Observations of the sea surface temperature field over more than a century indicate that there is pronounced variability in the climate system. Understanding the mechanisms of this variability is crucial to determine the role of variations in ocean heat content in past and future climate changes. When a steady background state in an ocean-climate model is slightly perturbed, the long-time response is determined by the spatial patterns of the normal modes. Here, the type and patterns of normal modes for a range of different equilibrium states in a hierarchy of ocean-climate models are reviewed. The rather elegant organization of these normal modes is demonstrated, and prototype physical mechanisms explaining patterns of sea surface temperature variability based on these normal modes are provided.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Arnold L. 1998. Random Dynamical Systems Berlin: Springer-Verlag
  2. Berloff PS, Hogg AM, Dewar WK. 2007. The turbulent oscillator: a mechanism of low-frequency variability of the wind-driven ocean gyres. J. Phys. Oceanogr. 37:2362–86 [Google Scholar]
  3. Cane MA. 1979a. The response of an equatorial ocean to simple wind stress patterns: I. Model formulation and analytic results. J. Mar. Res. 37:233–52 [Google Scholar]
  4. Cane MA. 1979b. The response of an equatorial ocean to simple wind stress patterns: II. Numerical results. J. Mar. Res. 37:253–99 [Google Scholar]
  5. Cane MA, Moore DW. 1981. A note on low-frequency equatorial basin modes. J. Phys. Oceanogr. 11:1578–84 [Google Scholar]
  6. Cessi P, Ierley GR. 1995. Symmetry-breaking multiple equilibria in quasi-geostrophic, wind-driven flows. J. Phys. Oceanogr. 25:1196–205 [Google Scholar]
  7. Cessi P, Primeau F. 2001. Dissipative selection of low-frequency modes in a reduced gravity basin. J. Phys. Oceanogr. 31:127–37 [Google Scholar]
  8. Colin de Verdiére A, Huck T. 1999. Baroclinic instability: an oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr. 29:893–910 [Google Scholar]
  9. Deser C, Alexander MA, Xie SP, Phillips AS. 2010. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2:115–43 [Google Scholar]
  10. Dijkstra HA. 2006. Interaction of SST modes in the North Atlantic Ocean. J. Phys. Oceanogr. 36:286–99 [Google Scholar]
  11. Dijkstra HA, Burgers G. 2002. Fluid dynamics of El Niño variability. Annu. Rev. Fluid Mech. 34:531–58 [Google Scholar]
  12. Dijkstra HA, De Ruijter WPM. 2001a. Barotropic instabilities of the Agulhas Current system and their relation to ring formation. J. Mar. Res. 59:517–33 [Google Scholar]
  13. Dijkstra HA, De Ruijter WPM. 2001b. On the physics of the Agulhas Current: steady retroflection regimes. J. Phys. Oceanogr. 31:2971–85 [Google Scholar]
  14. Dijkstra HA, Katsman CA. 1997. Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: basic bifurcation diagrams. Geophys. Astrophys. Fluid Dyn. 85:195–232 [Google Scholar]
  15. Dijkstra HA, von der Heydt A. 2007. Localization of multidecadal variability: II. Spectral origin of multidecadal modes. J. Phys. Oceanogr. 37:2415–28 [Google Scholar]
  16. England MH, McGregor S, Spence P, Meehl GA, Timmermann A. et al. 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4:222–27 [Google Scholar]
  17. Farrell BF, Ioannou PJ. 1996. Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci. 53:2025–40 [Google Scholar]
  18. Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources and sinks. Annu. Rev. Fluid Mech. 41:253–82 [Google Scholar]
  19. Frankcombe LM, Dijkstra HA. 2009. Coherent multidecadal variability in North Atlantic sea level. Geophys. Res. Lett. 36:L15604 [Google Scholar]
  20. Frankcombe LM, von der Heydt A, Dijkstra HA. 2010. North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J. Clim. 23:3626–38 [Google Scholar]
  21. Fu LL, Cheng B, Qiu B. 2001. 25-day period large-scale oscillations in the Argentine Basin revealed by the TOPEX/Poseidon altimeter. J. Phys. Oceanogr. 31:506–17 [Google Scholar]
  22. Ghil M. 2002. Natural climate variability. Encyclopedia of Global Environmental Change 1 MC MacCracken, JS Perry 544–49 New York: Wiley [Google Scholar]
  23. Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D. et al. 2002. Advanced spectral methods for climatic time series. Rev. Geophys. 40:1003 [Google Scholar]
  24. Goddard L, Philander SGH. 2000. The energetics of El Niño and La Niña. J. Clim. 13:1496–516 [Google Scholar]
  25. Griffies SM. 2004. Fundamentals of Ocean-Climate Models Princeton, NJ: Princeton Univ. Press
  26. Ham YG, Kug JS, Park JY, Jin FF. 2013. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci. 6:112–16 [Google Scholar]
  27. Huck T, Colin de Verdiére A, Weaver AJ. 1999. Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr. 29:865–92 [Google Scholar]
  28. Huck T, Vallis G. 2001. Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations. Tellus 53A:526–45 [Google Scholar]
  29. Huisman SG, van der Veen RCA, Sun C, Lohse D. 2014. Multiple states in highly turbulent Taylor-Couette flow. Nat. Commun. 5:3820 [Google Scholar]
  30. Ierley GR, Young WR. 1995. Viscous instabilities in the western boundary layer. J. Phys. Oceanogr. 25:764–86 [Google Scholar]
  31. Izumo T, Lengaigne M, Vialard J, Luo JJ, Yamagata T, Madec G. 2013. Influence of Indian Ocean Dipole and Pacific recharge on following year's El Niño: interdecadal robustness. Clim. Dyn. 42:291–310 [Google Scholar]
  32. Jansen MF, Dommenget D, Keenlyside N. 2009. Tropical atmosphere–ocean interactions in a conceptual framework. J. Clim. 22:550–67 [Google Scholar]
  33. Jiang S, Jin FF, Ghil M. 1995. Multiple equilibria and aperiodic solutions in a wind-driven double-gyre, shallow-water model. J. Phys. Oceanogr. 25:764–86 [Google Scholar]
  34. Jin FF. 1997. An equatorial recharge paradigm for ENSO. II: A stripped-down coupled model. J. Atmos. Sci. 54:830–47 [Google Scholar]
  35. Jin FF, Neelin J. 1993. Modes of interannual tropical ocean-atmosphere interaction—a unified view. I: Numerical results. J. Atmos. Sci. 50:3477–503 [Google Scholar]
  36. Kerswell RR, Pringle CCT, Willis AP. 2014. An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Prog. Phys. 77:085901 [Google Scholar]
  37. Koschmieder EL. 1993. Bénard Cells and Taylor Vortices Cambridge, UK: Cambridge Univ. Press
  38. Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR. et al. 2012. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci. 5:110–13 [Google Scholar]
  39. Longuet-Higgins MS. 1965. Planetary waves on a rotating sphere. Proc. R. Soc. Lond. A 284:40–68 [Google Scholar]
  40. Marotzke J, Forster PM. 2015. Forcing, feedback and internal variability in global temperature trends. Nature 517:565–70 [Google Scholar]
  41. Matsuno T. 1966. Quasi-geostrophic motions in equatorial areas. J. Meteorol. Soc. Jpn. 2:25–43 [Google Scholar]
  42. McWilliams JC. 1977. A note on a consistent quasi-geostrophic model in a multiple connected domain. Dyn. Atmos. Oceans 1:427–41 [Google Scholar]
  43. Mitchell JM. 1976. An overview of climate variability and its causal mechanisms. Quat. Res. 6:481–93 [Google Scholar]
  44. Molemaker MJ, McWilliams JC. 2012. The bifurcation structure of decadal thermohaline oscillations. Geophys. Astrophys. Fluid Dyn. 106:1–21 [Google Scholar]
  45. Moore AM, Perez CL, Zvala-Garay J. 2002. A non-normal view of the wind-driven ocean circulation. J. Phys. Oceanogr. 32:2681–705 [Google Scholar]
  46. Moore DW. 1968. Planetary-Gravity Waves in an Equatorial Ocean Cambridge, MA: Harvard Univ. Press
  47. Mu M, Duan W. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process. Geophys. 2003:493–501 [Google Scholar]
  48. Munk W. 1950. On the wind-driven ocean circulation. J. Meteorol. 7:79–93 [Google Scholar]
  49. Neelin J. 2011. Climate Change and Climate Modeling Cambridge, UK: Cambridge Univ. Press
  50. Neelin J, Battisti DS, Hirst AC, Jin FF, Wakata Y. et al. 1998. ENSO theory. J. Geophys. Res. 103:14261–90 [Google Scholar]
  51. Neelin J, Jin FF. 1993. Modes of interannual tropical ocean-atmosphere interaction—a unified view. II: Analytical results in the weak-coupling limit. J. Atmos. Sci. 50:3504–22 [Google Scholar]
  52. Neelin J, Latif M, Jin FF. 1994. Dynamics of coupled ocean-atmosphere models: the tropical problem. Annu. Rev. Fluid Mech. 26:617–59 [Google Scholar]
  53. Pedlosky J. 1987. Geophysical Fluid Dynamics Berlin: Springer-Verlag, 2nd ed..
  54. Pierini S. 2006. A Kuroshio Extension system model study: decadal chaotic self-sustained oscillations. J. Phys. Oceanogr. 36:1605–20 [Google Scholar]
  55. Pierini S. 2008. On the crucial role of basin geometry in double-gyre models of the Kuroshio Extension. J. Phys. Oceanogr. 38:1327–33 [Google Scholar]
  56. Rayner NA. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108:4407 [Google Scholar]
  57. Schmeits MJ, Dijkstra HA. 2001. Bimodality of the Kuroshio and the Gulf Stream. J. Phys. Oceanogr. 31:2971–85 [Google Scholar]
  58. Schmid PJ. 2007. Nonmodal stability theory. Annu. Rev. Fluid Mech. 39:129–62 [Google Scholar]
  59. Sevellec F, Huck T, Ben Jelloul M. 2006. On the mechanism of centennial thermohaline oscillations. J. Mar. Res. 64:355–92 [Google Scholar]
  60. Sevellec F, Huck T, Ben Jelloul M, Vialard J. 2009. Nonnormal multidecadal response of the thermohaline circulation induced by optimal surface salinity perturbations. J. Phys. Oceanogr. 39:852–72 [Google Scholar]
  61. Sheremet VA, Ierley GR, Kamenkovich VM. 1997. Eigenanalysis of the two-dimensional wind-driven ocean circulation problem. J. Mar. Res. 55:57–92 [Google Scholar]
  62. Simonnet E, Dijkstra HA. 2002. Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation. J. Phys. Oceanogr. 32:1747–62 [Google Scholar]
  63. Simonnet E, Dijkstra HA, Ghil M. 2005. Homoclinic bifurcations in the quasi-geostrophic double-gyre circulation. J. Mar. Res. 63:931–56 [Google Scholar]
  64. Spydell M, Cessi P. 2003. Baroclinic modes in a two-layer basin. J. Phys. Oceanogr. 33:610–22 [Google Scholar]
  65. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK. et al. 2013. Climate change 2013: the physical science basis Tech. Rep., IPCC, Bern, Switz.
  66. Stommel H. 1948. The westward intensification of wind-driven ocean currents. Trans. Am. Geophys. Union 29:202–6 [Google Scholar]
  67. Strogatz SH. 1994. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Reading, MA: Perseus
  68. Sugiyama K, Ni R, Stevens R, Chan T, Zhou SQ. et al. 2010. Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105:034503 [Google Scholar]
  69. Sverdrup HU. 1947. Wind-driven currents in a baroclinic ocean with application to the equatorial current in the eastern Pacific. PNAS 33:318–26 [Google Scholar]
  70. Te Raa LA, Dijkstra HA. 2002. Instability of the thermohaline ocean circulation on interdecadal time scales. J. Phys. Oceanogr. 32:138–60 [Google Scholar]
  71. Te Raa LA, Dijkstra HA. 2003. Modes of internal thermohaline variability in a single-hemispheric ocean basin. J. Mar. Res. 61:491–516 [Google Scholar]
  72. van Oldenborgh GJ, te Raa LA, Dijkstra HA, Philip SY. 2009. Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean. Ocean Sci. 5:293–301 [Google Scholar]
  73. Victor DG, Kennel CF. 2014. Climate policy: Ditch the 2°C warming goal. Nature 514:30–31 [Google Scholar]
  74. von der Heydt A, Dijkstra HA. 2007. Localization of multidecadal variability: I. Cross equatorial transport and interbasin exchange. J. Phys. Oceanogr. 37:2401–14 [Google Scholar]
  75. Weijer W. 2008. Normal modes of the Mascarene Basin. Deep-Sea Res. I 55:128–36 [Google Scholar]
  76. Weijer W. 2010. An almost-free barotropic mode in the Australian-Antarctic Basin. Geophys. Res. Lett. 37:L10602 [Google Scholar]
  77. Weijer W. 2012. Modal variability in the Southeast Pacific Basin: energetics of the 2009 event. Deep-Sea Res. II 25:3–11 [Google Scholar]
  78. Weijer W, Dijkstra HA. 2003. Multiple oscillatory modes of the global ocean circulation. J. Phys. Oceanogr. 33:2197–213 [Google Scholar]
  79. Weijer W, Gille ST, Vivier F. 2009. Modal decay in the Australia-Antarctic Basin. J. Phys. Oceanogr. 39:2893–909 [Google Scholar]
  80. Weijer W, Muñoz E, Schneider N, Primeau F. 2013. Pacific decadal variability: paced by Rossby basin modes?. J. Clim. 26:1445–56 [Google Scholar]
  81. Weijer W, Vivier F, Gille ST, Dijkstra HA. 2007a. Multiple oscillatory modes of the Argentine Basin. Part I: statistical analysis. J. Phys. Oceanogr. 37:2855–68 [Google Scholar]
  82. Weijer W, Vivier F, Gille ST, Dijkstra HA. 2007b. Multiple oscillatory modes of the Argentine Basin. Part II: the spectral origin of basin modes. J. Phys. Oceanogr. 37:2869–81 [Google Scholar]
  83. Wolfe CL, Samelson RM. 2007. An efficient method for recovering Lyapunov vectors from singular vectors. Tellus A 59:355–66 [Google Scholar]
  84. Zanna L, Heimbach P, Moore AM, Tziperman E. 2012. Optimal excitation of interannual Atlantic meridional overturning circulation variability. J. Clim. 24:413–27 [Google Scholar]
  85. Zebiak SE, Cane MA. 1987. A model El Niño-Southern Oscillation. Mon. Weather Rev. 115:2262–78 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error