The generation of nanostructured particles in high-temperature flames is important both for the control of emissions from combustion devices and for the synthesis of high-value chemicals for a variety of applications. The physiochemical processes that lead to the production of fine particles in turbulent flames are highly sensitive to the flow physics and, in particular, the history of thermochemical compositions and turbulent features they encounter. Consequently, it is possible to change the characteristic size, structure, composition, and yield of the fine particles by altering the flow configuration. This review describes the complex multiscale interactions among turbulent fluid flow, gas-phase chemical reactions, and solid-phase particle evolution. The focus is on modeling the generation of soot particles, an unwanted pollutant from automobile and aircraft engines, as well as metal oxides, a class of high-value chemicals sought for specialized applications, including emissions control. Issues arising due to the numerical methods used to approximate the particle number density function, the modeling of turbulence-chemistry interactions, and model validation are also discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akhtar MK, Pratsinis SE, Mastrangelo SVR. 1992. Dopants in vapor-phase synthesis of titania powders. J. Am. Ceram. Soc. 75:3408–16 [Google Scholar]
  2. Akroyd J, Smith AJ, Shirley R, McGlashan LR, Kraft M. 2011. A coupled CFD-population balance approach for nanoparticle synthesis in turbulent reacting flows. Chem. Eng. Sci. 66:3792–805 [Google Scholar]
  3. Appel J, Bockhorn H, Frenklach M. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combust. Flame 121:122–36 [Google Scholar]
  4. Arabi-Katbi OI, Pratsinis SE, Morrison PW Jr, Megaridis CM. 2001. Monitoring the flame synthesis of TiO2 particles by in-situ FTIR spectroscopy and thermophoretic sampling. Combust. Flame 124:560–72 [Google Scholar]
  5. Attili A, Bisetti F. 2013. Application of a robust and efficient Lagrangian particle scheme to soot transport in turbulent flames. Comput. Fluids 84:164–75 [Google Scholar]
  6. Attili A, Bisetti F, Mueller ME, Pitsch H. 2014. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame 161:1849–65 [Google Scholar]
  7. Attili A, Bisetti F, Mueller ME, Pitsch H. 2015. Damköhler number effects on soot formation and growth in turbulent nonpremixed flames. Proc. Combust. Inst. 35:1215–23 [Google Scholar]
  8. Axelbaum RL, DuFaux DP, Frey CA, Kelton KF, Lawton SA. et al. 1996. Gas-phase combustion synthesis of titanium boride (TiB2) nanocrystallites. J. Mater. Res. 11:948–54 [Google Scholar]
  9. Babuška I, Nobile F, Tempone R. 2008. A systematic approach to model validation based on Bayesian updates and prediction related rejection criteria. Comput. Methods Appl. Mech. Eng. 197:2517–39 [Google Scholar]
  10. Balachandar S, Eaton JK. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–33 [Google Scholar]
  11. Bhatt J, Lindstedt R. 2009. Analysis of the impact of agglomeration and surface chemistry models on soot formation and oxidation. Proc. Combust. Inst. 32:713–20 [Google Scholar]
  12. Bisetti F, Attili A, Pitsch H. 2014. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations. Philos. Trans. R. Soc. A 372:20130324 [Google Scholar]
  13. Bisetti F, Blanquart G, Mueller ME, Pitsch H. 2012. On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159:317–35 [Google Scholar]
  14. Blacha T, Di Domenico M, Rachner M, Gerlinger P, Aigner M. 2011. Modeling of soot and NOx in a full scale turbine engine combustor with detailed chemistry. ASME 2011 Turbo Expo 2 Combustion, Fuels and Emissions, Parts A and B33–42 New York: ASME [Google Scholar]
  15. Blanquart G, Pepiot-Desjardins P, Pitsch H. 2009. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust. Flame 156:588–607 [Google Scholar]
  16. Blanquart G, Pitsch H. 2009. Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model. Combust. Flame 156:1614–26 [Google Scholar]
  17. Böhm H, Kohse-Höinghaus K, Lacas F, Rolon C, Darabiha N, Candel S. 2001. On PAH formation in strained counterflow diffusion flames. Combust. Flame 124:127–36 [Google Scholar]
  18. Bolla M, Farrace D, Wright YM, Boulouchos K, Mastorakos E. 2014. Influence of turbulence–chemistry interaction for n-heptane spray combustion under diesel engine conditions with emphasis on soot formation and oxidation. Combust. Theory Model. 18:330–60 [Google Scholar]
  19. Bose S, Moin P, You D. 2010. Grid-independent large-eddy simulation using explicit filtering. Phys. Fluids 22:105103 [Google Scholar]
  20. Braman K, Oliver TA, Raman V. 2013. Bayesian analysis of syngas chemistry models. Combust. Theory Model. 17:858–87 [Google Scholar]
  21. Braman K, Oliver TA, Raman V. 2015. Adjoint-based sensitivity analysis of flames. Combust. Theory Model. 19:29–56 [Google Scholar]
  22. Buesser B, Gröhn AJ. 2012. Multiscale aspects of modeling gas-phase nanoparticle synthesis. Chem. Eng. Technol. 35:1133–43 [Google Scholar]
  23. Buesser B, Pratsinis SE. 2011. Design of gas-phase synthesis of core-shell particles by computational fluid-aerosol dynamics. AIChE J. 57:3132–42 [Google Scholar]
  24. Buesser B, Pratsinis SE. 2012. Design of nanomaterial synthesis by aerosol processes. Annu. Rev. Chem. Biomol. Eng. 3:103–27 [Google Scholar]
  25. Calcote H, Felder W, Keil D, Olson D. 1991. A new flame process for synthesis of Si3N4 powders for advanced ceramics. Symp. (Int.) Combust. 23:1739–44 [Google Scholar]
  26. Chan QN, Medwell PR, Kalt PA, Alwahabi ZT, Dally BB, Nathan GJ. 2011. Simultaneous imaging of temperature and soot volume fraction. Proc. Combust. Inst. 33:791–98 [Google Scholar]
  27. Chatterjee S, Halmo C, Gülder ÖL. 2014. Structure of the velocity and soot concentration fields of a swirl stabilized turbulent non-premixed flame in a gas turbine model combustor. ASME 2014 Gas Turbine India Conference Pap. GTINDIA2014-8114 New York: ASME [Google Scholar]
  28. Cheng JC, Vigil RD, Fox RO. 2010. A competitive aggregation model for Flash NanoPrecipitation. J. Colloid Interface Sci. 351:330–42 [Google Scholar]
  29. Chittipotula T, Janiga G, Thévenin D. 2011. Improved soot prediction models for turbulent non-premixed ethylene/air flames. Proc. Combust. Inst. 33:559–67 [Google Scholar]
  30. Chittipotula T, Janiga G, Thévenin D. 2012. Optimizing soot prediction models for turbulent non-premixed ethylene/air flames. Chem. Eng. Sci. 70:67–76 [Google Scholar]
  31. Colucci PJ, Jaberi FA, Givi P. 1998. Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10:499–515 [Google Scholar]
  32. Coppalle A, Joyeux D. 1994. Temperature and soot volume fraction in turbulent diffusion flames: measurements of mean and fluctuating values. Combust. Flame 96:275–85 [Google Scholar]
  33. Dally BB, Fletcher DF, Masri AR. 1998. Flow and mixing fields of turbulent bluff-body jets and flames. Combust. Theory Model. 2:193–219 [Google Scholar]
  34. D'Anna A. 2009. Combustion-formed nanoparticles. Proc. Combust. Inst. 32:593–613 [Google Scholar]
  35. Desgroux P, Mercier X, Thomson KA. 2013. Study of the formation of soot and its precursors in flames using optical diagnostics. Proc. Combust. Inst. 34:1713–38 [Google Scholar]
  36. Dette H, Studden WJ. 1997. The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis New York: Wiley [Google Scholar]
  37. Donde P, Koo H, Raman V. 2012. A multivariate quadrature based moment method for LES based modeling of supersonic combustion. J. Comput. Phys. 231:5805–21 [Google Scholar]
  38. Donde P, Raman V, Mueller ME, Pitsch H. 2013. LES/PDF based modeling of soot-turbulence interactions in turbulent flames. Proc. Combust. Inst. 34:1183–92 [Google Scholar]
  39. Duclos J, Veynante D, Poinsot T. 1993. A comparison of flamelet models for premixed turbulent combustion. Combust. Flame 95:101–17 [Google Scholar]
  40. Einstein A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17:549–60 [Google Scholar]
  41. Elasrag H, Lu T, Law C, Menon S. 2007. Simulation of soot formation in turbulent premixed flames. Combust. Flame 150:108–26 [Google Scholar]
  42. Elasrag H, Menon S. 2009. Large eddy simulation of soot formation in a turbulent non-premixed jet flame. Combust. Flame 156:385–95 [Google Scholar]
  43. Fiorina B, Vicquelin R, Auzillon P, Darabiha N, Gicquel O, Veynante D. 2010. A filtered tabulated chemistry model for LES of premixed combustion. Combust. Flame 157:465–75 [Google Scholar]
  44. Fox RO. 1999. The Lagrangian spectral relaxation model for differential diffusion in homogeneous turbulence. Phys. Fluids 11:1550–71 [Google Scholar]
  45. Fox RO. 2003. Computational Models for Turbulent Reacting Flows Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  46. Fox RO. 2012. Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44:47–76 [Google Scholar]
  47. Fox RO, Raman V. 2004. A multienvironment conditional probability density function model for turbulent reacting flows. Phys. Fluids 16:4551–65 [Google Scholar]
  48. Franzelli B, Scouflaire P, Candel S. 2015. Time-resolved spatial patterns and interactions of soot, PAH and OH in a turbulent diffusion flame. Proc. Combust. Inst. 35:1921–29 [Google Scholar]
  49. Frenklach M. 2002a. Method of moments with interpolative closure. Chem. Eng. Sci. 57:2229–39 [Google Scholar]
  50. Frenklach M. 2002b. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4:2028–37 [Google Scholar]
  51. Frenklach M. 2007. Transforming data into knowledge: process informatics for combustion chemistry. Proc. Combust. Inst. 31:125–40 [Google Scholar]
  52. Frenklach M, Harris SJ. 1987. Aerosol dynamics modeling using the method of moments. J. Colloid Interface Sci. 118:252–61 [Google Scholar]
  53. Friedlander SK. 2000. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics New York: Oxford Univ. Press [Google Scholar]
  54. Fuchs N. 1964. Mechanics of Aerosols New York: Pergamon [Google Scholar]
  55. Garrick SC, Wang G. 2010. Modeling and simulation of titanium dioxide nanoparticle synthesis with finite-rate sintering in planar jets. J. Nanopart. Res. 13:973–84 [Google Scholar]
  56. Geigle KP, Hadef R, Meier W. 2013. Soot formation and flame characterization of an aero-engine model combustor burning ethylene at elevated pressure. J. Eng. Gas Turbines Power 136:021505 [Google Scholar]
  57. Geigle KP, Köhler M, O'Loughlin W, Meier W. 2015. Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations. Proc. Combust. Inst. 35:3373–80 [Google Scholar]
  58. Ghoshtagore RN. 1970. Mechanism of heterogeneous deposition of thin film rutile. J. Electrochem. Soc. 117:529–34 [Google Scholar]
  59. Gicquel O, Darabiha N, Thévenin D. 2000. Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28:1901–8 [Google Scholar]
  60. Glassman I. 1989. Soot formation in combustion processes. Symp. (Int.) Combust. 22:295–311 [Google Scholar]
  61. Glassman I, Davis KA, Brezinsky K. 1992. A gas-phase combustion synthesis process for non-oxide ceramics. Symp. (Int.) Combust. 24:1877–82 [Google Scholar]
  62. Gröhn AJ, Buesser B, Jokiniemi JK, Pratsinis SE. 2011. Design of turbulent flame aerosol reactors by mixing-limited fluid dynamics. Ind. Eng. Chem. Res. 50:3159–68 [Google Scholar]
  63. Gullbrand J, Chow F. 2003. The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. 495:323–41 [Google Scholar]
  64. Hawkes E, Cant R. 2000. A flame surface density approach to large-eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28:51–58 [Google Scholar]
  65. Haworth D. 2010. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36:168–259 [Google Scholar]
  66. Haynes B, Wagner H. 1981. Soot formation. Prog. Energy Combust. Sci. 7:229–73 [Google Scholar]
  67. Heine MC, Mädler L, Jossen R, Pratsinis SE. 2006. Direct measurement of entrainment during nanoparticle synthesis in spray flames. Combust. Flame 144:809–20 [Google Scholar]
  68. Henriksen TL, Nathan GJ, Alwahabi ZT, Qamar N, Ring TA, Eddings EG. 2009. Planar measurements of soot volume fraction and OH in a JP-8 pool fire. Combust. Flame 156:1480–92 [Google Scholar]
  69. Herrmann M, Blanquart G, Raman V. 2006. A bounded QUICK scheme for preserving scalar bounds in large-eddy simulations. AIAA J. 44:2879–80 [Google Scholar]
  70. Heye C, Raman V, Masri AR. 2013. LES/probability density function approach for the simulation of an ethanol spray flame. Proc. Combust. Inst. 34:1633–41 [Google Scholar]
  71. Hu B, Yang B, Koylu UO. 2003. Soot measurements at the axis of an ethylene/air non-premixed turbulent jet flame. Combust. Flame 134:93–106 [Google Scholar]
  72. Hu Y, Ding H, Li C. 2011. Preparation of hollow alumina nanospheres via surfactant-assisted flame spray pyrolysis. Particuology 9:528–32 [Google Scholar]
  73. Huan X, Marzouk YM. 2013. Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys. 232:288–317 [Google Scholar]
  74. Ifeacho P, Wiggers H, Schulz C, Schneider L, Bacher G. 2007. Ga2O3 nanoparticles synthesized in a low-pressure flame reactor. J. Nanopart. Res. 10:121–27 [Google Scholar]
  75. Jiang GS, Peng D. 2000. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21:2126–43 [Google Scholar]
  76. Johannessen T, Pratsinis SE, Livbjerg H. 2000. Computational fluid-particle dynamics for the flame synthesis of alumina particles. Chem. Eng. Sci. 55:177–91 [Google Scholar]
  77. Johannessen T, Pratsinis SE, Livbjerg H. 2001. Computational analysis of coagulation and coalescence in the flame synthesis of titania particles. Powder Technol. 118:242–50 [Google Scholar]
  78. Jossen R, Mueller R, Pratsinis SE, Watson M, Akhtar MK. 2005. Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles. Nanotechnology 16:S609–17 [Google Scholar]
  79. Karataş AE, Gülder ÖL. 2012. Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci. 38:818–45 [Google Scholar]
  80. Kaul CM, Raman V. 2011. A posteriori analysis of numerical errors in subfilter scalar variance modeling for large eddy simulation. Phys. Fluids 23:035102 [Google Scholar]
  81. Kaul CM, Raman V, Balarac G, Pitsch H. 2009. Numerical errors in the computation of subfilter scalar variance in large eddy simulations. Phys. Fluids 21:055102 [Google Scholar]
  82. Kennedy IM. 1997. Models of soot formation and oxidation. Prog. Energy Combust. Sci. 23:95–132 [Google Scholar]
  83. Kent JH, Honnery D. 1987. Soot and mixture fraction in turbulent diffusion flames. Combust. Sci. Technol. 54:383–98 [Google Scholar]
  84. Kholghy M, Saffaripour M, Yip C, Thomson MJ. 2013. The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for jet A-1. Combust. Flame 160:2119–30 [Google Scholar]
  85. Klimenko AY, Bilger RW. 1999. Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25:595–687 [Google Scholar]
  86. Kobata A, Kusakabe K, Morooka S. 1991. Growth and transformation of TiO2 crystallites in aerosol reactor. AIChE J. 37:347–59 [Google Scholar]
  87. Köhler M, Geigle KP, Blacha T, Gerlinger P, Meier W. 2012. Experimental characterization and numerical simulation of a sooting lifted turbulent jet diffusion flame. Combust. Flame 159:2620–35 [Google Scholar]
  88. Koo H, Raman V, Mueller ME, Geigle KP. 2015. Large-eddy simulation of a turbulent sooting flame in a swirling combustor Presented at AIAA Aerospace Sci. Meet., 53rd, Kissimmee, FL, AIAA Pap 2015–0167 [Google Scholar]
  89. Kraft M. 2005. Modelling of particulate processes. KONA 23:18–35 [Google Scholar]
  90. Kronenburg A, Bilger R, Kent J. 2000. Modeling soot formation in turbulent methane–air jet diffusion flames. Combust. Flame 121:24–40 [Google Scholar]
  91. Langford JA, Moser RD. 1999. Optimal LES formulations for isotropic turbulence. J. Fluid Mech. 398:321–46 [Google Scholar]
  92. Lecocq G, Poitou D, Hernández I, Duchaine F, Riber E, Cuenot B. 2014. A methodology for soot prediction including thermal radiation in complex industrial burners. Flow Turbul. Combust. 92:947–70 [Google Scholar]
  93. Leonard BP. 1979. Stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19:59–98 [Google Scholar]
  94. Leung K, Lindstedt R, Jones W. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combust. Flame 87:289–305 [Google Scholar]
  95. Lignell DO, Chen JH, Smith PJ. 2008. Three-dimensional direct numerical simulation of soot formation and transport in a temporally evolving nonpremixed ethylene jet flame. Combust. Flame 155:316–33 [Google Scholar]
  96. Lignell DO, Chen JH, Smith PJ, Lu T, Law CK. 2007. The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation. Combust. Flame 151:2–28 [Google Scholar]
  97. Lindstedt R, Louloudi S. 2005. Joint-scalar transported PDF modeling of soot formation and oxidation. Proc. Combust. Inst. 30:775–83 [Google Scholar]
  98. Liu J, Hu Y, Gu F, Li C. 2011. Large-scale synthesis of hollow titania spheres via flame combustion. Particuology 9:632–36 [Google Scholar]
  99. Loeffler J, Das S, Garrick SC. 2011. Large eddy simulation of titanium dioxide nanoparticle formation and growth in turbulent jets. Aerosol Sci. Technol. 45:616–28 [Google Scholar]
  100. Luo K, Pitsch H, Pai M, Desjardins O. 2011. Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proc. Combust. Inst. 33:2143–52 [Google Scholar]
  101. Ma G, Wen JZ, Lightstone MF, Thomson MJ. 2005. Optimization of soot modeling in turbulent nonpremixed ethylene/air jet flames. Combust. Sci. Technol. 177:1567–602 [Google Scholar]
  102. Mädler L, Kammler H, Mueller R, Pratsinis S. 2002. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33:369–89 [Google Scholar]
  103. Mahmoud S, Nathan G, Medwell P, Dally B, Alwahabi Z. 2015. Simultaneous planar measurements of temperature and soot volume fraction in a turbulent non-premixed jet flame. Proc. Combust. Inst. 35:1931–38 [Google Scholar]
  104. Marchisio DL, Fox RO. 2005. Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36:43–73 [Google Scholar]
  105. Marchisio DL, Fox RO. 2013. Computational Models for Polydisperse Particulate and Multiphase Systems Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  106. Marchisio DL, Fox RO, Barresi AA. 2001. Simulation of turbulent precipitation in a semi-batch Taylor–Couette reactor using computational fluid dynamics. AIChE J. 47:664–76 [Google Scholar]
  107. Marchisio DL, Pikturna JT, Fox RO, Vigil RD, Barresi AA. 2003. Quadrature method of moments for population balances with nucleation, growth and aggregation. AIChE J. 49:1266–76 [Google Scholar]
  108. McDermott R, Pope SB. 2007. A particle formulation for treating differential diffusion in filtered density function methods. J. Comput. Phys. 226:947–93 [Google Scholar]
  109. McGraw R. 2007. Numerical advection of correlated tracers: preserving particle size/composition moment sequences during transport of aerosol mixtures. J. Phys. Conf. Ser. 78:012045 [Google Scholar]
  110. Menz WJ, Brownbridge GP, Kraft M. 2014. Global sensitivity analysis of a model for silicon nanoparticle synthesis. J. Aerosol Sci. 76:188–99 [Google Scholar]
  111. Mueller ME, Blanquart G, Pitsch H. 2009. Hybrid method of moments for modeling soot formation and growth. Combust. Flame 156:1143–55 [Google Scholar]
  112. Mueller ME, Chan QN, Qamar NH, Dally BB, Pitsch H. et al. 2013. Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame. Combust. Flame 160:1298–309 [Google Scholar]
  113. Mueller ME, Pitsch H. 2011. Large eddy simulation subfilter modeling of soot-turbulence interactions. Phys. Fluids 23:115104 [Google Scholar]
  114. Mueller ME, Pitsch H. 2012. LES model for sooting turbulent nonpremixed flames. Combust. Flame 159:2166–80 [Google Scholar]
  115. Mueller ME, Pitsch H. 2013. Large eddy simulation of soot evolution in an aircraft combustor. Phys. Fluids 25:110812 [Google Scholar]
  116. Mueller ME, Raman V. 2014. Effects of turbulent combustion modeling errors on soot evolution in a turbulent nonpremixed jet flame. Combust. Flame 161:1842–48 [Google Scholar]
  117. Najm HN. 2009. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41:35–52 [Google Scholar]
  118. Narayanaswamy V, Clemens N. 2013. Simultaneous LII and PIV measurements in the soot formation region of turbulent non-premixed jet flames. Proc. Combust. Inst. 34:1455–63 [Google Scholar]
  119. Oberkampf WL, Trucano TG. 2002. Verification and validation in computational fluid dynamics. Prog. Aerospace Sci. 38:209–72 [Google Scholar]
  120. Peters N. 2000. Turbulent Combustion Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  121. Pierce CD, Moin P. 2004. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504:73–97 [Google Scholar]
  122. Piton D, Fox RO, Marcant B. 2000. Simulation of fine particle formation by precipitation using computational fluid dynamics. Can. J. Chem. Eng. 78:983–93 [Google Scholar]
  123. Pitsch H. 2006. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38:453–82 [Google Scholar]
  124. Pitsch H, Peters N. 1998. A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 144:26–40 [Google Scholar]
  125. Pitsch H, Steiner H. 2000. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12:2541–54 [Google Scholar]
  126. Poinsot T, Veynante D. 2001. Theoretical and Numerical Combustion Philadelphia: R.T. Edwards [Google Scholar]
  127. Pope SB. 1981. A Monte-Carlo method for the PDF equations of turbulent reactive flow. Combust. Sci. Technol. 25:159–74 [Google Scholar]
  128. Pope SB. 1985. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11:119–92 [Google Scholar]
  129. Pope SB. 2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  130. Pope SB. 2010. Self-conditioned fields for large-eddy simulations of turbulent flows. J. Fluid Mech. 652:139–69 [Google Scholar]
  131. Prager J, Najm HN, Sargsyan K, Safta C, Pitz WJ. 2013. Uncertainty quantification of reaction mechanisms accounting for correlations introduced by rate rules and fitted Arrhenius parameters. Combust. Flame 160:1583–93 [Google Scholar]
  132. Pratsinis SE. 1998. Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24:197–219 [Google Scholar]
  133. Pratsinis SE, Bai H, Biswas P, Frenklach M, Mastrangelo SVR. 1990. Kinetics of titanium(IV) chloride oxidation. J. Am. Ceram. Soc. 73:2158–62 [Google Scholar]
  134. Pratsinis SE, Vemury S. 1996. Particle formation in gases: a review. Powder Technol. 88:267–73 [Google Scholar]
  135. Pratsinis SE, Zhu W, Vemury S. 1996. The role of gas mixing in flame synthesis of titania powders. Powder Technol. 86:87–93 [Google Scholar]
  136. Qamar N, Alwahabi Z, Chan Q, Nathan G, Roekaerts D, King K. 2009. Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas. Combust. Flame 156:1339–47 [Google Scholar]
  137. Raman V, Fox RO, Harvey AD. 2004. Hybrid finite-volume/transported PDF simulations of a partially premixed methane-air flame. Combust. Flame 136:327–50 [Google Scholar]
  138. Raman V, Pitsch H. 2005. Large-eddy simulation of bluff-body stabilized non-premixed flame using a recursive-refinement procedure. Combust. Flame 142:329–47 [Google Scholar]
  139. Raman V, Pitsch H. 2006. A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31:1711–19 [Google Scholar]
  140. Raman V, Pitsch H, Fox RO. 2005. A consistent hybrid LES-FDF scheme for the simulation of turbulent reactive flows. Combust. Flame 143:56–78 [Google Scholar]
  141. Raman V, Pitsch H, Fox RO. 2006. Eulerian transported probability density function sub-filter model for large-eddy simulation of turbulent combustion. Combust. Theory Model. 10:439–58 [Google Scholar]
  142. Ramkrishna D. 2000. Population Balances San Diego: Academic [Google Scholar]
  143. Reade WC, Collins LR. 2000. Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12:2530–40 [Google Scholar]
  144. Reddy M, De A, Yadav R. 2015. Effect of precursors and radiation on soot formation in turbulent diffusion flame. Fuel 148:58–72 [Google Scholar]
  145. Reveillon J, Vervisch L. 2005. Analysis of weakly turbulent dilute-spray flames and spray combustion regimes. J. Fluid Mech. 537:317–47 [Google Scholar]
  146. Richter H, Howard J. 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot: a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26:565–608 [Google Scholar]
  147. Rosner DE. 2005. Flame synthesis of valuable nanoparticles: recent progress/current needs in areas of rate laws, population dynamics, and characterization. Ind. Eng. Chem. Res. 44:6045–55 [Google Scholar]
  148. Roth P. 2007. Particle synthesis in flames. Proc. Combust. Inst. 31:1773–88 [Google Scholar]
  149. Saggese C, Sánchez NE, Frassoldati A, Cuoci A, Faravelli T. et al. 2014. Kinetic modeling study of polycyclic aromatic hydrocarbons and soot formation in acetylene pyrolysis. Energy Fuels 28:1489–501 [Google Scholar]
  150. Said R, Garo A, Borghi R. 1997. Soot formation modeling for turbulent flames. Combust. Flame 108:71–86 [Google Scholar]
  151. Sheen DA, Wang H. 2011. The method of uncertainty quantification and minimization using polynomial chaos expansions. Combust. Flame 158:2358–74 [Google Scholar]
  152. Shirley R, Akroyd J, Miller LA, Inderwildi OR, Riedel U, Kraft M. 2011. Theoretical insights into the surface growth of rutile TiO2. Combust. Flame 158:1868–76 [Google Scholar]
  153. Shohat JA, Tamarkin JD. 1943. The Problem of Moments 1 Providence, RI: Am. Math. Soc. [Google Scholar]
  154. Singh R, Raman V. 2012. Two-dimensional direct numerical simulation of nanoparticle precursor evolution in turbulent flames using detailed chemistry. Chem. Eng. J. 207–208:794–802 [Google Scholar]
  155. Stanmore BR, Brilhac JF, Gilot P. 2001. The oxidation of soot: a review of experiments, mechanisms and models. Carbon 39:2247–68 [Google Scholar]
  156. Steiner H, Bushe WK. 2001. Large eddy simulation of a turbulent reacting jet with conditional source-term estimation. Phys. Fluids 13:754–69 [Google Scholar]
  157. Sundaram S, Collins LR. 1997. Collision statistics in an isotropic particle-laden turbulent suspension. 1. Direct numerical simulations. J. Fluid Mech. 335:75–109 [Google Scholar]
  158. Sung Y, Raman V, Fox RO. 2011. Large-eddy-simulation-based multiscale modeling of TiO2 nanoparticle synthesis in a turbulent flame reactor using detailed nucleation chemistry. Chem. Eng. Sci. 66:4370–81 [Google Scholar]
  159. Sung Y, Raman V, Koo H, Mehta M, Fox RO. 2013. Large-eddy simulation modeling of turbulent flame synthesis of titania nanoparticles using a bivariate particle description. AIChE J. 60:459–72 [Google Scholar]
  160. Talbot L. 1981. Thermophoresis: a review. Rarefied Gas Dynamics: Int. Symp., 12th, Charlottesville, VA, July 7–11, 1980, Tech. Pap. Part 1467–88 New York: AIAA [Google Scholar]
  161. van Oijen JA, de Goey LPH. 2000. Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161:113–37 [Google Scholar]
  162. van Oijen JA, Lammers FA, de Goey LPH. 2001. Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127:2124–34 [Google Scholar]
  163. Vasilyev O, Lund T, Moin P. 1998. A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146:82–104 [Google Scholar]
  164. Vemury S, Pratsinis SE. 1995. Dopants in flame synthesis of titania. J. Am. Ceram. Soc. 78:2984–92 [Google Scholar]
  165. Vikas V, Wang ZJ, Passalacqua A, Fox RO. 2011. Realizable high-order finite-volume schemes for quadrature-based moment methods. J. Comput. Phys. 230:5328–52 [Google Scholar]
  166. Wang CS, Friedlander SK, Mädler L. 2005. Nanoparticle aerosol science and technology: an overview. China Particuol. 3:243–54 [Google Scholar]
  167. Wang G, Garrick SC. 2005. Modeling and simulation of titania synthesis in two-dimensional methane–air flames. J. Nanopart. Res. 7:621–32 [Google Scholar]
  168. Wang H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33:41–67 [Google Scholar]
  169. Wang H, Frenklach M. 1997. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust. Flame 110:173–221 [Google Scholar]
  170. Wang Q. 2013. Forward and adjoint sensitivity computation of chaotic dynamical systems. J. Comput. Phys. 235:1–13 [Google Scholar]
  171. Wen Z, Yun S, Thomson M, Lightstone M. 2003. Modeling soot formation in turbulent kerosene/air jet diffusion flames. Combust. Flame 135:323–40 [Google Scholar]
  172. West RH, Shirley RA, Kraft M, Goldsmith CF, Green WH. 2009. A detailed kinetic model for combustion synthesis of titania from TiCl4. Combust. Flame 156:1764–70 [Google Scholar]
  173. Woolley RM, Fairweather M, Yunardi. 2009. Conditional moment closure modelling of soot formation in turbulent, non-premixed methane and propane flames. Fuel 88:393–407 [Google Scholar]
  174. Wright DL. 2007. Numerical advection of moments of the particle size distribution in Eulerian models. J. Aerosol Sci. 38:352–69 [Google Scholar]
  175. Xuan Y, Blanquart G. 2015. Effects of aromatic chemistry-turbulence interactions on soot formation in a turbulent non-premixed flame. Proc. Combust. Inst. 35:1911–19 [Google Scholar]
  176. Yeh C, Yeh S, Ma H. 2004. Flame synthesis of titania particles from titanium tetraisopropoxide in premixed flames. Powder Technol. 145:1–9 [Google Scholar]
  177. Yoo CS, Im HG. 2007. Transient soot dynamics in turbulent nonpremixed ethylene–air counterflow flames. Proc. Combust. Inst. 31:701–8 [Google Scholar]
  178. Yu M, Lin J. 2010. Nanoparticle-laden flows via moment method: a review. Int. J. Multiphase Flow 36:144–51 [Google Scholar]
  179. Yuan C, Laurent F, Fox RO. 2012. An extended quadrature method of moments for population balance equations. J. Aerosol Sci. 51:1–23 [Google Scholar]
  180. Zhang J, Shaddix CR, Schefer RW. 2011. Design of “model-friendly” turbulent non-premixed jet burners for C2 + hydrocarbon fuels. Rev. Sci. Instrum. 82:074101 [Google Scholar]
  181. Zhong BJ, Dang S, Song YN, Gong JS. 2012. 3-D simulation of soot formation in a direct-injection diesel engine based on a comprehensive chemical mechanism and method of moments. Combust. Theory Model. 16:143–71 [Google Scholar]
  182. Zucca A, Marchisio DL, Barresi AA, Fox RO. 2006. Implementation of the population balance equation in CFD codes for modelling soot formation in turbulent flames. Chem. Eng. Sci. 61:87–95 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error