1932

Abstract

A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 9

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 2

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 5

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 8

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 11

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 10

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 6

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 3

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 7

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 4

Associated Article

There are media items related to this article:
Drop Impact on a Solid Surface: Supplemental Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122414-034401
2016-01-03
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/fluid/48/1/annurev-fluid-122414-034401.html?itemId=/content/journals/10.1146/annurev-fluid-122414-034401&mimeType=html&fmt=ahah

Literature Cited

  1. Agbaglah G, Delaux S, Fuster D, Hoepffner J, Josserand C. et al. 2011. Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. C. R. Mec. 339:194–207 [Google Scholar]
  2. Agbaglah G, Josserand C, Zaleski S. 2013. Longitudinal instability of a liquid rim. Phys. Fluids 25:022103 [Google Scholar]
  3. Allen RF. 1975. The role of surface tension in splashing. J. Colloid Interface Sci. 51:350–51 [Google Scholar]
  4. Antkowiak A, Audoly B, Josserand C, Neukirch S, Rivetti M. 2011. Instant fabrication and selection of folded structures using drop impact. PNAS 108:10400–4 [Google Scholar]
  5. Antonini C, Bernagozzi I, Jung S, Poulikakos D, Marengo M. 2013. Water drops dancing on ice: how sublimation leads to drop rebound. Phys. Rev. Lett. 111:014501 [Google Scholar]
  6. Antonini C, Lee JB, Maitra T, Irvine S, Derome D. et al. 2014. Unraveling wetting transition through surface textures with X-rays: liquid meniscus penetration phenomena. Sci. Rep. 4:4055 [Google Scholar]
  7. Attinger D, Moore C, Donalson A, Jafari A, Stone HA. 2013. Fluid dynamics topics in bloodstain pattern analysis: comparative review and research opportunities. Forensic Sci. Int. 231:375–96 [Google Scholar]
  8. Aziz SD, Chandra S. 2000. Impact, recoil and splashing of molten metal droplets. Int. J. Heat Mass Transf. 43:2841–57 [Google Scholar]
  9. Bakshi S, Roisman IV, Tropea C. 2007. Investigations on the impact of a drop onto a small spherical target. Phys. Fluids 19:032102 [Google Scholar]
  10. Bartolo D, Bouamrirene F, Verneuil E, Buguin A, Silberzan P, Moulinet S. 2006a. Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 74:299–305 [Google Scholar]
  11. Bartolo D, Josserand C, Bonn D. 2005. Retraction dynamics of aqueous drops upon impact on nonwetting surfaces. J. Fluid Mech. 545:329–38 [Google Scholar]
  12. Bartolo D, Josserand C, Bonn D. 2006b. Singular jets and bubbles in drop impact. Phys. Rev. Lett. 96:124501 [Google Scholar]
  13. Bayer IS, Megaridis CM. 2006. Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics. J. Fluid Mech. 558:415–49 [Google Scholar]
  14. Bhola R, Chandra S. 1999. Parameters controlling solidification of molten wax droplets falling on a solid surface. J. Mater. Sci. 34:4883–94 [Google Scholar]
  15. Biance A-L, Chevy F, Clanet C, Lagubeau G, Quéré D. 2006. On the elasticity of an inertial liquid shock. J. Fluid Mech. 554:47–66 [Google Scholar]
  16. Bird JC, Dhiman R, Kwon H-M, Varanasi KK. 2013. Reducing the contact time of a bouncing drop. Nature 503:385–88 [Google Scholar]
  17. Bird JC, Tsai S, Scott SH, Stone HA. 2009. Inclined to splash: triggering and inhibiting a splash with tangential velocity. New J. Phys. 11:063017 [Google Scholar]
  18. Bischofberger I, Mauser KW, Nagel SR. 2013. Seeing the invisible-air vortices around a splashing drop. Phys. Fluids 25:091110 [Google Scholar]
  19. Bouwhuis W, van der Veen RCA, Tran T, Keiji DL, Winkels KG. et al. 2012. Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109:264501 [Google Scholar]
  20. Brunet P, Lapierre F, Zoueshtiagh F, Thomy V, Merlen A. 2009. To grate a liquid into tiny droplets by its impact on a hydrophobic microgrid. Appl. Phys. Lett. 95:254102 [Google Scholar]
  21. Chandra S, Avedisian CT. 1991. On the collision of a droplet with a solid surface. Proc. R. Soc. A 432:13–41 [Google Scholar]
  22. Chou F-C, Zen T-S, Lee K-W. 2009. An experimental study of a water droplet impacting on a rotating wafer. Atom. Spray 19:905–16 [Google Scholar]
  23. Clanet C, Béguin C, Richard D, Quéré D. 2004. Maximal deformation of an impacting drop. J. Fluid Mech. 517:199–208 [Google Scholar]
  24. de Jong R, Enriquez OR, van der Meer D. 2015. Exploring droplet impact near a millimetre-sized hole: comparing a closed pit with an open-ended pore. J. Fluid Mech. 772:427–44 [Google Scholar]
  25. de Ruiter J, Lagraauw R, van den Ende D, Mugele F. 2015a. Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11:48–53 [Google Scholar]
  26. de Ruiter J, Oh JM, van den Ende D, Mugele F. 2012. Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108:074505 [Google Scholar]
  27. de Ruiter J, van den Ende D, Mugele F. 2015b. Air cushioning in droplet impact. II: Experimental characterization of the air film evolution. Phys. Fluids 27:012105 [Google Scholar]
  28. Deng X, Mammen L, Butt H-J, Vollmer D. 2012. Candle soot as a template for a transparent robust superamphiphobic coating. Science 107:67–70 [Google Scholar]
  29. Driscoll MM, Nagel SR. 2011. Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107:154502 [Google Scholar]
  30. Driscoll MM, Stevens CS, Nagel SR. 2010. Thin film formation during splashing of viscous liquids. Phys. Rev. E 83:036302 [Google Scholar]
  31. Duchemin L, Josserand C. 2011. Curvature singularity and film-skating during drop impact. Phys. Fluids 23:091701 [Google Scholar]
  32. Duchemin L, Josserand C. 2012. Rarefied gas correction for the bubble entrapment singularity in drop impacts. C. R. Mec. 340:797–803 [Google Scholar]
  33. Eggers J, Fontelos M, Josserand C, Zaleski S. 2010. Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22:062101 [Google Scholar]
  34. Fassmann BW, Bansmer SE, Moeller TJ, Radespiel R, Hartmann M. 2013. High velocity impingement of single droplets on a dry smooth surface. Exp. Fluids 54:1516 [Google Scholar]
  35. Fedorchenko AI, Wang A-B, Wang Y-H. 2005. Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface. Phys. Fluids 17:093104 [Google Scholar]
  36. Gilet T, Bourouiba L. 2014. Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. Integr. Comp. Biol 54:974–84 [Google Scholar]
  37. Guemas M, Marin AG, Lohse D. 2009. Drop impact experiments of non-Newtonian liquids on micro-structured surfaces. Soft Matter 8:10725–31 [Google Scholar]
  38. Gulyaev IP, Solonenko OP. 2013. Hollow droplets impacting onto a solid surface. Exp. Fluids 54:1432 [Google Scholar]
  39. Haller KK, Ventikos Y, Poulikakos D, Monkewitz P. 2002. Computational study of high-speed liquid droplet impact. J. Appl. Phys. 92:2821–28 [Google Scholar]
  40. Hendrix MHW, Bouwhuis W, van der Meer D, Lohse D, Snoeijer JH. 2015. Universal mechanism for air entrainment during liquid impact. arXiv:1502.02869v1 [physics.flu–dyn]
  41. Hicks PD, Ermanyuk EV, Gavrilov NV, Purvis R. 2012. Air trapping at impact of a rigid sphere onto a liquid. J. Fluid Mech. 695:310–20 [Google Scholar]
  42. Hicks PD, Purvis R. 2010. Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649:135–63 [Google Scholar]
  43. Hicks PD, Purvis R. 2013. Liquid-solid impacts with compressible gas cushioning. J. Fluid Mech. 735:120–49 [Google Scholar]
  44. Huang Y-L, Wang M-J, Huang J-W, Lin S-Y. 2013. A study on the impact velocity and drop size for the occurrence of entrapped air bubbles: water on parafilm. Exp. Therm. Fluid Sci. 48:102–9 [Google Scholar]
  45. Hulse-Smith L, Mehdizadeh NZ, Chandra S. 2005. Deducing drop size and impact velocity from circular bloodstains. J. Forensic Sci. 50:54–63 [Google Scholar]
  46. Josserand C, Lemoyne L, Troeger R, Zaleski S. 2005. Droplet impact on a dry surface: triggering the splash with a small obstacle. J. Fluid Mech. 524:47–56 [Google Scholar]
  47. Joung YS, Buie CR. 2015. Aerosol generation by raindrop impact on soil. Nat. Commun. 6:6083 [Google Scholar]
  48. Khavari M, Sun C, Lohse D, Tran T. 2015. Fingering patterns during droplet impact on heated surfaces. Soft Matter 11:3298–303 [Google Scholar]
  49. Kim H, Park U, Lee C, Kim H, Kim MH, Kim J. 2014. Drop splashing on a rough surface: how surface morphology affects splashing threshold. Appl. Phys. Lett. 104:161608 [Google Scholar]
  50. Klaseboer E, Chevaillier JP, Gourdon C, Masbernat O. 2000. Film drainage between colliding drops at constant approach velocity: experiments and modeling. J. Colloid Interface Sci. 229:274–85 [Google Scholar]
  51. Klaseboer E, Manica R, Chan DYC. 2014. Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113:194501 [Google Scholar]
  52. Ko YS, Chung SH. 1996. An experiment on the breakup of impinging droplets on a hot surface. Exp. Fluids 21:118–23 [Google Scholar]
  53. Kolinski JM, Rubinstein SM, Mandre S, Brenner MP, Weitz DA. 2012. Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108:074503 [Google Scholar]
  54. Kolinski JM, Mahadevan L, Rubinstein SM. 2014a. Drops can bounce from perfectly hydrophilic surfaces. Eur. Phys. Lett. 108:24001 [Google Scholar]
  55. Kolinski JM, Mahadevan L, Rubinstein SM. 2014b. Lift-off instability during the impact of a drop on a solid surface. Phys. Rev. Lett. 112:134501 [Google Scholar]
  56. Korobkin AA, Ellis AS, Smith FT. 2008. Trapping of air in impact between a body and shallow water. J. Fluid Mech. 611:365–94 [Google Scholar]
  57. Kwon D, Huh H, Lee S. 2013. Wetting state and maximum spreading factor of microdroplets impacting on superhydrophobic textured surfaces with anisotropic arrays of pillars. Exp. Fluids 54:1576 [Google Scholar]
  58. Laan N, de Bruin KG, Bartolo D, Josserand C, Bonn D. 2014. Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2:044018 [Google Scholar]
  59. Lagubeau G, Fontelos MA, Josserand C, Maurel A, Pagneux V, Petitjeans P. 2012. Spreading dynamics of drop impacts. J. Fluid Mech. 713:50–60 [Google Scholar]
  60. Lastakowski H, Boyer F, Biance A-L, Pirat C, Ybert C. 2014. Bridging local to global dynamics of drop impact onto solid substrates. J. Fluid Mech. 747:103–18 [Google Scholar]
  61. Latka A, Strandburg-Peshkin A, Driscoll MM, Stevens CS, Nagel SR. 2012. Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys. Rev. Lett. 109:054501 [Google Scholar]
  62. Lee JS, Weon BM, Je JH, Fezzaa K. 2012. How does an air film evolve into a bubble during drop impact?. Phys. Rev. Lett. 109:204501 [Google Scholar]
  63. Lee M, Chang YS, Kim H-Y. 2010. Drop impact on microwetting patterned surfaces. Phys. Fluids 22:072101 [Google Scholar]
  64. Lembach AN, Tan H-B, Roisman IV, Gambaryan-Roisman T, Zhang Y. et al. 2010. Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir 26:9516–23 [Google Scholar]
  65. Lesser M, Field JE. 1983. The impact of compressible liquids. Annu. Rev. Fluid Mech. 15:97–122 [Google Scholar]
  66. Li EQ, Thoroddsen ST. 2015. Time-resolved imaging of a compressible air-disc under a drop impacting on a solid surface. J. Fluid Mech. 780636–48 [Google Scholar]
  67. Liu TL, Kim CJ. 2014. Turning a surface superrepellent even to completely wetting liquids. Science 346:1096–100 [Google Scholar]
  68. Liu Y, Moevius L, Xu X, Qian T, Yeomans JM, Wang Z. 2014. Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 10:515–19 [Google Scholar]
  69. Liu Y, Tan P, Xu L. 2013. Compressible air entrapment in high-speed drop impacts on solid surfaces. J. Fluid Mech. 716:R9 [Google Scholar]
  70. Liu Y, Tan P, Xu L. 2015. Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces. PNAS 112:3280–84 [Google Scholar]
  71. Lorenceau E, Quéré D. 2003. Drop impacting a sieve. J. Colloid Interface Sci. 263:244–49 [Google Scholar]
  72. Maitra T, Tiwari MK, Antonin C, Schoch P, Jung S. et al. 2014. On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett. 14:172–82 [Google Scholar]
  73. Mandre S, Brenner MP. 2012. The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690:148–72 [Google Scholar]
  74. Mandre S, Mani M, Brenner MP. 2009. Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102:134502 [Google Scholar]
  75. Mani M, Mandre S, Brenner MP. 2010. Events before droplet splashing on a solid surface. J. Fluid. Mech. 647:163–85 [Google Scholar]
  76. Marengo M, Antonini C, Roisman IV, Tropea C. 2011. Drop collisions with simple and complex surfaces. Curr. Opin. Colloid Interface Sci. 16:292–302 [Google Scholar]
  77. Marmanis H, Thoroddsen ST. 1996. Scaling of the fingering pattern of an impacting drop. Phys. Fluids 8:1344–46 [Google Scholar]
  78. Marston JO, Mansoor MM, Thoroddsen ST. 2013. Impact of granular drops. Phys. Rev. E 88:010201 [Google Scholar]
  79. Marston JO, Vakarelski IU, Thoroddsen ST. 2011. Bubble entrapment during sphere impact onto quiescent liquid surfaces. J. Fluid Mech. 680:660–70 [Google Scholar]
  80. Mehdizadeh NZ, Chandra S. 2006. Boiling during high-velocity impact of water droplets on a hot stainless steel surface. Proc. R. Soc. A 462:3115–31 [Google Scholar]
  81. Mehdizadeh NZ, Chandra S, Mostaghimi J. 2004. Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J. Fluid Mech. 510:353–73 [Google Scholar]
  82. Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S. et al. 2011. Inkjet printing of single-crystal films. Nature 475:364–67 [Google Scholar]
  83. Mishra NK, Zhang Y, Ratner A. 2011. Effect of chamber pressure on spreading and splashing of liquid drops upon impact on a dry smooth stationary surface. Exp. Fluids 51:483–91 [Google Scholar]
  84. Moevius L, Liu Y, Wang Z, Yeomans JM. 2014. Pancake bouncing: simulations and theory and experimental verification. Langmuir 30:13021–32 [Google Scholar]
  85. Moita AS, Moreira ALN. 2007. Drop impacts onto cold and heated rigid surfaces: morphological comparisons, disintegration limits and secondary atomization. Int. J. Heat Fluid Flow 28:735–52 [Google Scholar]
  86. Mongruel A, Daru V, Feuillebois F, Tabakova SS. 2009. Early post-impact time dynamics of viscous drops onto a solid dry surface. Phys. Fluids 21:032101 [Google Scholar]
  87. Moreira ALN, Moita AS, Cossali E, Marengo M, Santini M. 2007. Secondary atomization of water and isooctane drops impinging on tilted heated surfaces. Exp. Fluids 43:297–313 [Google Scholar]
  88. Moreira ALN, Moita AS, Panão MR. 2010. Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?. Prog. Energy Combust. Sci. 36:554–80 [Google Scholar]
  89. Mundo C, Sommerfeld M, Tropea C. 1995. Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiphase Flow 21:151–73 [Google Scholar]
  90. Palacios J, Hernández J, Gómez P, Zanzi C, López J. 2012. On the impact of viscous drops onto dry smooth surfaces. Exp. Fluids 52:1449–63 [Google Scholar]
  91. Palacios J, Hernández J, Gómez P, Zanzi C, López J. 2013. Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces. Exp. Therm. Fluid Sci. 44:571–82 [Google Scholar]
  92. Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J. 1996. Capillary effects during droplet impact on a solid surface. Phys. Fluids 8:650–59 [Google Scholar]
  93. Pepper RE, Courbin L, Stone HA. 2008. Splashing on elastic membranes: the importance of early-time dynamics. Phys. Fluids 20:082103 [Google Scholar]
  94. Peters IR, Xu Q, Jaeger HM. 2013. Splashing onset in dense suspension droplets. Phys. Rev. Lett. 111:028301 [Google Scholar]
  95. Piroird K, Clanet C, Lorenceau E, Quéré D. 2009. Drops impacting inclined fibers. J. Colloid Interface Sci. 334:70–74 [Google Scholar]
  96. Pittoni PG, Lin Y-C, Wang R-J, Yu T-S, Lin S-Y. 2015. Bubbles entrapment for drops impinging on polymer surfaces: the roughness effect. Exp. Therm. Fluid Sci. 62:183–91 [Google Scholar]
  97. Prunet-Foch B, Legay F, Vignes-Adler M, Delmotte C. 1998. Impacting emulsion drop on a steel plate: influence of the solid substrate. J. Colloid Interface Sci. 199:151–68 [Google Scholar]
  98. Quéré D. 2013. Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45:197–215 [Google Scholar]
  99. Range K, Feuillebois F. 1998. Influence of surface roughness on liquid drop impact. J. Colloid Interface Sci. 203:16–30 [Google Scholar]
  100. Rein M. 1993. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12:61–93 [Google Scholar]
  101. Rein M, Delplanque J-P. 2008. The role of air entrainment on the outcome of drop impact on a solid surface. Acta Mech. 201:105–18 [Google Scholar]
  102. Renardy Y, Popinet S, Duchemin L, Renardy M, Zaleski S. et al. 2003. Pyramidal and toroidal water drops after impact on a solid surface. J. Fluid Mech. 484:69–83 [Google Scholar]
  103. Reyssat M, Pardo F, Quéré D. 2009. Drops onto gradients of texture. Europhys. Lett. 87:36003 [Google Scholar]
  104. Reyssat M, Pepin A, Marty F, Chen Y, Quéré D. 2006. Bouncing transitions on microtextured materials. Europhys. Lett. 74:306–12 [Google Scholar]
  105. Riboux G, Gordillo JM. 2014. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113:024507 [Google Scholar]
  106. Riboux G, Gordillo JM. 2015. The diameter and velocities of the droplets ejected after splashing. J. Fluid Mech. 772:630–48 [Google Scholar]
  107. Richard D, Clanet C, Quéré D. 2002. Contact time of a bouncing drop. Nature 417:811 [Google Scholar]
  108. Richard D, Quéré D. 2000. Bouncing water drops. Europhys. Lett. 50:769–75 [Google Scholar]
  109. Rioboo R, Marengo M, Tropea C. 2002. Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33:112–24 [Google Scholar]
  110. Rioboo R, Tropea C, Marengo M. 2001. Outcomes from a drop impact on solid surfaces. At. Sprays 11:155–65 [Google Scholar]
  111. Roisman IV. 2009. Inertia dominated drop collisions. II. An analytical solution of the Navier-Stokes equations for a spreading viscous film. Phys. Fluids 21:052104 [Google Scholar]
  112. Roisman IV, Berberović E, Tropea C. 2009. Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21:052103 [Google Scholar]
  113. Roisman IV, Horvat K, Tropea C. 2006. Spray impact: rim transverse instability initiating fingering and splash and description of a secondary spray. Phys. Fluids 18:102104 [Google Scholar]
  114. Roisman IV, Lembach A, Tropea C. 2015. Drop splashing induced by target roughness and porosity: The size plays no role. Adv. Colloid Interface Sci. 222:615–21 [Google Scholar]
  115. Roisman IV, Rioboo R, Tropea C. 2002. Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. A 458:1411–30 [Google Scholar]
  116. Rozhkov A, Brunet-Foch B, Vignes-Adler M. 2010. Impact of drops of surfactant solutions on small targets. Proc. R. Soc. A 466:2897–916 [Google Scholar]
  117. Sahu RP, Sett S, Yarin AL, Pourdeyhimi B. 2015. Impact of aqueous suspension drops onto non-wettable porous membranes: hydrodynamic focusing and penetration of nanoparticles. Colloids Surf. A 467:31–45 [Google Scholar]
  118. Scheller BL, Bousfield DW. 1995. Newtonian drop impact with a solid surface. AIChE J. 41:1357–67 [Google Scholar]
  119. Schroll RD, Josserand C, Zaleski S, Zhang WW. 2010. Impact of a viscous liquid drop. Phys. Rev. Lett. 104:034504 [Google Scholar]
  120. Schutzius TM, Graeber G, Elsarkawy M, Oreluk J, Megaridis CM. 2014. Morphing and vectoring impacting droplets by means of wettability-engineered surfaces. Sci. Rep. 4:7029 [Google Scholar]
  121. Shinoda K, Raessi M, Mostaghimi J, Yoshida T, Murakami H. 2009. Effect of substrate concave pattern on splat formation of yttria-stabilized zirconia in atmospheric plasma spraying. J. Therm. Spray Technol. 18:609–18 [Google Scholar]
  122. Smith FT, Li L, Wu GX. 2003. Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482:291–318 [Google Scholar]
  123. Soto D, De Larivière AB, Boutillon X, Clanet C, Quéré D. 2014. The force of impacting rain. Soft Matter 10:4929–34 [Google Scholar]
  124. Stevens CS. 2014. Scaling of the splash threshold for low-viscosity fluids. Eur. Phys. Lett. 106:24001 [Google Scholar]
  125. Stevens CS, Latka A, Nagel SN. 2014. Comparison of splashing in high- and low-viscosity liquids. Phys. Rev. E 89:063006 [Google Scholar]
  126. Stow CD, Hadfield MG. 1981. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. A 373:419–41 [Google Scholar]
  127. Thoraval M-J, Takehara K, Etoh TG, Popinet S, Ray P. et al. 2012. Von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108:264506 [Google Scholar]
  128. Thoroddsen ST, Etoh TG, Takehara K. 2008. High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech. 40:257–85 [Google Scholar]
  129. Thoroddsen ST, Etoh TG, Takehara K, Ootsuka N, Hatsuki Y. 2005. The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545:203–12 [Google Scholar]
  130. Thoroddsen ST, Takehara K, Etoh TG. 2010. Bubble entrapment through topological change. Phys. Fluids 22:051701 [Google Scholar]
  131. Thoroddsen ST, Takehara K, Etoh TG. 2012. Micro-splashing by drop impacts. J. Fluid Mech. 706:560–70 [Google Scholar]
  132. Thoroddsen ST, Takehara K, Etoh TG, Ohl C-D. 2009. Spray and microjets produced by focusing a laser pulse into a hemispheric drop. Phys. Fluids 21:112101 [Google Scholar]
  133. Thoroddsen ST, Sakakibara J. 1998. Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10:1359–74 [Google Scholar]
  134. Tran T, Staat HJJ, Prosperetti A, Sun C, Lohse D. 2012. Drop impact on superheated surfaces. Phys. Rev. Lett. 108:036101 [Google Scholar]
  135. Tsai PA, Hendrix MHW, Dijkstra RRM, Shui L, Lohse D. 2011. Microscopic structure influencing macroscopic splash at high Weber number. Soft Matter 7:11325–33 [Google Scholar]
  136. Tsai PA, Pacheco S, Pirat C, Lefferts L, Lohse D. 2009. Drop impact upon micro- and nanostructured superhydrophobic surfaces. Langmuir 25:12293–98 [Google Scholar]
  137. Tsai PA, van der Veen RCA, van de Raa M, Lohse D. 2010. How micropatterns and air pressure affect splashing on surfaces. Langmuir 26:16090–95 [Google Scholar]
  138. Tuteja A, Choi W, Mabry JM, McKinley GH, Cohen RE. 2008. Robust omniphobic surfaces. PNAS 105:18200–5 [Google Scholar]
  139. Ukiwe C, Kwok D. 2005. On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21:666–73 [Google Scholar]
  140. Vadillo D, Soucemarianadin A, Delattre C, Roux D. 2009. Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys. Fluids 21:122002 [Google Scholar]
  141. Van Dam DB, Le Clerc C. 2004. Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16:3403–14 [Google Scholar]
  142. van der Veen RCA, Tran T, Lohse D, Sun C. 2012. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85:026315 [Google Scholar]
  143. van der Veen RCA, Hendrix MHW, Tran T, Sun C, Tsai PA, Lohse D. 2014. How microstructures affect air film dynamics prior to drop impact. Soft Matter 10:3703–7 [Google Scholar]
  144. Vander Wal RL, Berger GM, Mozes SD. 2006. The splash/non-splash boundary upon a dry surface and thin fluid film. Exp. Fluids 40:53–59 [Google Scholar]
  145. Vernay C, Ramos L, Ligoure C. 2015. Free radially expanding liquid sheet in air: time- and space-resolved measurement of the thickness field. J. Fluid Mech. 764:428–44 [Google Scholar]
  146. Villermaux E, Bossa B. 2011. Drop fragmentation on impact. J. Fluid Mech. 668:412–35 [Google Scholar]
  147. Visser CW, Frommhold PE, Wildeman S, Mettin R, Lohse D, Sun C. 2015. Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter 11:1708–22 [Google Scholar]
  148. Visser CW, Tagawa Y, Sun C, Lohse D. 2012. Microdroplet impact at very high velocity. Soft Matter 8:10732–37 [Google Scholar]
  149. Worthington AM. 1876. On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. 25:261–72 [Google Scholar]
  150. Xu L, Barcos L, Nagel SR. 2007. Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. Lett. 76:066311 [Google Scholar]
  151. Xu L, Zhang WW, Nagel SR. 2005. Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94:184505 [Google Scholar]
  152. Yarin AL. 2006. Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38:159–92 [Google Scholar]
  153. Yarin AL, Weiss DA. 1995. Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283:141–73 [Google Scholar]
  154. Yeong YH, Burton J, Loth E, Bayer IS. 2014. Drop impact and rebound dynamics on an inclined superhydrophobic surface. Langmuir 30:12027–38 [Google Scholar]
  155. Yokoi K. 2011. Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle. Soft Matter 7:5120–23 [Google Scholar]
  156. Yokoi K, Vadillo D, Hinch J, Hutchings I. 2009. Numerical studies of the influence of the dynamic contact angle on a drop impacting on a dry surface. Phys. Fluids 21:072102 [Google Scholar]
  157. Yoon SS, Jepsen RA, Nissen MR, O'Hern TJ. 2007. Experimental investigation on splashing and nonlinear fingerlike instability of large water drops. J. Fluids Struct. 23:101–15 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122414-034401
Loading
/content/journals/10.1146/annurev-fluid-122414-034401
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error