Even in simple geometries, many complex fluids display nontrivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known for several decades, but in recent years, we have seen an upsurge in studies offering an ever-more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many phenomena that could only have been thought of separately before. In this review, we bring together recent research on shear banding in polymeric and soft glassy materials and highlight their similarities and disparities.

Associated Article

There are media items related to this article:
Shear Banding of Complex Fluids: Supplemental Video 1

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams JM, Fielding SM, Olmsted PD. 2008. The interplay between boundary conditions and flow geometries in shear banding: hysteresis, band configurations, and surface transitions. J. Non-Newton. Fluid Mech. 151:101–18 [Google Scholar]
  2. Adams JM, Fielding SM, Olmsted PD. 2011. Transient shear banding in entangled polymers: a study using the Rolie-Poly model. J. Rheol. 55:1007–32 [Google Scholar]
  3. Adams JM, Olmsted PD. 2009a. Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions. Phys. Rev. Lett. 102:067801 [Google Scholar]
  4. Adams JM, Olmsted PD. 2009b. Adams and Olmsted reply. Phys. Rev. Lett. 103:219802 [Google Scholar]
  5. Agimelen OS, Olmsted PD. 2013. Apparent fracture in polymeric fluids under step shear. Phys. Rev. Lett. 110:204503 [Google Scholar]
  6. Ballesta P, Lettinga MP, Manneville S. 2007. Superposition rheology of shear-banding wormlike micelles. J. Rheol. 51:1047–72 [Google Scholar]
  7. Barnes HA. 1995. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J. Non-Newton. Fluid Mech. 56:221–51 [Google Scholar]
  8. Bécu L, Anache D, Manneville S, Colin A. 2007. Evidence for three-dimensional unstable flows in shear-banding wormlike micelles. Phys. Rev. E 76:011503 [Google Scholar]
  9. Bécu L, Manneville S, Colin A. 2006. Yielding and flow in adhesive and nonadhesive concentrated emulsions. Phys. Rev. Lett. 96:138302 [Google Scholar]
  10. Bercea M, Peiti C, Simionescu B, Navard P. 1993. Shear rheology of semidilute poly (methyl methacrylate) solutions. Macromolecules 26:7095–96 [Google Scholar]
  11. Berni M, Lawrence C, Machin D. 2002. A review of the rheology of the lamellar phase in surfactant systems. Adv. Colloid Interface Sci. 98:217–43 [Google Scholar]
  12. Berret J. 2006. Rheology of wormlike micelles: equilibrium properties and shear banding transitions. Molecular Gels RG Weiss, P Terech 667–720 New York: Springer [Google Scholar]
  13. Besseling R, Ballesta LIP, Petekidis G, Cates M, Poon W. 2010. Shear banding and flow-concentration coupling in colloidal glasses. Phys. Rev. Lett. 105:268301 [Google Scholar]
  14. Billen J, Wilson M, Baljon A. 2015. Shear banding in simulated telechelic polymers. Chem. Phys. 446:7–12 [Google Scholar]
  15. Bird R, Armstrong R, Hassager O. 1987. Dynamics of Polymeric Liquids 1 Fluid Mechanics New York: Wiley [Google Scholar]
  16. Bocquet L, Colin A, Ajdari A. 2009. A kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett. 103:036001 [Google Scholar]
  17. Boukany PE, Wang SQ. 2007. A correlation between velocity profile and molecular weight distribution in sheared entangled polymer solutions. J. Rheol. 51:217–33 [Google Scholar]
  18. Boukany PE, Wang SQ. 2008. Use of particle-tracking velocimetry and flow birefringence to study nonlinear flow behavior of entangled wormlike micellar solution: from wall slip, bulk disentanglement to chain scission. Macromolecules 41:1455–64 [Google Scholar]
  19. Boukany PE, Wang SQ. 2009a. Exploring the transition from wall slip to bulk shearing banding in well-entangled DNA solutions. Soft Matter 5:780–89 [Google Scholar]
  20. Boukany PE, Wang SQ. 2009b. Shear banding or not in entangled DNA solutions depending on the level of entanglement. J. Rheol. 53:73–83 [Google Scholar]
  21. Boukany PE, Wang SQ. 2010. Shear banding or not in entangled DNA solutions. Macromolecules 43:6950–52 [Google Scholar]
  22. Britton MM, Callaghan PT. 1997. Two-phase shear band structures at uniform stress. Phys. Rev. Lett. 78:4930–33 [Google Scholar]
  23. Buscall R. 2010. Letter to the editor: wall slip in dispersion rheometry. J. Rheol. 54:1177–83 [Google Scholar]
  24. Callaghan PT. 2008. Rheo NMR and shear banding. Rheol. Acta 47:243–55 [Google Scholar]
  25. Casanellas L, Dimitriou C, Ober TJ, McKinley G. 2015. Spatiotemporal dynamics of multiple shear-banding events for viscoelastic micellar fluids in cone-plate shearing flows. J. Non-Newton. Fluid Mech. 222:234–47 [Google Scholar]
  26. Cates ME. 1990. Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). J. Phys. Chem. 94:371–75 [Google Scholar]
  27. Cates ME, Fielding SM. 2006. Rheology of giant micelles. Adv. Phys. 55:799–879 [Google Scholar]
  28. Chaudhuri P, Berthier L, Bocquet L. 2012. Inhomogeneous shear flows in soft jammed materials with tunable attractive forces. Phys. Rev. E 85:021503 [Google Scholar]
  29. Chaudhuri P, Horbach J. 2013. Onset of flow in a confined colloidal glass under an imposed shear stress. Phys. Rev. E 88:040301 [Google Scholar]
  30. Cheddadi I, Saramito P, Graner F. 2012. Steady Couette flows of elastoviscoplastic fluids are nonunique. J. Rheol. 56:213–39 [Google Scholar]
  31. Chen LB, Chow MK, Ackerson BJ, Zukoski CF. 1994. Rheological and microstructural transitions in colloidal crystals. Langmuir 10:2817–29 [Google Scholar]
  32. Cheng S, Wang SQ. 2012. Is shear banding a metastable property of well-entangled polymer solutions?. J. Rheol. 56:1413–28 [Google Scholar]
  33. Chikkadi V, Miedema D, Dang M, Nienhuis B, Schall P. 2014. Shear banding of colloidal glasses: observation of a dynamic first-order transition. Phys. Rev. Lett. 113:208301 [Google Scholar]
  34. Christopoulou C, Petekidis G, Erwin B, Cloitre M, Vlassopoulos D. 2009. Ageing and yield behaviour in model soft colloidal glasses. Philos. Trans. R. Soc. A 367:5051–71 [Google Scholar]
  35. Cloitre M, Borrega R, Leibler FML. 2003. Glassy dynamics and flow properties of soft colloidal pastes. Phys. Rev. Lett. 90:068303 [Google Scholar]
  36. Coussot P, Nguyen QD, Huynh HT, Bonn D. 2002a. Viscosity bifurcation in thixotropic, yielding fluids. J. Rheol. 46:573–89 [Google Scholar]
  37. Coussot P, Ovarlez G. 2010. Physical origin of shear-banding in jammed systems. Eur. Phys. J. E 33:183–88 [Google Scholar]
  38. Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP. et al. 2002b. Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys. Rev. Lett. 88:218301 [Google Scholar]
  39. Cromer M, Cook LP, McKinley GH. 2011. Interfacial instability of pressure-driven channel flow for a two-species model of entangled wormlike micellar solutions. J. Non-Newton. Fluid Mech. 166:566–77 [Google Scholar]
  40. Cromer M, Fredrickson GH, Leal LG. 2014. A study of shear banding in polymer solutions. Phys. Fluids 26:063101 [Google Scholar]
  41. de Gennes P. 1992. Soft matter (Nobel lecture). Angew. Chem. Int. Ed. Engl. 31:842–45 [Google Scholar]
  42. Decruppe JP, Bécu L, Greffier O, Fazel N. 2010. Azimuthal instability of the interface in a shear banded flow by direct visual observation. Phys. Rev. Lett. 105:258301 [Google Scholar]
  43. Dhont JKG. 1999. A constitutive relation describing the shear-banding transition. Phys. Rev. E 60:4534–44 [Google Scholar]
  44. Diat O, Roux D, Nallet F. 1993. Effect of shear on a lyotropic lamellar phase. J. Phys. II France 3:1427–52 [Google Scholar]
  45. Dimitriou CJ, Casanellas L, Ober TJ, McKinley GH. 2012. Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear. Rheol. Acta 51:395–411 [Google Scholar]
  46. Divoux T, Barentin C, Manneville S. 2011. From transient fluidization processes to Herschel-Bulkley behavior in simple yield stress fluids. Soft Matter 7:8409–18 [Google Scholar]
  47. Divoux T, Tamarii D, Barentin C, Manneville S. 2010. Transient shear banding in a simple yield stress fluid. Phys. Rev. Lett. 104:208301 [Google Scholar]
  48. Divoux T, Tamarii D, Barentin C, Teitel S, Manneville S. 2012. Yielding dynamics of a Herschel-Bulkley fluid: a critical-like fluidization behaviour. Soft Matter 8:4151–64 [Google Scholar]
  49. Doi M, Edwards S. 1988. The Theory of Polymer Dynamics New York: Oxford Univ. Press [Google Scholar]
  50. Eberle AP, Porcar L. 2012. Flow-SANS and rheo-SANS applied to soft matter. Curr. Opin. Colloid Interface Sci. 17:33–43 [Google Scholar]
  51. Eiser E, Molino F, Porte G, Diat O. 2000a. Nonhomogeneous textures and banded flows in a soft cubic phase under shear. Phys. Rev. E 61:6759–64 [Google Scholar]
  52. Eiser E, Molino F, Porte G, Pithon X. 2000b. Flow in micellar cubic crystals. Rheol. Acta 39:201–8 [Google Scholar]
  53. Fardin MA, Divoux T, Guedeau-Boudeville M, Buchet-Maulien I, Browaeys J. et al. 2012a. Shear-banding in surfactant wormlike micelles: elastic instabilities and wall slip. Soft Matter 8:2535–53 [Google Scholar]
  54. Fardin MA, Lasne B, Cardoso O, Grégoire G, Argentina M. et al. 2009. Taylor-like vortices in shear-banding flow of giant micelles. Phys. Rev. Lett. 103:028302 [Google Scholar]
  55. Fardin MA, Lerouge S. 2012. Instabilities in wormlike micelle systems: from shear banding to elastic turbulence. Eur. Phys. J. E 35:91 [Google Scholar]
  56. Fardin MA, Lerouge S. 2014. Flows of living polymer fluids. Soft Matter 10:8789–99 [Google Scholar]
  57. Fardin MA, Ober TJ, Gay C, Grégoire G, McKinley GH, Lerouge S. 2011. Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids. Eur. Phys. Lett. 96:44004 [Google Scholar]
  58. Fardin MA, Ober TJ, Gay C, Grégoire G, McKinley GH, Lerouge S. 2012b. Potential ways of thinking about the shear-banding phenomenon. Soft Matter 8:910–22 [Google Scholar]
  59. Fardin MA, Ober TJ, Grenard V, Divoux T, Manneville S. et al. 2012c. Interplay between elastic instabilities and shear-banding: three categories of Taylor–Couette flows and beyond. Soft Matter 8:10072–89 [Google Scholar]
  60. Feindel KW, Callaghan PT. 2010. Anomalous shear banding: multidimensional dynamics under fluctuating slip conditions. Rheol. Acta 49:1003–13 [Google Scholar]
  61. Fielding SM. 2007. Complex dynamics of shear banded flows. Soft Matter 3:1262–79 [Google Scholar]
  62. Fielding SM. 2010. Viscoelastic Taylor-Couette instability of shear banded flow. Phys. Rev. Lett. 104:198303 [Google Scholar]
  63. Fielding SM. 2011. Criterion for extensional necking instability in polymeric fluids. Phys. Rev. Lett. 107:258301 [Google Scholar]
  64. Fielding SM. 2014. Shear banding in soft glassy materials. Rep. Prog. Phys. 77:102601 [Google Scholar]
  65. Fielding SM, Olmsted PD. 2003. Flow phase diagrams for concentration-coupled shear banding. Eur. Phys. J. E 11:65–83 [Google Scholar]
  66. Ganapathy R, Sood AK. 2006. Intermittency route to rheochaos in wormlike micelles with flow-concentration coupling. Phys. Rev. Lett. 96:108301 [Google Scholar]
  67. Gibaud T, Barentin C, Manneville S. 2008. Influence of boundary conditions on yielding in a soft glassy material. Phys. Rev. Lett. 101:258302 [Google Scholar]
  68. Gibaud T, Barentin C, Taberlet N, Manneville S. 2009. Shear-induced fragmentation of Laponite suspensions. Soft Matter 5:3026–37 [Google Scholar]
  69. Gibaud T, Frelat D, Manneville S. 2010. Heterogeneous yielding dynamics in a colloidal gel. Soft Matter 6:3482–88 [Google Scholar]
  70. Goddard JD. 2003. Material instability in complex fluids. Annu. Rev. Fluid Mech. 35:113–33 [Google Scholar]
  71. Gopalakrishnan V, Zukoski C. 2007. Delayed flow in thermo-reversible colloidal gels. J. Rheol. 51:623–44 [Google Scholar]
  72. Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L. 2008. Flow cooperativity and breakdown of local constitutive laws for confined glassy flows. Nature 454:84–87 [Google Scholar]
  73. Grenard V, Divoux T, Taberlet N, Manneville S. 2014. Timescales in creep and yielding of attractive gels. Soft Matter 10:1555–71 [Google Scholar]
  74. Gurnon AK, Lopez-Barron C, Wasbrough MJ, Porcar L, Wagner NJ. 2014. Spatially resolved concentration and segmental flow alignment in a shear-banding solution of polymer-like micelles. ACS Macro Lett. 3:276–80 [Google Scholar]
  75. Hamley I. 2001. Structure and flow behaviour of block copolymers. J. Phys. Condens. Matter 13:R643–71 [Google Scholar]
  76. Hayes KA, Buckley MR, Cohen I, Archer LA. 2008. High resolution shear profile measurements in entangled polymers. Phys. Rev. Lett. 101:218301 [Google Scholar]
  77. Hayes KA, Buckley MR, Qi H, Cohen I, Archer LA. 2010. Constitutive curve and velocity profile in entangled polymers during start-up of steady shear flow. Macromolecules 43:4412–17 [Google Scholar]
  78. Helgeson ME, Reichert MD, Hu YT, Wagner NJ. 2009. Relating shear banding, structure, and phase behavior in wormlike micellar solutions. Soft Matter 5:3858–69 [Google Scholar]
  79. Holmes WM, Callaghan PT, Vlassopoulos D, Roovers J. 2004. Shear banding phenomena in ultrasoft colloidal glasses. J. Rheol. 48:1085–102 [Google Scholar]
  80. Hu YT. 2010. Steady-state shear banding in entangled polymers?. J. Rheol. 54:1307–23 [Google Scholar]
  81. Hu YT, Lips A. 2005. Kinetics and mechanism of shear banding in an entangled micellar solution. J. Rheol. 49:1001–27 [Google Scholar]
  82. Irani E, Chaudhuri P, Heussinger C. 2014. Impact of attractive interactions on the rheology of dense athermal particles. Phys. Rev. Lett. 112:188303 [Google Scholar]
  83. Jaradat S, Harvey M, Waigh TA. 2012. Shear-banding in polyacrylamide solutions revealed via optical coherence tomography velocimetry. Soft Matter 8:11677–86 [Google Scholar]
  84. Larson RG. 1999. The Structure and Rheology of Complex Fluids New York: Oxford Univ. Press [Google Scholar]
  85. Lerouge S, Berret JF. 2010. Shear-induced transitions and instabilities in surfactant wormlike micelles. Adv. Polym. Sci. 230:1–71 [Google Scholar]
  86. Lerouge S, Decruppe JP, Berret JF. 2000. Correlation between rheological and optical properties of micellar solution under shear banding flow. Langmuir 16:6464–74 [Google Scholar]
  87. Lerouge S, Decruppe JP, Olmsted PD. 2004. Birefringence banding in a micellar solution or the complexity of heterogeneous flows. Langmuir 20:11355–65 [Google Scholar]
  88. Lerouge S, Fardin MA, Argentina M, Gregoire G, Cardoso O. 2008. Interface dynamics in shear-banding flow of giant micelles. Soft Matter 4:1808–19 [Google Scholar]
  89. Lettinga MP, Manneville S. 2009. Competition between shear banding and wall slip in wormlike micelles. Phys. Rev. Lett. 103:248302 [Google Scholar]
  90. Li Y, Hu M, McKenna GB, Dimitriou CJ, McKinley GH. et al. 2013. Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions. J. Rheol. 57:1411–28 [Google Scholar]
  91. Li Y, Hu M, McKenna GB, Dimitriou CJ, McKinley GH. et al. 2014. Response to: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers. J. Rheol. 58:1071–82 [Google Scholar]
  92. Ligoure C, Mora S. 2013. Fractures in complex fluids: the case of transient networks. Rheol Acta 52:91–114 [Google Scholar]
  93. López-González MR, Holmes WM, Callaghan PT, Photinos PJ. 2004. Shear banding fluctuations and nematic order in wormlike micelles. Phys. Rev. Lett. 93:268302 [Google Scholar]
  94. López-González MR, Holmes WM, Callaghan PT, Photinos PJ. 2006. Rheo-NMR phenomena of wormlike micelles. Soft Matter 2:855–69 [Google Scholar]
  95. Magnin A, Piau J. 1990. Cone-and-plate rheometry of yield stress fluids: study of an aqueous gel. J. Non-Newton. Fluid Mech. 36:85–108 [Google Scholar]
  96. Mair RW, Callaghan PT. 1997. Shear flow of wormlike micelles in pipe and cylindrical Couette geometries as studied by nuclear magnetic resonance microscopy. J. Rheol. 41:901–23 [Google Scholar]
  97. Manneville S. 2008. Recent experimental probes of shear banding. Rheol. Acta 47:301–18 [Google Scholar]
  98. Manneville S, Colin A, Waton G, Schosseler F. 2007. Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution. Phys. Rev. E 75:061502 [Google Scholar]
  99. Marrucci G. 1996. Dynamics of entanglements: a nonlinear model consistent with the Cox-Merz rule. J. Non-Newton. Fluid Mech. 62:279–89 [Google Scholar]
  100. Martin J, Hu Y. 2012. Transient and steady-state shear banding in aging soft glassy materials. Soft Matter 8:6940–49 [Google Scholar]
  101. Masselon C, Colin A, Olmsted PD. 2010. Influence of boundary conditions and confinement on nonlocal effects in flows of wormlike micellar systems. Phys. Rev. E 81:021502 [Google Scholar]
  102. Masselon C, Salmon JB, Colin A. 2008. Nonlocal effects in flows of wormlike micellar solutions. Phys. Rev. Lett. 100:038301 [Google Scholar]
  103. McLeish T. 2002. Tube theory of entangled polymer dynamics. Adv. Phys. 51:1379–527 [Google Scholar]
  104. McLeish T, Ball R. 1986. A molecular approach to the spurt effect in polymer melt flow. J. Polym. Sci. B 24:1735–45 [Google Scholar]
  105. Menezes E, Graessley W. 1982. Nonlinear rheological behavior of polymer systems for several shear-flow histories. J. Polym. Sci. Polym. Phys. Ed. 20:1817–33 [Google Scholar]
  106. Milner S, McLeish T, Likhtman A. 2001. Microscopic theory of convective constraint release. J. Rheol. 45:539–63 [Google Scholar]
  107. Møller PCF, Mewis J, Bonn D. 2006. Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2:274–83 [Google Scholar]
  108. Møller PCF, Rodts S, Michels MAJ, Bonn D. 2008. Shear banding and yield stress in soft glassy materials. Phys. Rev. E 77:041507 [Google Scholar]
  109. Moorcroft R, Cates M, Fielding S. 2011. Age-dependent transient shear banding in soft glasses. Phys. Rev. Lett. 106:055502 [Google Scholar]
  110. Moorcroft R, Fielding S. 2013. Criteria for shear banding in time-dependent flows of complex fluids. Phys. Rev. Lett. 110:086001 [Google Scholar]
  111. Morozov AN, van Saarloos W. 2007. An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Phys. Rep. 447:112–43 [Google Scholar]
  112. Muller SJ. 2008. Elastically-influenced instabilities in Taylor-Couette and other flows with curved streamlines: a review. Korea-Aust. Rheol. J. 20:117–25 [Google Scholar]
  113. Nghe P, Fielding SM, Tabeling P, Ajdari A. 2010. Interfacially driven instability in the microchannel flow of a shear-banding fluid. Phys. Rev. Lett. 104:248303 [Google Scholar]
  114. Nicolas A, Morozov A. 2012. Nonaxisymmetric instability of shear-banded Taylor-Couette flow. Phys. Rev. Lett. 108:088302 [Google Scholar]
  115. Noirez L, Mendil-Jakani H, Baroni P. 2009. New light on old wisdoms on molten polymers: conformation, slippage and shear banding in sheared entangled and unentangled melts. Macromol. Rapid Commun. 30:1709–14 [Google Scholar]
  116. Ober TJ, Soulages J, McKinley GH. 2011. Spatially resolved quantitative rheo-optics of complex fluids in a microfluidic device. J. Rheol. 55:1127–59 [Google Scholar]
  117. Olmsted PD. 2008. Perspectives on shear banding in complex fluids. Rheol. Acta 47:283–300 [Google Scholar]
  118. Ovarlez G, Rodts S, Chateau X, Coussot P. 2009. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol. Acta 48:831–44 [Google Scholar]
  119. Paredes J, Shahidzadeh-Bonn N, Bonn D. 2011. Shear banding in thixotropic and normal emulsions. J. Phys. Condens. Matter 23:284116 [Google Scholar]
  120. Pattamaprom C, Larson RG. 2001. Constraint release effects in monodisperse and bidisperse polystyrenes in fast transient shearing flows. Macromolecules 34:5229–37 [Google Scholar]
  121. Perge C, Fardin MA, Manneville S. 2014. Surfactant micelles: model systems for flow instabilities of complex fluids. Eur. Phys. J. E 37:23–34 [Google Scholar]
  122. Picard G, Ajdari A, Bocquet L, Lequeux F. 2002. A simple model for heterogeneous flows of yield stress fluids. Phys. Rev. E 66:051501 [Google Scholar]
  123. Pignon F, Magnin A, Piau JM. 1996. Thixotropic colloidal suspensions and flow curves with minimum: identification of flow regimes and rheometric consequences. J. Rheol. 40:573–87 [Google Scholar]
  124. Radulescu O, Olmsted PD. 1999. Matched asymptotic solutions for the steady banded flow of the diffusive Johnson-Segalman model in various geometries. J. Non-Newton. Fluid Mech. 91:143–64 [Google Scholar]
  125. Radulescu O, Olmsted PD, Decruppe JP, Lerouge S, Berret JF, Porte G. 2003. Time scales in shear banding of wormlike micelles. Europhys. Lett. 62:230–36 [Google Scholar]
  126. Radulescu O, Olmsted PD, Lu CYD. 1999. Shear banding in reaction-diffusion models. Rheol. Acta 38:606–13 [Google Scholar]
  127. Ragouilliaux A, Herzhaft B, Bertrand F, Coussot P. 2006. Flow instability and shear localization in a drilling mud. Rheol. Acta 46:261–71 [Google Scholar]
  128. Ragouilliaux A, Ovarlez G, Shahidzadeh-Bonn N, Herzhaft B, Palermo T, Coussot P. 2007. Transition from a simple yield-stress fluid to a thixotropic material. Phys. Rev. E 76:051408 [Google Scholar]
  129. Ravindranath S, Wang SQ, Ofechnowicz M, Quirk RP. 2008. Banding in simple steady shear of entangled polymer solutions. Macromolecules 41:2663–70 [Google Scholar]
  130. Rehage H, Hoffmann H. 1991. Viscoelastic surfactant solutions: model systems for rheological research. Mol. Phys. 74:933–73 [Google Scholar]
  131. Rogers SA, Callaghan P, Petekidis G, Vlassopoulos D. 2010. Time-dependent rheology of colloidal star glasses. J. Rheol. 54:133–58 [Google Scholar]
  132. Rogers SA, Vlassopoulos D, Callaghan PT. 2008. Aging, yielding, and shear banding in soft colloidal glasses. Phys. Rev. Lett. 100:128304 [Google Scholar]
  133. Roux D, Nallet F, Diat O. 1993. Rheology of lyotropic lamellar phases. Europhys. Lett. 24:53–58 [Google Scholar]
  134. Salmon JB, Colin A, Manneville S, Molino F. 2003a. Velocity profiles in shear-banding wormlike micelles. Phys. Rev. Lett. 90:228303 [Google Scholar]
  135. Salmon JB, Manneville S, Colin A. 2003b. Shear banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles. Phys. Rev. E 68:051503 [Google Scholar]
  136. Schall P, van Hecke M. 2010. Shear bands in matter with granularity. Annu. Rev. Fluid Mech. 42:67–88 [Google Scholar]
  137. Seth J, Locatelli-Champagne C, Monti F, Bonnecaze R, Cloitre M. 2012. How do soft particle glasses yield and flow near solid surfaces?. Soft Matter 8:140–48 [Google Scholar]
  138. Shereda L, Larson R, Solomon M. 2010. Shear banding in crystallizing colloidal suspensions. Korea-Aust. Rheol. J. 22:309–16 [Google Scholar]
  139. Skrzeszewska P, Sprakel J, de Wolf F, Fokkink R, Stuart MC, van der Gucht J. 2010. Fracture and self-healing in a well-defined self-assembled polymer network. Macromolecules 43:3542–48 [Google Scholar]
  140. Spenley A, Yuan XF, Cates ME. 1996. Nonmonotonic constitutive laws and the formation of shear-banded flows. J. Phys. II France 6:551–71 [Google Scholar]
  141. Sprakel J, Lindström S, Kodger T, Weitz D. 2011. Stress enhancement in the delayed yielding of colloidal gels. Phys. Rev. Lett. 106:248303 [Google Scholar]
  142. Tsamados M. 2010. Plasticity and dynamical heterogeneity in driven glassy materials. Eur. Phys. J. E 32:165–81 [Google Scholar]
  143. van der Noort A, Briels W. 2008. Brownian dynamics simulations of concentration coupled shear banding. J. Non-Newton. Fluid Mech. 152:148–55 [Google Scholar]
  144. Varnik F, Bocquet L, Barrat JL, Berthier L. 2003. Shear localization in a model glass. Phys. Rev. Lett. 90:095702 [Google Scholar]
  145. Vinogradov G. 1973. Critical regimes of deformation of liquid polymeric systems. Rheol. Acta 12:357–73 [Google Scholar]
  146. Vlassopoulos D, Fytas G. 2010. From polymers to colloids: engineering the dynamic properties of hairy particles. Adv. Polym. Sci. 236:1–54 [Google Scholar]
  147. Wang SQ. 2009. Comment on “Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions.”. Phys. Rev. Lett. 103:219801 [Google Scholar]
  148. Wang SQ, Liu G, Cheng S, Boukany PE, Wang Y, Li X. 2014. Letter to the editor: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers. J. Rheol. 58:1059–69 [Google Scholar]
  149. Wang SQ, Ravindranath S, Boukany PE. 2011. Homogeneous shear, wall slip, and shear banding of entangled polymeric liquids in simple-shear rheometry: a roadmap of nonlinear rheology. Macromolecules 44:183–90 [Google Scholar]
  150. Wright TW. 2002. The Physics and Mathematics of Adiabatic Shear Bands Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  151. Xu A, Gonnella G, Lamura A. 2006. Morphologies and flow patterns in quenching of lamellar systems with shear. Phys. Rev. E 74:011505 [Google Scholar]
  152. Yerushalmi J, Katz S, Shinnar R. 1970. Stability of steady shear flows of some viscoelastic fluids. Chem. Eng. Sci. 25:1891–902 [Google Scholar]
  153. Zhou L, McKinley GH, Cook LP. 2014. Wormlike micellar solutions: III. VCM model predictions in steady and transient shearing flows. J. Non-Newton. Fluid Mech. 211:70–83 [Google Scholar]
  154. Zhu X, Yang W, Wang SQ. 2013. Exploring shear yielding and strain localization at the die entry during extrusion of entangled melts. J. Rheol. 57:349–64 [Google Scholar]
  155. Zou W, Larson RG. 2014. A mesoscopic simulation method for predicting the rheology of semi-dilute wormlike micellar solutions. J. Rheol. 58:681–721 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error