Google Scholar]
  43. Heymsfield AJ, Baumgardner D, DeMott P, Forster P, Gierens K, Kärcher B. 2010. Contrail microphysics. Bull. Am. Meteorol. Soc. 91:465–72 [Google Scholar]
  44. Heymsfield AJ, Iaquinta J. 2000. Cirrus crystal terminal velocities. J. Atmos Sci. 57:916–38 [Google Scholar]
  45. Heymsfield AJ, Lawson RP, Sachse GW. 1998. Growth of ice crystals in a precipitating contrail. Geophys. Res. Lett. 25:1335–38 [Google Scholar]
  46. Holzäpfel F, Gerz T, Baumann R. 2001. The turbulent decay of trailing vortex pairs in stably stratified environments. Aerosp. Sci. Technol. 5:95–108 [Google Scholar]
  47. Hong G, Yang P, Baum BA, Heymsfield AJ, Xu KM. 2009. Parameterization of shortwave and longwave radiative properties of ice clouds for use in climate models. J. Clim. 22:6287–382 [Google Scholar]
  48. Hu Z, Srivastava RC. 1995. Evolution of raindrop size distribution by coalescence, breakup, and evaporation: theory and observations. J. Atmos. Sci. 52:1761–83 [Google Scholar]
  49. Huebsch WW, Lewellen DC. 2006. Sensitivity study on contrail evolution Presented at AIAA Fluid Dyn. Conf. Exhib., 36th, San Francisco, AIAA Pap. 2006-3749 [Google Scholar]
  50. Hulburt HM, Katz S. 1964. Some problems in particle technology: a statistical mechanical formulation. Chem. Eng. Sci. 19:555–74 [Google Scholar]
  51. Husain H, Hussain F. 1991. Elliptic jets. Part 2. Dynamics of coherent structures: pairing. J. Fluid Mech. 233:439–82 [Google Scholar]
  52. Int. Civil Aviat. Organ 2007. ICAO environmental report 2007. Rep., Int. Civil Aviat. Organ., Quebec. http://www.icao.int/environmental-protection/Documents/Env_Report_07.pdf [Google Scholar]
  53. Jacobson MZ. 1999. Fundamentals of Atmospheric Modeling Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  54. Jacobson MZ, Wilkerson JT, Naiman AD, Lele SK. 2011. The effects of aircraft on climate and pollution. Part I: Numerical methods for treating the subgrid evolution of discrete size- and composition-resolved contrails from all commercial flights worldwide. J. Comput. Phys. 230:5115–32 [Google Scholar]
  55. Jacquin L, Fabre D, Geoffroy P. 2001. The properties of a transport aircraft wake in the extended near field: an experimental study Presented at AIAA Aerosp. Sci. Meet. Exhib., 39th, Reno, NV, AIAA Pap. 2001-1038 [Google Scholar]
  56. Jacquin L, Fabre D, Sipp D, Coustols E. 2005. Unsteadiness, instability and turbulence in trailing vortices. C. R. Phys. 6:399–414 [Google Scholar]
  57. Jacquin L, Garnier F. 1996. On the dynamics of engine jets behind a transport aircraft Rep. AGARD CP-584, NATO, Brussels [Google Scholar]
  58. Jensen EJ, Ackerman AS, Stevens DE, Toon OB, Minnis P. 1998a. Spreading and growth of contrails in a sheared environment. J. Geophys. Res. 103:31557–67 [Google Scholar]
  59. Jensen EJ, Toon OB, Kinnie S, Sachse GW, Anderson BE. et al. 1998b. Environmental conditions required for contrail formation and persistence. J. Geophys. Res. 103:3929–36 [Google Scholar]
  60. Jessberger P, Voigt C, Schumann U, Sölch I, Kaufmann S. et al. 2013. Aircraft type influence on contrail properties. Atmos. Chem. Phys. 38:11965–84 [Google Scholar]
  61. Kärcher B. 1998. Physicochemistry of aircraft-generated liquid aerosols, soot, and ice particles. 1. Model description. J. Geophys. Res. 103:17111–28 [Google Scholar]
  62. Kärcher B. 1999. Aviation-produced aerosols and contrails. Surv. Geophys. 20:113–67 [Google Scholar]
  63. Kärcher B. 2003. Simulating gas-aerosol-cirrus interactions: process-oriented microphysical model and applications. Atmos. Chem. Phys. 3:1645–64 [Google Scholar]
  64. Kärcher B, Burkhardt U, Bier A, Bock L, Ford IJ. 2015. The microphysical pathway to contrail formation. J. Geophys. Res. 1207893–927 [Google Scholar]
  65. Kärcher B, Mayer B, Gierens K, Burkhardt U, Mannstein H. 2009. Aerodynamic contrails: microphysics and optical properties. J. Atmos. Sci. 66:227–43 [Google Scholar]
  66. Kärcher B, Peter T, Biermann UM, Schumann U. 1996. The initial composition of jet condensation trails. J. Atmos. Sci. 53:3066–82 [Google Scholar]
  67. Kärcher B, Yu F. 2009. Role of aircraft soot emissions in contrail formation. Geophys. Res. Lett. 36:L01804 [Google Scholar]
  68. Kelvin L. 1880. Vibrations of a columnar vortex. Philos. Mag. 10:155–68 [Google Scholar]
  69. Khvorostyanov V, Curry J. 2002. Terminal velocities of droplets and crystals: power laws with continuous parameters over the size spectrum. J. Atmos. Sci. 59:1872–84 [Google Scholar]
  70. Kimura Y, Herring JR. 2012. Energy spectra of stably stratified turbulence. J. Fluid Mech. 698:19–50 [Google Scholar]
  71. Konopka P. 1995. Analytical Gaussian solutions for anisotropic diffusion in a linear shear flow. J. Non-Equilib. Thermodyn. 20:78–91 [Google Scholar]
  72. Lamb H. 1932. Hydrodynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  73. Lamquin N, Stubenrauch CJ, Gierens K, Burkhardt U, Smit H. 2012. A global climatology of upper-tropospheric ice supersaturation occurrence inferred from the Atmospheric Infrared Sounder calibrated by MOZAIC. Atmos. Chem. Phys. 12:381–405 [Google Scholar]
  74. Landman MJ, Saffman PG. 1987. The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids 30:2339–42 [Google Scholar]
  75. Lee DS, Fahey DW, Foster PM, Newton PJ, Wit RCN. et al. 2009. Aviation and global climate change in the 21th century. Atmos. Environ. 43:3520–37 [Google Scholar]
  76. Lee DS, Pitari G, Grewe V, Gierens K, Penner JE. et al. 2010. Transport impacts on atmosphere and climate: aviation. Atmos. Environ. 44:4678–743 [Google Scholar]
  77. Lewellen DC. 2014. Persistent contrails and contrail cirrus. Part II: Full lifetime behavior. J. Atmos. Sci. 71:4420–38 [Google Scholar]
  78. Lewellen DC, Lewellen WS. 2001. The effects of aircraft wake dynamics on contrail development. J. Atmos. Sci. 58:390–406 [Google Scholar]
  79. Lewellen DC, Lewellen WS, Poole L, DeCoursey R, Hansen G. et al. 1998. Large-eddy simulations and lidar measurements of vortex-pair breakup in aircraft wakes. AIAA J. 36:1439–45 [Google Scholar]
  80. Lewellen DC, Meza O, Huebsch WW. 2014. Persistent contrails and contrail cirrus. Part 1: Large-eddy simulations from inception to demise. J. Atmos. Sci. 71:4399–419 [Google Scholar]
  81. Libbrecht KG. 2005. The physics of snow crystals. Rep. Prog. Phys. 68:855–95 [Google Scholar]
  82. Libbrecht KG. 2012. Toward a comprehensive model of snow crystal growth dynamics: 1. Overarching features and physical origins. ArXiv:1211.5555 [cond-mat.mtrl-sci]
  83. Margaris P, Marles D, Gursul I. 2008. Experiments on jet/vortex interaction. Exp. Fluids 44:261–78 [Google Scholar]
  84. Meerkötter R, Schumann U, Doelling DR, Minnis P, Nakajima T, Tsushima Y. 1999. Radiative forcing by contrails. Ann. Geophys. 17:1080–94 [Google Scholar]
  85. Miake-Lye RC, Martinez-Sanchez M, Brown RC, Kolb CE. 1993. Plume and wake dynamics, mixing and chemistry behind a high speed civil transport aircraft. J. Aircr. 30:467–79 [Google Scholar]
  86. Minnis P, Young DF, Garber DP, Nguyen L, Smith WL, Palikonda R. 1998. Transformation of contrails into cirrus during SUCCESS. Geophys. Res. Lett. 25:1157–60 [Google Scholar]
  87. Misaka T, Holzäpfel F, Hennemann I, Gerz T, Manhart M, Schwertfirm F. 2012. Vortex bursting and tracer transport of a counter-rotating vortex pair. Phys. Fluids 24:025104 [Google Scholar]
  88. Mitchell DL, Heymsfield AJ. 2005. Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci. 62:1637–44 [Google Scholar]
  89. Modest MF. 2003. Radiative Heat Transfer New York: Academic [Google Scholar]
  90. Moore DW, Saffman PG. 1973. Axial flow in laminar trailing vortices. Proc. R. Soc. Lond. A 333:491–508 [Google Scholar]
  91. Morcrette JJ. 1991. Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system. J. Geophys. Res. 96:9121–32 [Google Scholar]
  92. Morcrette JJ, Smith L, Fouquart Y. 1986. Pressure and temperature dependence of the absorption in longwave radiation parameterizations. Beitr. Phys. Atmos. 59:455–69 [Google Scholar]
  93. Murphy DM, Koops T. 2005. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 131:1539–65 [Google Scholar]
  94. Naiman AD, Lele SK, Jacobson MZ. 2011. Large eddy simulations of contrail development: sensitivity to initial and ambient conditions over first twenty minutes. J. Geophys. Res. 116:D21208 [Google Scholar]
  95. Nomura KK, Tsutsui H, Mahoney D, Rottman JW. 2006. Short-wavelength instability and decay of a vortex pair in a stratified fluid. J. Fluid Mech. 553:283–322 [Google Scholar]
  96. Paoli R. 2010. Modeling and simulation of the environmental impact of aircraft emissions Habilitation Diss., Inst. Natl. Polytech. Toulouse [Google Scholar]
  97. Paoli R, Cariolle D, Sausen R. 2011. Review of effective emissions modeling and computation. Geosci. Model Dev. 4:643–77 [Google Scholar]
  98. Paoli R, Hélie J, Poinsot T. 2004. Contrail formation in aircraft wakes. J. Fluid Mech. 502:361–73 [Google Scholar]
  99. Paoli R, Hélie J, Poinsot T, Ghosal S. 2002. Contrail formation in aircraft wakes using large-eddy simulations. Cent. Turbul. Res. Proc. Summer Prog. 2002229–41 Stanford, CA: Stanford Univ. [Google Scholar]
  100. Paoli R, Laporte F, Cuenot B, Poinsot T. 2003. Dynamics and mixing in jet/vortex interactions. Phys. Fluids 15:1843–60 [Google Scholar]
  101. Paoli R, Nybelen L, Picot J, Cariolle D. 2013. Effects of jet/vortex interaction on contrail formation in supersaturated conditions. Phys. Fluids 25:053305 [Google Scholar]
  102. Paoli R, Thouron O, Escobar J, Picot J, Cariolle D. 2014. High-resolution large-eddy simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere. Atmos. Chem. Phys. 14:5037–55 [Google Scholar]
  103. Paoli R, Thouron O, Picot J, Cariolle D. 2012. Large-eddy simulations of contrail-to-cirrus transition in atmospheric turbulence. Presented at Annu. Meet. Div. Fluid Dyn., Am. Phys. Soc., 65th, San Diego, CA [Google Scholar]
  104. Paoli R, Vancassel X, Garnier F, Mirabel P. 2008. Large-eddy simulation of a turbulent jet and a vortex sheet interaction: particle formation and evolution in the near-field of an aircraft wake. Meteorol. Z. 17:131–44 [Google Scholar]
  105. Papamoschou D, Roshko A. 1988. The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197:453–77 [Google Scholar]
  106. Paugam R, Paoli R, Cariolle D. 2010. Influence of vortex dynamics and atmospheric turbulence on the early evolution of a contrail. Atmos. Chem. Phys. 10:3933–52 [Google Scholar]
  107. Pedlosky J. 1979. Geophysical Fluid Dynamics New York: Springer-Verlag [Google Scholar]
  108. Penner JE, Lister DH, Griggs DJ, Dokken DJ, McFarland M. 1999. Aviation and the Global Atmosphere: A Special Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  109. Petzold A, Busen R, Schröder FP, Bauman R, Kuhn M. et al. 1997. Near field measurements on contrail properties from fuels with different sulfur content. J. Geophys. Res. 102:29867–81 [Google Scholar]
  110. Petzold A, Döpelheurer A, Brock CA, Schröder FP. 1999. In situ observations and model calculations of black carbon emission by aircraft at cruise altitude. J. Geophys. Res. 104:22171–81 [Google Scholar]
  111. Petzold A, Stein C, Nyeki S, Gysel M, Weingartner E. et al. 2003. Properties of jet engine combustion particles during the PartEmis experiment: microphysics and chemistry. Geophys. Res. Lett. 30:1719 [Google Scholar]
  112. Picot J, Paoli R, Thouron O, Cariolle D. 2015. Large-eddy simulation of contrail evolution in the vortex phase and its interaction with atmospheric turbulence. Atmos. Chem. Phys. 15:7369–89 [Google Scholar]
  113. Poellot M, Arnott W, Hallett J. 1999. In situ observations of contrail microphysics and implications for their radiative impact. J. Geophys. Res. 104:12077–84 [Google Scholar]
  114. Pope SB. 2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  115. Popovicheva OB, Persiantseva NM, Lukhovitskaya EE, Shonija NK, Zubareva NA. et al. 2004. Aircraft engine soot as contrail nuclei. Geophys. Res. Lett. 31:L11104 [Google Scholar]
  116. Prather M, Sausen R, Grossmann AS, Haywood JM, Rind D, Subbaraya BH. 1999. Potential climate change from aviation. See Penner et al. 1999 185–215
  117. Pruppacher HR, Klett JD. 1997. Microphysics of Clouds and Precipitation Dordrecht: Kluwer Acad. [Google Scholar]
  118. Riese M, Ploeger F, Rap A, Vogel B, Konopka P. et al. 2012. Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects. J. Geophys. Res. Atmos. 117:D16305 [Google Scholar]
  119. Riley JJ, Lelong MP. 2000. Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32:613–57 [Google Scholar]
  120. Riley JJ, Lindborg E. 2008. Stratified turbulence: a possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 65:2416–24 [Google Scholar]
  121. Rossow VJ. 1999. Lift-generated vortex wakes of subsonic transport aircraft. Prog. Aerosp. Sci. 35:507–660 [Google Scholar]
  122. Saffman PG. 1992. Vortex Dynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  123. Sapsis T, Haller G. 2010. Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows. Chaos 20:017515 [Google Scholar]
  124. Sausen R, Isaksen I, Grewe V, Hauglustaine D, Lee DS. et al. 2005. Aviation radiative forcing in 2000: an update on IPCC. Meteorol. Z. 14:555–61 [Google Scholar]
  125. Schmidt E. 1941. Die Entstehung von Eisnebel aus den Auspuffgasen von Flugmotoren. Schriften der Deutschen Akademie der Luftfahrtforschung 441–15 Berlin: Verlag R. Oldenbourg [Google Scholar]
  126. Schröder F, Kärcher B, Duroure C, Ström J, Petzold A. et al. 2000. On the transition of contrails into cirrus clouds. J. Atmos. Sci. 57:464–80 [Google Scholar]
  127. Schumann U. 1996. On conditions for contrail formation from aircraft exhausts. Meteorol. Z. 5:4–23 [Google Scholar]
  128. Schumann U. 2005. Formation, properties and climatic effects of contrails. C. R. Phys. 6:549–65 [Google Scholar]
  129. Schumann U. 2012. A contrail cirrus prediction model. Geosci. Model Dev. 5:543–80 [Google Scholar]
  130. Schumann U, Busen R, Plohr M. 2000. Experimental test of the influence of propulsion efficiency on contrail formation. J. Aircr. 37:1083–87 [Google Scholar]
  131. Schumann U, Jessberger P, Voigt C. 2013. Contrail ice particles in aircraft wakes and their climatic importance. Geophys. Res. Lett. 40:2867–72 [Google Scholar]
  132. Schumann U, Mayer B, Gierens K, Unterstrasser S, Jessberger P. et al. 2011. Effective radius of ice particles in cirrus and contrails. J. Atmos. Sci. 68:300–21 [Google Scholar]
  133. Schumann U, Mayer B, Graf K, Mannstein H. 2012. A parametric radiative forcing model for contrail cirrus. J. Appl. Meteorol. Climatol. 51:1391–406 [Google Scholar]
  134. Schumann U, Ström J, Busen R, Baumann R, Gierens K. et al. 1996. In situ observations of particles in jet aircraft exhausts and contrails for different sulfur containing fuels. J. Geophys. Res. 101:6853–69 [Google Scholar]
  135. Scorer RS, Davenport LJ. 1970. Contrail and aircraft downwash. J. Fluid Mech. 43:451–64 [Google Scholar]
  136. Seifert A, Beheng KD. 2006. A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol. Z. 92:45–66 [Google Scholar]
  137. Shariff K, Verzicco R, Orlandi P. 1994. A numerical study of three-dimensional vortex ring instabilities: viscous corrections and early nonlinear stage. J. Fluid Mech. 279:351–75 [Google Scholar]
  138. Shariff K, Wray A. 2002. Analysis of the radar reflectivity of aircraft vortex wakes. J. Fluid Mech. 463:121–61 [Google Scholar]
  139. Shine KP, Derwent RG, Wuebbles DJ, Mocrette JJ. 1990. Radiative forcing of climate. Climate Change: The IPCC Scientific Assessment JT Houghton, GJ Jenkins, JJ Ephramus 41–68 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  140. Shirgaonkar AA, Lele SK. 2007. Interaction of vortex wakes and buoyant jets: a study of two-dimensional dynamics. Phys. Fluids 19:086601 [Google Scholar]
  141. Sölch I, Kärcher B. 2010. A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Q. J. R. Meteorol. Soc. 136:2074–93 [Google Scholar]
  142. Spalart PR. 1996. On the motion of laminar wing wakes in a stratified fluid. J. Fluid Mech. 327:139–60 [Google Scholar]
  143. Spalart PR. 1998. Airplane trailing vortices. Annu. Rev. Fluid Mech. 30:107–48 [Google Scholar]
  144. Spichtinger P, Gierens KM. 2009. Modelling of cirrus clouds—Part 1a: model description and validation. Atmos. Chem. Phys. 9:685–706 [Google Scholar]
  145. Spinhirne JD, Hart WD, Duda DP. 1998. Evolution of the morphology and microphysics of contrail cirrus from airborne remote sensing. Geophys. Res. Lett. 25:1153–56 [Google Scholar]
  146. Sussmann R. 1999. Vertical dispersion of an aircraft wake: aerosol-lidar analysis of entrainment and detrainment in the vortex regime. J. Geophys. Res. 104:2117–29 [Google Scholar]
  147. Sussmann R, Gierens K. 1999. Lidar and numerical studies on the different evolution of vortex pair and secondary wake in young contrails. J. Geophys. Res. 104:2131–42 [Google Scholar]
  148. Sussmann R, Gierens K. 2001. Differences in early contrail evolution of two-engine versus four-engine aircraft: lidar measurements and numerical simulations. J. Geophys. Res. 106:4899–911 [Google Scholar]
  149. Toon OB, Miake-Lye RC. 1998. Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS). Geophys. Res. Lett. 25:1109–12 [Google Scholar]
  150. Turner JS. 1960. A comparison between buoyant vortex rings and pairs. J. Fluid Mech. 7:419–32 [Google Scholar]
  151. Unterstrasser S. 2014. Large-eddy simulation study of contrail microphysics and geometry during the vortex phase and consequences on contrail-to-cirrus transition. J. Geophys. Res. 119:7537–55 [Google Scholar]
  152. Unterstrasser S, Gierens K. 2010a. Numerical simulations of contrail-to-cirrus transition—Part 1: an extensive parametric study. Atmos. Chem. Phys. 10:2017–36 [Google Scholar]
  153. Unterstrasser S, Gierens K. 2010b. Numerical simulations of contrail-to-cirrus transition—Part 2: impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth. Atmos. Chem. Phys. 10:2037–51 [Google Scholar]
  154. Unterstrasser S, Gierens K, Spichtinger P. 2008. The evolution of contrail microphysics in the vortex regime. Meteorol. Z. 17:145–56 [Google Scholar]
  155. Unterstrasser S, Paoli R, Sölch I, Kühnlein C, Gerz T. 2014. Dimension of aircraft exhaust plumes at cruise conditions: effect of wake vortices. Atmos. Chem. Phys. 14:2713–33 [Google Scholar]
  156. Unterstrasser S, Sölch I. 2010. Study of contrail microphysics in the vortex phase with a Lagrangian particle tracking model. Atmos. Chem. Phys. 10:10003–15 [Google Scholar]
  157. Voigt C, Schumann U, Jurkat T, Schäuble D, Schlager H. et al. 2010. In-situ observations of young contrails overview and selected results from the concert campaign. Atmos. Chem. Phys. 10:9039–56 [Google Scholar]
  158. Waite ML. 2011. Stratified turbulence at the buoyancy scale. Phys. Fluids 23:066602 [Google Scholar]
  159. Wey CC, Anderson BE, Wey C, Miake-Lye RC, Whitefield P, Howard R. 2007. Overview on the aircraft particle emissions experiment. J. Propul. Power 23:898–905 [Google Scholar]
  160. Widnall SE, Bliss D, Tsai CY. 1974. The instability of short waves on a vortex ring. J. Fluid Mech. 66:35–47 [Google Scholar]
  161. Wilkerson JT, Jacobson MZ, Malwitz A, Balasubramanian S, Wayson R. et al. 2010. Analysis of emission data from global commercial aviation: 2004 and 2006. Atmos. Chem. Phys. 10:6391–408 [Google Scholar]
  162. Williams FA. 1958. Spray combustion and atomization. Phys. Fluids 1:541–45 [Google Scholar]
  163. Wong HW, Beyersdorf AJ, Heath CM, Ziemba LD, Winstead EL. et al. 2013. Laboratory and modeling studies on the effects of water and soot emissions and ambient conditions on the properties of contrail ice particles in the jet regime. Atmos. Chem. Phys. 13:10049–60 [Google Scholar]
  164. Wong HW, Miake-Lye RC. 2010. Parametric studies of contrail ice particle formation in jet regime using microphysical parcel modeling. Atmos. Chem. Phys. 10:3261–72 [Google Scholar]
  165. Yang P, Hong G, Dessler AE, Ou SSC, Liou KN. et al. 2010. Contrails and induced cirrus: optics and radiation. Bull. Am. Meteorol. Soc. 91:473–78 [Google Scholar]
  166. Yang P, Wei H, Huang HL, Baum BA, Hu YX. et al. 2005. Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt. 44:5512–23 [Google Scholar]
  167. Yu F. 2006. From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model. Atmos. Chem. Phys. 6:5193–211 [Google Scholar]
  168. Zamansky R, Coletti F, Massot M, Mani A. 2014. Radiation induces turbulence in particle-laden fluids. Phys. Fluids 26:071701 [Google Scholar]
  169. Ziemer C, Jasor G, Wacker U, Beheng KD, Polifke W. 2014. Quantitative comparison of presumed-number-density and quadrature moment methods for the parameterisation of drop sedimentation. Meteorol. Z. 41:411–23 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error