As the pulsatile cardiac blood flow drives the heart valve leaflets to open and close, the flow in the vicinity of the valve resembles a pulsed jet through a nonaxisymmetric orifice with a dynamically changing area. As a result, three-dimensional vortex rings with intricate topology emerge that interact with the complex cardiac anatomy and give rise to shear layers, regions of recirculation, and flow instabilities that could ultimately lead to transition to turbulence. Such complex flow patterns, which are inherently valve- and patient-specific, lead to mechanical forces at scales that can cause blood cell damage and thrombosis, increasing the likelihood of stroke, and can trigger the pathogenesis of various life-threatening valvular heart diseases. We summarize the current understanding of flow phenomena induced by heart valves, discuss their linkage with disease pathways, and emphasize the research advances required to translate in-depth understanding of valvular hemodynamics into effective patient therapies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Askov JB, Honge JL, Jensen MO, Nygaard H, Hasenkam JM, Nielsen SL. 2013. Significance of force transfer in mitral valve–left ventricular interaction: in vivo assessment. J. Thorac. Cardiovasc. Surg. 145:1635–41 [Google Scholar]
  2. Baccani B, Domenichini F, Pedrizzetti G. 2003. Model and influence of mitral valve opening during the left ventricular filling. J. Biomech. 36:355–61 [Google Scholar]
  3. Barker AJ, Lanning C, Shandas R. 2010. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann. Biomed. Eng. 38:788–800 [Google Scholar]
  4. Barker AJ, Markl M. 2011. The role of hemodynamics in bicuspid aortic valve disease. Eur. J. Cardio-Thorac. Surg. 39:805–6 [Google Scholar]
  5. Barker AJ, Markl M, Bürk J, Lorenz R, Bock J. et al. 2012. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ. Cardiovasc. Imaging 5:457–66 [Google Scholar]
  6. Bermejo J, Martínez-Legazpi P, del Álamo JC. 2015. The clinical assessment of intraventricular flows. Annu. Rev. Fluid Mech. 47:315–42 [Google Scholar]
  7. Bernacca GM, O'Connor B, Williams DF, Wheatley DJ. 2002. Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young's modulus and leaflet thickness. Biomaterials 23:45–50 [Google Scholar]
  8. Bezuidenhout D, Williams DF, Zilla P. 2015. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 36:6–25 [Google Scholar]
  9. Bissell MM, Dall'Armellina E, Choudhury RP. 2014. Flow vortices in the aortic root: In vivo 4D-MRI confirms predictions of Leonardo da Vinci. Eur. Heart J. 35:1344 [Google Scholar]
  10. Borazjani I. 2013. Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. Methods Appl. Mech. Eng. 257:103–16 [Google Scholar]
  11. Borazjani I, Ge L, Sotiropoulos F. 2008. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227:7587–620 [Google Scholar]
  12. Borazjani I, Ge L, Sotiropoulos F. 2010. High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann. Biomed. Eng. 38:326–44 [Google Scholar]
  13. Borazjani I, Sotiropoulos F. 2010. The effect of implantation orientation of a bileaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. J. Biomech. Eng. 132:111005 [Google Scholar]
  14. Braverman AC, Güven H, Beardslee MA, Makan M, Kates AM, Moon MR. 2005. The bicuspid aortic valve. Curr. Probl. Cardiol. 30:470–522 [Google Scholar]
  15. Calleja A, Thavendiranathan P, Ionasec RI, Houle H, Liu S. et al. 2013. Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normals and clinical implications. Circ. Cardiovasc. Imaging 6:99–108 [Google Scholar]
  16. Carlhäll CJ, Bolger A. 2010. Passing strange flow in the failing ventricle. Circ. Heart Fail. 3:326–31 [Google Scholar]
  17. Carlsson M, Heiberg E, Toger J, Arheden H. 2012. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am. J. Physiol. Heart Circ. Physiol. 302:H893–900 [Google Scholar]
  18. Chaput M, Handschumacher MD, Tournoux F, Hua L, Guerrero JL. et al. 2008. Mitral leaflet adaptation to ventricular remodeling occurrence and adequacy in patients with functional mitral regurgitation. Circulation 118:845–52 [Google Scholar]
  19. Charonko JJ, Kumar R, Stewart K, Little WC, Vlachos PP. 2013. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann. Biomed. Eng. 41:1049–61 [Google Scholar]
  20. Chester AH, El-Hamamsy I, Butcher JT, Latif N, Bertazzo S, Yacoub MH. 2014. The living aortic valve: from molecules to function. Glob. Cardiol. Sci. Pract. 2014:52–77 [Google Scholar]
  21. Chnafa C, Mendez S, Nicoud F. 2014. Image-based large-eddy simulation in a realistic left heart. Comput. Fluids 94:173–87 [Google Scholar]
  22. Choi YJ, Vedula V, Mittal R. 2014. Computational study of the dynamics of a bileaflet mechanical heart valve in the mitral position. Ann. Biomed. Eng. 42:1668–80 [Google Scholar]
  23. Dabiri JO, Gharib M. 2005. The role of optimal vortex formation in biological fluid transport. Proc. R. Soc. B 272:1557–60 [Google Scholar]
  24. Dasi LP, Ge L, Simon H, Sotiropoulos F, Yoganathan A. 2007. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19:067105 [Google Scholar]
  25. Dasi LP, Simon HA, Sucosky P, Yoganathan AP. 2009. Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36:225–37 [Google Scholar]
  26. De Hart J, Baaijens F, Peters G, Schreurs P. 2003a. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36:699–712 [Google Scholar]
  27. De Hart J, Peters G, Schreurs P, Baaijens F. 2003b. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J. Biomech. 36:103–12 [Google Scholar]
  28. De Tullio M, Cristallo A, Balaras E, Verzicco R. 2009. Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 622:259–90 [Google Scholar]
  29. De Tullio M, Pedrizzetti G, Verzicco R. 2011. On the effect of aortic root geometry on the coronary entry-flow after a bileaflet mechanical heart valve implant: a numerical study. Acta Mech. 216:147–63 [Google Scholar]
  30. den Reijer PM, Sallee D III, van der Velden P, Zaaijer ER, Parks WJ. et al. 2010. Hemodynamic predictors of aortic dilatation in bicuspid aortic valve by velocity-encoded cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 12:4 [Google Scholar]
  31. Driessen NJ, Bouten CV, Baaijens FP. 2005. Improved prediction of the collagen fiber architecture in the aortic heart valve. J. Biomech. Eng. 127:329–36 [Google Scholar]
  32. Einstein DR, Kunzelman KS, Reinhall PG, Nicosia M, Cochran R. 2005. Non-linear fluid-coupled computational model of the mitral valve. J. Heart Valve Dis. 14:376–85 [Google Scholar]
  33. Elbaz MS, Calkoen EE, Westenberg JJ, Lelieveldt BP, Roest AA, van der Geest RJ. 2014. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J. Cardiovasc. Magn. Reson. 16:78 [Google Scholar]
  34. Faludi R, Szulik M, D'hooge J, Herijgers P, Rademakers F. et al. 2010. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139:1501–10 [Google Scholar]
  35. Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ. et al. 2006. The embryonic vertebrate heart tube is a dynamic suction pump. Science 312:751–53 [Google Scholar]
  36. Fortini S, Querzoli G, Espa S, Cenedese A. 2013. Three-dimensional structure of the flow inside the left ventricle of the human heart. Exp. Fluids 54:1609 [Google Scholar]
  37. Freund JB. 2014. Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46:67–95 [Google Scholar]
  38. Garcia MJ, Smedira NG, Greenberg NL, Main M, Firstenberg MS. et al. 2000. Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation. J. Am. Coll. Cardiol. 35:201–8 [Google Scholar]
  39. Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP. 2008. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds versus viscous stresses. Ann. Biomed. Eng. 36:276–97 [Google Scholar]
  40. Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP. 2003. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J. Biomech. Eng. 125:709–18 [Google Scholar]
  41. Ge L, Leo HL, Sotiropoulos F, Yoganathan AP. 2005. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng. 127:782–97 [Google Scholar]
  42. Ge L, Sotiropoulos F. 2007. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225:1782–809 [Google Scholar]
  43. Ge L, Sotiropoulos F. 2010. Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: Is there a link with valve calcification?. J. Biomech. Eng. 132:014505 [Google Scholar]
  44. Gharib M, Kremers D, Koochesfahani M, Kemp M. 2002. Leonardo's vision of flow visualization. Exp. Fluids 33:219–23 [Google Scholar]
  45. Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO. 2006. Optimal vortex formation as an index of cardiac health. PNAS 103:6305–8 [Google Scholar]
  46. Gharib M, Rambod E, Shariff K. 1998. A universal time scale for vortex ring formation. J. Fluid Mech. 360:121–40 [Google Scholar]
  47. Gilmanov A, Le TB, Sotiropoulos F. 2015. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J. Comput. Phys. 300:814–43 [Google Scholar]
  48. Gould ST, Srigunapalan S, Simmons CA, Anseth KS. 2013. Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ. Res. 113:186–97 [Google Scholar]
  49. Grande-Allen KJ, Barber JE, Klatka KM, Houghtaling PL, Vesely I. et al. 2005. Mitral valve stiffening in end-stage heart failure: evidence of an organic contribution to functional mitral regurgitation. J. Thorac. Cardiovasc. Surg. 130:783–90 [Google Scholar]
  50. Griffith BE. 2012. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28:317–45 [Google Scholar]
  51. Hinton RB, Yutzey KE. 2011. Heart valve structure and function in development and disease. Annu. Rev. Physiol. 73:29–46 [Google Scholar]
  52. Hong GR, Pedrizzetti G, Tonti G, Li P, Wei Z. et al. 2008. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc. Imaging 1:705–17 [Google Scholar]
  53. Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH. et al. 2010. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255:53–61 [Google Scholar]
  54. Hope TA, Markl M, Wigström L, Alley MT, Miller DC, Herfkens RJ. 2007. Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J. Magn. Reson. Imaging 26:1471–79 [Google Scholar]
  55. Hunt JC, Wray A, Moin P. 1988. Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases, 2: Proc. 1998 Summer Prog.193–208 Stanford, CA: Cent. Turbul. Res. [Google Scholar]
  56. Hwang N, Hussain A, Hui P, Stripling T, Wieting D. 1977. Turbulent flow through a natural human mitral valve. J. Biomech. 10:59–67 [Google Scholar]
  57. Jeong J, Hussain F. 1995. On the identification of a vortex. J. Fluid Mech. 285:69–94 [Google Scholar]
  58. Katayama S, Umetani N, Sugiura S, Hisada T. 2008. The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J. Thorac. Cardiovasc. Surg. 136:1528–35 [Google Scholar]
  59. Keshavarz-Motamed Z, Garcia J, Gaillard E, Maftoon N, Di Labbio G. et al. 2014. Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry. Exp. Fluids 55:1696 [Google Scholar]
  60. Kheradvar A, Falahatpisheh A. 2012. The effects of dynamic saddle annulus and leaflet length on transmitral flow pattern and leaflet stress of a bileaflet bioprosthetic mitral valve. J. Heart Valve Dis. 21:225–33 [Google Scholar]
  61. Kheradvar A, Groves EM, Dasi LP, Alavi SH, Tranquillo R. et al. 2015. Emerging trends in heart valve engineering: Part I. Solutions for future. Ann. Biomed. Eng. 43:833–43 [Google Scholar]
  62. Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. 1993. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–47 [Google Scholar]
  63. Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. 2000. Asymmetric redirection of flow through the heart. Nature 404:759–61 [Google Scholar]
  64. Ku DN. 1997. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434 [Google Scholar]
  65. Kvitting JPE, Ebbers T, Wigström L, Engvall J, Olin CL, Bolger AF. 2004. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve–sparing surgery. J. Thorac. Cardiovasc. Surg. 127:1602–7 [Google Scholar]
  66. Laas J, Kleine P, Hasenkam MJ, Nygaard H. 1999. Orientation of tilting disc and bileaflet aortic valve substitutes for optimal hemodynamics. Ann. Thorac. Surg. 68:1096–99 [Google Scholar]
  67. Labovitz AJ, Pearson AC. 1987. Evaluation of left ventricular diastolic function: clinical relevance and recent Doppler echocardiographic insights. Am. Heart J. 114:836–51 [Google Scholar]
  68. Lau K, Diaz V, Scambler P, Burriesci G. 2010. Mitral valve dynamics in structural and fluid–structure interaction models. Med. Eng. Phys. 32:1057–64 [Google Scholar]
  69. Le TB. 2011. A computational framework for simulating cardiovascular flows in patient-specific anatomies PhD Thesis, Univ. Minnesota, Minneapolis [Google Scholar]
  70. Le TB, Borazjani I, Kang S, Sotiropoulos F. 2011. On the structure of vortex rings from inclined nozzles. J. Fluid Mech. 686:451–83 [Google Scholar]
  71. Le TB, Borazjani I, Sotiropoulos F. 2010. Pulsatile flow effects on the hemodynamics of intracranial aneurysms. J. Biomech. Eng. 132:111009 [Google Scholar]
  72. Le TB, Gilmanov A, Sotiropoulos F. 2013a. High resolution simulation of tri-leaflet aortic heart valve in an idealized aorta. J. Med. Devices 7:030930 [Google Scholar]
  73. Le TB, Sotiropoulos F. 2012. On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle. Eur. J. Mech. B Fluids 35:20–24 [Google Scholar]
  74. Le TB, Sotiropoulos F. 2013. Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J. Comput. Phys. 244:41–62 [Google Scholar]
  75. Le TB, Sotiropoulos F, Coffey D, Keefe D. 2012. Vortex formation and instability in the left ventricle. Phys. Fluids 24:091110 [Google Scholar]
  76. Le TB, Troolin DR, Amatya D, Longmire EK, Sotiropoulos F. 2013b. Vortex phenomena in sidewall aneurysm hemodynamics: experiment and numerical simulation. Ann. Biomed. Eng. 41:2157–70 [Google Scholar]
  77. Leo HL, Dasi LP, Carberry J, Simon HA, Yoganathan AP. 2006. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34:936–52 [Google Scholar]
  78. Leo HL, Simon H, Carberry J, Lee SC, Yoganathan AP. 2005. A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann. Biomed. Eng. 33:429–43 [Google Scholar]
  79. Ma X, Gao H, Griffith BE, Berry C, Luo X. 2013. Image-based fluid–structure interaction model of the human mitral valve. Comput. Fluids 71:417–25 [Google Scholar]
  80. Mächler H, Perthel M, Reiter G, Reiter U, Zink M. et al. 2004. Influence of bi-leaflet prosthetic mitral valve orientation on left ventricular flow and experimental in vivo magnetic resonance imaging study. Eur. J. Cardio-Thorac. Surg. 26:747–53 [Google Scholar]
  81. Mangual JO, Kraigher-Krainer E, De Luca A, Toncelli L, Shah A. et al. 2013. Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. J. Biomech. 46:1611–17 [Google Scholar]
  82. Mannacio V, Di Tommaso L, De Amicis V, Stassano P, Vosa C. 2012. Coronary perfusion: impact of flow dynamics and geometric design of 2 different aortic prostheses of similar size. J. Thorac. Cardiovasc. Surg. 143:1030–35 [Google Scholar]
  83. Markl M, Draney MT, Miller DC, Levin JM, Williamson EE. et al. 2005. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J. Thorac. Cardiovasc. Surg. 130:456–63 [Google Scholar]
  84. Markl M, Kilner PJ, Ebbers T. 2011. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13:7 [Google Scholar]
  85. Marom G, Peleg M, Halevi R, Rosenfeld M, Raanani E. et al. 2013. Fluid-structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps. J. Biomech. Eng. 135:101001 [Google Scholar]
  86. McQueen DM, Peskin CS. 2000. A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. ACM Siggraph Comput. Graph. 34:56–60 [Google Scholar]
  87. McQueen DM, Peskin CS, Yellin EL. 1982. Fluid dynamics of the mitral valve: physiological aspects of a mathematical model. Am. J. Physiol. 242:1095–110 [Google Scholar]
  88. Miron P, Vétel J, Garon A. 2014. On the use of the finite-time Lyapunov exponent to reveal complex flow physics in the wake of a mechanical valve. Exp. Fluids 55:1814 [Google Scholar]
  89. Moore B, Dasi LP. 2014. Spatiotemporal complexity of the aortic sinus vortex. Exp. Fluids 55:1770 [Google Scholar]
  90. Peacock JA. 1990. An in vitro study of the onset of turbulence in the sinus of Valsalva. Circ. Res. 67:448–60 [Google Scholar]
  91. Pedrizzetti G, Domenichini F. 2005. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101 [Google Scholar]
  92. Pedrizzetti G, Domenichini F. 2014. Left ventricular fluid mechanics: the long way from theoretical models to clinical applications. Ann. Biomed. Eng. 43:26–40 [Google Scholar]
  93. Pedrizzetti G, Domenichini F, Tonti G. 2010. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38:769–73 [Google Scholar]
  94. Peskin CS. 1982. The fluid dynamics of heart valves: experimental, theoretical, and computational methods. Annu. Rev. Fluid Mech. 14:235–59 [Google Scholar]
  95. Pibarot P, Dumesnil JG. 2009. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119:1034–48 [Google Scholar]
  96. Pierrakos O, Vlachos PP. 2006. The effect of vortex formation on left ventricular filling and mitral valve efficiency. J. Biomech. Eng. 128:527–39 [Google Scholar]
  97. Querzoli G, Fortini S, Cenedese A. 2010. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys. Fluids 22:041901 [Google Scholar]
  98. Querzoli G, Fortini S, Espa S, Costantini M, Sorgini F. 2014. Fluid dynamics of aortic root dilation in Marfan syndrome. J. Biomech. 47:3120–28 [Google Scholar]
  99. Quill JL, Hill AJ, Laske TG, Alfieri O, Iaizzo PA. 2009. Mitral leaflet anatomy revisited. J. Thorac. Cardiovasc. Surg. 137:1077–81 [Google Scholar]
  100. Rabbah JPM, Saikrishnan N, Siefert AW, Santhanakrishnan A, Yoganathan AP. 2013. Mechanics of healthy and functionally diseased mitral valves: a critical review. J. Biomech. Eng. 135:021007 [Google Scholar]
  101. Rahimtoola SH. 2003. Choice of prosthetic heart valve for adult patients. J. Am. Coll. Cardiol. 41:893–904 [Google Scholar]
  102. Rajappan K, Rimoldi OE, Camici PG, Bellenger NG, Pennell DJ, Sheridan DJ. 2003. Functional changes in coronary microcirculation after valve replacement in patients with aortic stenosis. Circulation 107:3170–75 [Google Scholar]
  103. Ramaswamy S, Boronyak SM, Le T, Holmes A, Sotiropoulos F, Sacks MS. 2014. A novel bioreactor for mechanobiological studies of engineered heart valve tissue formation under pulmonary arterial physiological flow conditions. J. Biomech. Eng. 136:121009 [Google Scholar]
  104. Rausch MK, Bothe W, Kvitting JPE, Swanson JC, Ingels NB Jr. 2011. Characterization of mitral valve annular dynamics in the beating heart. Ann. Biomed. Eng. 39:1690–702 [Google Scholar]
  105. Reul H, Talukder N. Müller EW. 1981. Fluid mechanics of the natural mitral valve. J. Biomech. 14:361–72 [Google Scholar]
  106. Reynolds W, Hussain A. 1972. The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54:263–88 [Google Scholar]
  107. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD. et al. 2012. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:e2 [Google Scholar]
  108. Sabbah H, Stein P. 1982. Effect of aortic stenosis on coronary flow dynamics: studies in an in-vitro pulse duplicating system. J. Biomech. Eng. 104:221–25 [Google Scholar]
  109. Sacks MS, Merryman WD, Schmidt DE. 2009a. On the biomechanics of heart valve function. J. Biomech. 42:1804–24 [Google Scholar]
  110. Sacks MS, Schoen FJ, Mayer JE Jr. 2009b. Bioengineering challenges for heart valve tissue engineering. Annu. Rev. Biomed. Eng. 11:289–313 [Google Scholar]
  111. Sacks MS, Sun W. 2003. Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 5:251–84 [Google Scholar]
  112. Saikrishnan N, Yap CH, Milligan NC, Vasilyev NV, Yoganathan AP. 2012. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann. Biomed. Eng. 40:1760–75 [Google Scholar]
  113. Salsac AV, Sparks S, Chomaz JM, Lasheras J. 2006. Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms. J. Fluid Mech. 560:19–51 [Google Scholar]
  114. Sengupta P, Pedrizzetti G, Kilner P, Kheradvar A, Ebbers T. et al. 2012. Emerging trends in clinical assessment of cardiovascular fluid dynamics. JACC Cardiovasc. Imaging 5:305–16 [Google Scholar]
  115. Shadden SC, Astorino M, Gerbeau JF. 2010. Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos 20:017512 [Google Scholar]
  116. Shortland A, Black R, Jarvis J, Henry F, Iudicello F. et al. 1996. Formation and travel of vortices in model ventricles: application to the design of skeletal muscle ventricles. J. Biomech. 29:503–11 [Google Scholar]
  117. Simmons CA, Grant GR, Manduchi E, Davies PF. 2005. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ. Res. 96:792–99 [Google Scholar]
  118. Simon HA, Ge L, Sotiropoulos F, Yoganathan AP. 2010a. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Ann. Biomed. Eng. 38:3295–310 [Google Scholar]
  119. Simon HA, Ge L, Sotiropoulos F, Yoganathan AP. 2010b. Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions. Ann. Biomed. Eng. 38:841–53 [Google Scholar]
  120. Sotiropoulos F, Aidun C, Borazjani I, MacMeccan R. 2011. Computational techniques for biological fluids: from blood vessel scale to blood cells. Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems KB Chandran, HS Udaykumar, JM Reinhardt 105–55 New York: Springer [Google Scholar]
  121. Sotiropoulos F, Borazjani I. 2009. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47:245–56 [Google Scholar]
  122. Sotiropoulos F, Yang X. 2014. Immersed boundary methods for simulating fluid–structure interaction. Prog. Aerosp. Sci. 65:1–21 [Google Scholar]
  123. Stevanella M, Maffessanti F, Conti CA, Votta E, Arnoldi A. et al. 2011. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2:66–76 [Google Scholar]
  124. Stewart KC, Charonko JC, Niebel CL, Little WC, Vlachos PP. 2012. Left ventricular vortex formation is unaffected by diastolic impairment. Am. J. Physiol. Heart Circ. Physiol. 303:H1255–62 [Google Scholar]
  125. Stolarski H, Gilmanov A, Sotiropoulos F. 2013. Nonlinear rotation-free three-node shell finite element formulation. Int. J. Numer. Methods Eng. 95:740–70 [Google Scholar]
  126. Sun W, Martin C, Pham T. 2014. Computational modeling of cardiac valve function and intervention. Annu. Rev. Biomed. Eng. 16:53–76 [Google Scholar]
  127. Taylor CA, Figueroa C. 2009. Patient-specific modeling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11:109–34 [Google Scholar]
  128. Tiederman W, Privette R, Phillips W. 1988. Cycle-to-cycle variation effects on turbulent shear stress measurements in pulsatile flows. Exp. Fluids 6:265–72 [Google Scholar]
  129. Töger J, Kanski M, Carlsson M, Kovács SJ, Söderlind G. et al. 2012. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann. Biomed. Eng. 40:2652–62 [Google Scholar]
  130. Van Rijk-Zwikker G, Delemarre B, Huysmans H. 1996. The orientation of the bi-leaflet CarboMedics valve in the mitral position determines left ventricular spatial flow patterns. Eur. J. Cardio-Thorac. Surg. 10:513–20 [Google Scholar]
  131. van't Veer M, van Straten B, van de Vosse F, Pijls N. 2007. Influence of orientation of bi-leaflet valve prostheses on coronary perfusion pressure in humans. Interact. Cardiovasc. Thorac. Surg. 6:588–92 [Google Scholar]
  132. Veronesi F, Corsi C, Sugeng L, Caiani EG, Weinert L. et al. 2008. Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J. Am. Soc. Echocardiogr. 21:347–54 [Google Scholar]
  133. von Knobelsdorff-Brenkenhoff F, Trauzeddel RF, Barker AJ, Gruettner H, Markl M, Schulz-Menger J. 2014. Blood flow characteristics in the ascending aorta after aortic valve replacement: a pilot study using 4D-flow MRI. Int. J. Cardiol. 170:426–33 [Google Scholar]
  134. Votta E, Le TB, Stevanella M, Fusini L, Caiani EG. et al. 2013. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46:217–28 [Google Scholar]
  135. Wang Q, Sun W. 2013. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41:142–53 [Google Scholar]
  136. Watton P, Luo X, Yin M, Bernacca G, Wheatley D. 2008. Effect of ventricle motion on the dynamic behaviour of chorded mitral valves. J. Fluids Struct. 24:58–74 [Google Scholar]
  137. Weinberg EJ, Shahmirzadi D, Mofrad MRK. 2010. On the multiscale modeling of heart valve biomechanics in health and disease. Biomech. Model. Mechanobiol. 9:373–87 [Google Scholar]
  138. Wong J, Göktepe S, Kuhl E. 2011. Computational modeling of electrochemical coupling: a novel finite element approach towards ionic models for cardiac electrophysiology. Comput. Methods Appl. Mech. Eng. 200:3139–58 [Google Scholar]
  139. Yagi T, Yang W, Umezu M. 2011. Effect of bileaflet valve orientation on the 3D flow dynamics in the sinus of Valsalva. J. Biomech. Sci. Eng. 6:64–78 [Google Scholar]
  140. Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP. 2012. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech. Model. Mechanobiol. 11:171–82 [Google Scholar]
  141. Yoganathan AP, Chandran K, Sotiropoulos F. 2005. Flow in prosthetic heart valves: state-of-the-art and future directions. Ann. Biomed. Eng. 33:1689–94 [Google Scholar]
  142. Yoganathan AP, He Z, Jones SC. 2004. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–62 [Google Scholar]
  143. Yun BM, Dasi LP, Aidun C, Yoganathan A. 2014a. Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method. J. Fluid Mech. 743:170–201 [Google Scholar]
  144. Yun BM, Dasi LP, Aidun C, Yoganathan A. 2014b. Highly resolved pulsatile flows through prosthetic heart valves using the entropic lattice-Boltzmann method. J. Fluid Mech. 754:122–60 [Google Scholar]
  145. Yun BM, Wu J, Simon HA, Arjunon S, Sotiropoulos F. et al. 2012. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann. Biomed. Eng. 40:1468–85 [Google Scholar]
  146. Zoghbi WA, Chambers JB, Dumesnil JG, Foster E, Gottdiener JS. et al. 2009. Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultrasound: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 22:975–1014 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error