1932

Abstract

Sex, as well as meiotic recombination between homologous chromosomes, is nearly ubiquitous among eukaryotes. In those species that use it, recombination is important for chromosome segregation during gamete production, and thus for fertility. Strikingly, although in most species only one crossover event per chromosome is required to ensure proper segregation, recombination rates vary considerably above this minimum and show variation within and among species. However, whether this variation in recombination is adaptive or neutral and what might shape it remain unclear. Empirical studies and theory support the idea that recombination is generally beneficial but can also have costs. Here, we review variation in genome-wide recombination rates, explore what might cause this, and discuss what is known about its mechanistic basis. We end by discussing the environmental sensitivity of meiosis and recombination rates, how these features may relate to adaptation, and their implications for a broader understanding of recombination rate evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-021721-033821
2021-11-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-021721-033821.html?itemId=/content/journals/10.1146/annurev-genet-021721-033821&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Acquaviva L, Székvölgyi L, Dichtl B, Dichtl BS, de La Roche Saint André C et al. 2013. The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 339:215–18
    [Google Scholar]
  2. 2. 
    Aggarwal DD, Rybnikov S, Cohen I, Frenkel Z, Rashkovetsky E et al. 2019. Desiccation-induced changes in recombination rate and crossover interference in Drosophila melanogaster: evidence for fitness-dependent plasticity. Genetica 147:291–302
    [Google Scholar]
  3. 3. 
    Agrawal AF, Hadany L, Otto SP. 2005. The evolution of plastic recombination. Genetics 171:803–12
    [Google Scholar]
  4. 4. 
    Anderson JA, Gilliland WD, Langley CH. 2009. Molecular population genetics and evolution of Drosophila meiosis genes. Genetics 181:177–85
    [Google Scholar]
  5. 5. 
    Arbeithuber B, Betancourt AJ, Ebner T, Tiemann-Boege I 2015. Crossovers are associated with mutation and biased gene conversion at recombination hotspots. PNAS 112:2109–14
    [Google Scholar]
  6. 6. 
    Barth S, Melchinger AE, Devezi-Savula B, Lübberstedt T. 2001. Influence of genetic background and heterozygosity on meiotic recombination in Arabidopsis thaliana. Genome 44:971–78
    [Google Scholar]
  7. 7. 
    Barton NH. 1995. A general model for the evolution of recombination. Genet. Res. 65:123–45
    [Google Scholar]
  8. 8. 
    Barton NH. 2009. Why sex and recombination?. Cold Spring Harb. Symp. Quant. Biol. 74:187–95
    [Google Scholar]
  9. 9. 
    Barton NH, Charlesworth B. 1998. Why sex and recombination?. Science 281:1986–90
    [Google Scholar]
  10. 10. 
    Benavente E, Sybenga J. 2004. The relation between pairing preference and chiasma frequency in tetrasomics of rye. Genome 47:122–33
    [Google Scholar]
  11. 11. 
    Betancourt AJ, Welch JJ, Charlesworth B. 2009. Reduced effectiveness of selection caused by a lack of recombination. Curr. Biol. 19:655–60
    [Google Scholar]
  12. 12. 
    Blackwell AR, Dluzewska J, Szymanska-Lejman M, Desjardins S, Tock AJ et al. 2020. MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis. EMBO J 39:e104858
    [Google Scholar]
  13. 13. 
    Bogdanov YF, Grishaeva TM, Dadashev SY. 2007. Similarity of the domain structure of proteins as a basis for the conservation of meiosis. Int. Rev. Cytol. 257:83–142
    [Google Scholar]
  14. 14. 
    Bohutínská M, Handrick V, Yant L, Schmickl R, Kolář F et al. 2021. De novo mutation and rapid protein (co-)evolution during meiotic adaptation in Arabidopsisarenosa. Mol. Biol. Evol. 38:1980–94
    [Google Scholar]
  15. 15. 
    Bomblies K, Higgins JD, Yant L. 2015. Meiosis evolves: adaptation to external and internal environments. New Phytol 208:306–23
    [Google Scholar]
  16. 16. 
    Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N. 2016. The challenge of evolving stable polyploidy: Could an increase in “crossover interference distance” play a central role?. Chromosoma 125:287–300
    [Google Scholar]
  17. 17. 
    Borde V, Robine N, Lin W, Bonfils S, Géli V, Nicolas A 2009. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28:99–111
    [Google Scholar]
  18. 18. 
    Borner GV, Kleckner N, Hunter N. 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45
    [Google Scholar]
  19. 19. 
    Boulton A, Myers RS, Redfield RJ 1997. The hotspot conversion paradox and the evolution of meiotic recombination. PNAS 94:8058–63
    [Google Scholar]
  20. 20. 
    Brachet E, Sommermeyer V, Borde V. 2012. Interplay between modifications of chromatin and meiotic recombination hotspots. Biol. Cell 104:51–69
    [Google Scholar]
  21. 21. 
    Brand CL, Wright L, Presgraves DC. 2019. Positive selection and functional divergence at meiosis genes that mediate crossing over across the Drosophila phylogeny. G3:9320111
    [Google Scholar]
  22. 22. 
    Brandvain Y, Coop G. 2012. Scrambling eggs: meiotic drive and the evolution of female recombination rates. Genetics 190:709–23
    [Google Scholar]
  23. 23. 
    Brockhurst MA, Chapman T, King KC, Mank JE, Paterson S, Hurst GD. 2014. Running with the Red Queen: the role of biotic conflicts in evolution. Proc. R. Soc. B 281:20141382
    [Google Scholar]
  24. 24. 
    Buard J, Barthés P, Grey C, de Massy B. 2009. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J 28:2616–24
    [Google Scholar]
  25. 25. 
    Buckler ES, Phelps-Durr TL, Buckler CSK, Dawe RK, Doebley JF, Holtsford TP. 1999. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153:415–26
    [Google Scholar]
  26. 26. 
    Burt A, Trivers R. 2006. Genes in Conflict Cambridge, MA: Harvard Univ. Press
  27. 27. 
    Buss ME, Henderson SA. 1971. The induction of orientational instability and bivalent interlocking at meiosis. Chromosoma 35:153–83
    [Google Scholar]
  28. 28. 
    Buss ME, Henderson SA. 1988. The effects of elevated temperature on chiasma formation in Locustsmigratoria. Chromosoma 97:235–46
    [Google Scholar]
  29. 29. 
    Campos JL, Halligan DL, Haddrill PR, Charlesworth B. 2014. The relation between recombination rate and patterns of molecular evolution and variation in Drosophila melanogaster. Mol. Biol. Evol. 31:1010–28
    [Google Scholar]
  30. 30. 
    Charlesworth B. 1993. The evolution of sex and recombination in a varying environment. J. Hered. 84:345–50
    [Google Scholar]
  31. 31. 
    Charlesworth B, Barton NH. 1996. Recombination load associated with selection for increased recombination. Genet. Res. 67:27–41
    [Google Scholar]
  32. 32. 
    Charlesworth D. 2017. Evolution of recombination rates between sex chromosomes. Philos. Trans. R. Soc. B 372:20160456
    [Google Scholar]
  33. 33. 
    Chelysheva L, Vezon D, Chambon A, Gendrot G, Pereira L et al. 2012. The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLOS Genet 8:e1002799
    [Google Scholar]
  34. 34. 
    Chevin LM, Hospital F. 2006. The hitchhiking effect of an autosomal meiotic drive gene. Genetics 173:1829–32
    [Google Scholar]
  35. 35. 
    Choi K, Zhao X, Kelly KA, Venn O, Higgins JD et al. 2013. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat. Genet. 45:1327–36
    [Google Scholar]
  36. 36. 
    Chowdhury R, Bois PR, Feingold E, Sherman SL, Cheung VG. 2009. Genetic analysis of variation in human meiotic recombination. PLOS Genet 5:e1000648
    [Google Scholar]
  37. 37. 
    Cutter AD, Payseur BA. 2013. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat. Rev. Genet. 14:262–74
    [Google Scholar]
  38. 38. 
    Dapper AL, Payseur BA. 2017. Connecting theory and data to understand recombination rate evolution. Philos. Trans. R. Soc. B 372:20160469
    [Google Scholar]
  39. 39. 
    Dapper AL, Payseur BA. 2019. Molecular evolution of the meiotic recombination pathway in mammals. Evolution 73:2368–89
    [Google Scholar]
  40. 40. 
    De Storme N, Copenhaver GP, Geelen D. 2012. Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol 160:1808–26
    [Google Scholar]
  41. 41. 
    De Storme N, Geelen D. 2014. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ 37:1–18
    [Google Scholar]
  42. 42. 
    Desai A, Chee PW, Rong J, May OL, Paterson AH. 2006. Chromosome structural changes in diploid and tetraploid A genomes of Gossypium. Genome 49:336–45
    [Google Scholar]
  43. 43. 
    Dixon JR, Gorkin DU, Ren B. 2016. Chromatin domains: the unit of chromosome organization. Mol. Cell 62:668–80
    [Google Scholar]
  44. 44. 
    Dreissig S, Maurer A, Sharma R, Milne L, Flavell AJ et al. 2020. Natural variation in meiotic recombination rate shapes introgression patterns in intraspecific hybrids between wild and domesticated barley. New Phytol 228:1852–63
    [Google Scholar]
  45. 45. 
    Dumont BL, Payseur BA. 2011. Genetic analysis of genome-scale recombination rate evolution in house mice. PLOS Genet 7:e1002116
    [Google Scholar]
  46. 46. 
    Dyer KA, Charlesworth B, Jaenike J 2007. Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. PNAS 104:1587–92
    [Google Scholar]
  47. 47. 
    Esch E, Szymaniak JM, Yates H, Pawlowski WP, Buckler ES. 2007. Using crossover breakpoints in recombinant inbred lines to identify quantitative trait loci controlling the global recombination frequency. Genetics 177:1851–58
    [Google Scholar]
  48. 48. 
    Feldman MW, Otto SP, Christiansen FB. 1996. Population genetic perspectives on the evolution of recombination. Annu. Rev. Genet. 30:261–95
    [Google Scholar]
  49. 49. 
    Felsenstein J. 1974. The evolutionary advantage of recombination. Genetics 78:737–56
    [Google Scholar]
  50. 50. 
    Fernandes JB, Séguéla-Arnaud M, Larchevêque C, Lloyd AH, Mercier R 2018. Unleashing meiotic crossovers in hybrid plants. PNAS 115:2431–36
    [Google Scholar]
  51. 51. 
    Fischer O, Schmid-Hempel P. 2005. Selection by parasites may increase host recombination frequency. Biol. Lett. 1:193–95
    [Google Scholar]
  52. 52. 
    Fishman L, Saunders A. 2008. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322:1559–62
    [Google Scholar]
  53. 53. 
    Gerton JL, Hawley RS. 2005. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6:477–87
    [Google Scholar]
  54. 54. 
    Goddard MR, Godfray HC, Burt A. 2005. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–40
    [Google Scholar]
  55. 55. 
    Golicz AA, Bhalla PL, Edwards D, Singh MB. 2020. Rice 3D chromatin structure correlates with sequence variation and meiotic recombination rate. Commun. Biol. 3:235
    [Google Scholar]
  56. 56. 
    Gorlov I, Schuler L, Bunger L, Borodin P. 1992. Chiasma frequency in strains of mice selected for litter size and for high body weight. Theor. Appl. Genet. 84:640–42
    [Google Scholar]
  57. 57. 
    Grant V. 1952. Cytogenetics of the hybrid Giliamillefoliata × achilleaefolia. I. Variations in meiosis and polyploidy rate as affected by nutritional and genetic conditions. Chromosoma 5:372–90
    [Google Scholar]
  58. 58. 
    Guirouilh-Barbat J, Lambert S, Bertrand P, Lopez BS. 2014. Is homologous recombination really an error-free process?. Front. Genet. 5:175
    [Google Scholar]
  59. 59. 
    Hadany L, Beker T. 2003. On the evolutionary advantage of fitness-associated recombination. Genetics 165:2167–79
    [Google Scholar]
  60. 60. 
    Haenel Q, Laurentino TG, Roesti M, Berner D. 2018. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol. Ecol. 27:2477–97
    [Google Scholar]
  61. 61. 
    Haig D, Grafen A. 1991. Genetic scrambling as a defence against meiotic drive. J. Theor. Biol. 153:531–58
    [Google Scholar]
  62. 62. 
    Halldorsson BV, Palsson G, Stefansson OA, Jonsson H, Hardarson MT et al. 2019. Characterizing mutagenic effects of recombination through a sequence-level genetic map. Science 363:eaau1043
    [Google Scholar]
  63. 63. 
    Hamilton WD, Axelrod R, Tanese R 1990. Sexual reproduction as an adaptation to resist parasites. PNAS 87:3566–73
    [Google Scholar]
  64. 64. 
    Henry IM, Dilkes BP, Tyagi A, Gao J, Christensen B, Comai L. 2014. The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. Plant Cell 26:181–94
    [Google Scholar]
  65. 65. 
    Hiatt EN, Dawe RK. 2003. Four loci on abnormal chromosome 10 contribute to meiotic drive in maize. Genetics 164:699–709
    [Google Scholar]
  66. 66. 
    Hickey DA, Golding GB. 2018. The advantage of recombination when selection is acting at many genetic loci. J. Theor. Biol. 442:123–28
    [Google Scholar]
  67. 67. 
    Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8:269–94
    [Google Scholar]
  68. 68. 
    Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K. 2012. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsisarenosa. PLOS Genet 8:e1003093
    [Google Scholar]
  69. 69. 
    Hunter N. 2015. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7:a016618
    [Google Scholar]
  70. 70. 
    Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO et al. 2003. PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassicanapus) haploids. Genetics 164:645–53
    [Google Scholar]
  71. 71. 
    Johnston SE, Berenos C, Slate J, Pemberton JM. 2016. Conserved genetic architecture underlying individual recombination rate variation in a wild population of Soay sheep (Ovisaries). Genetics 203:583–98
    [Google Scholar]
  72. 72. 
    Johnston SE, Huisman J, Pemberton JM 2018. A genomic region containing REC8 and RNF212B is associated with individual recombination rate variation in a wild population of red deer (Cervuselaphus). G3 8:2265–76
    [Google Scholar]
  73. 73. 
    Jones GH, Franklin FC. 2006. Meiotic crossing-over: obligation and interference. Cell 126:246–48
    [Google Scholar]
  74. 74. 
    Kadri NK, Harland C, Faux P, Cambisano N, Karim L et al. 2016. Coding and noncoding variants in HFM1, MLH3, MSH4, MSH5, RNF212, and RNF212B affect recombination rate in cattle. Genome Res 26:1323–32
    [Google Scholar]
  75. 75. 
    Keightley PD, Otto SP. 2006. Interference among deleterious mutations favours sex and recombination in finite populations. Nature 443:89–92
    [Google Scholar]
  76. 76. 
    Kent TV, Uzunović J, Wright SI. 2017. Coevolution between transposable elements and recombination. Philos. Trans. R. Soc. B 372:20160458
    [Google Scholar]
  77. 77. 
    Kleckner N, Storlazzi A, Zickler D. 2003. Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet 19:623–28
    [Google Scholar]
  78. 78. 
    Kohl KP, Jones CD, Sekelsky J. 2012. Evolution of an MCM complex in flies that promotes meiotic crossovers by blocking BLM helicase. Science 338:1363–65
    [Google Scholar]
  79. 79. 
    Kong A, Thorleifsson G, Frigge ML, Masson G, Gudbjartsson DF et al. 2014. Common and low-frequency variants associated with genome-wide recombination rate. Nat. Genet. 46:11–16
    [Google Scholar]
  80. 80. 
    Kong A, Thorleifsson G, Stefansson H, Masson G, Helgason A et al. 2008. Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science 319:1398–401
    [Google Scholar]
  81. 81. 
    Korol AB, Iliadi KG. 1994. Increased recombination frequencies resulting from directional selection for geotaxis in Drosophila. Heredity 72:64–68
    [Google Scholar]
  82. 82. 
    Kumar R, Bourbon HM, de Massy B. 2010. Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes Dev 24:1266–80
    [Google Scholar]
  83. 83. 
    Law CN. 1963. An effect of potassium on chiasma frequency and recombination. Genetica 33:313–29
    [Google Scholar]
  84. 84. 
    Lawrence EJ, Gao H, Tock AJ, Lambing C, Blackwell AR et al. 2019. Natural variation in TBP-ASSOCIATED FACTOR 4b controls meiotic crossover and germline transcription in Arabidopsis. Curr. Biol. 29:2676–86.e3
    [Google Scholar]
  85. 85. 
    Lee JY, Terakawa T, Qi Z, Steinfeld JB, Redding S et al. 2015. Base triplet stepping by the Rad51/RecA family of recombinases. Science 349:977–81
    [Google Scholar]
  86. 86. 
    Leflon M, Grandont L, Eber F, Huteau V, Coriton O et al. 2010. Crossovers get a boost in Brassica allotriploid and allotetraploid hybrids. Plant Cell 22:2253–64
    [Google Scholar]
  87. 87. 
    Lichten M, de Massy B. 2011. The impressionistic landscape of meiotic recombination. Cell 147:267–70
    [Google Scholar]
  88. 88. 
    Lloyd A, Morgan C, Franklin FCH, Bomblies K. 2018. Plasticity of meiotic recombination rates in response to temperature in Arabidopsis. Genetics 208:1409–20
    [Google Scholar]
  89. 89. 
    Lynn A, Koehler KE, Judis L, Chan ER, Cherry JP et al. 2002. Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science 296:2222–25
    [Google Scholar]
  90. 90. 
    McDonald MJ, Rice DP, Desai MM. 2016. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 531:233–36
    [Google Scholar]
  91. 91. 
    McKim KS, Dahmus JB, Hawley RS. 1996. Cloning of the Drosophila melanogaster meiotic recombination gene mei-218: a genetic and molecular analysis of interval 15E. Genetics 144:215–28
    [Google Scholar]
  92. 92. 
    Mercier R, Grelon M. 2008. Meiosis in plants: ten years of gene discovery. Cytogenet. Genome Res. 120:281–90
    [Google Scholar]
  93. 93. 
    Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. 2015. The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66:297–327
    [Google Scholar]
  94. 94. 
    Modliszewski JL, Wang H, Albright AR, Lewis SM, Bennett AR et al. 2018. Elevated temperature increases meiotic crossover frequency via the interfering (Type I) pathway in Arabidopsis thaliana. PLOS Genet 14:e1007384
    [Google Scholar]
  95. 95. 
    Morgan C, Zhang H, Henry CE, Franklin FCH, Bomblies K 2020. Derived alleles of two axis proteins affect meiotic traits in autotetraploid Arabidopsisarenosa. PNAS 117:8980–88
    [Google Scholar]
  96. 96. 
    Morgan CH, Zhang H, Bomblies K. 2017. Are the effects of elevated temperature on meiotic recombination and thermotolerance linked via the axis and synaptonemal complex?. Philos. Trans. R. Soc. B 372:20160470
    [Google Scholar]
  97. 97. 
    Mukiza TO, Protacio RU, Davidson MK, Steiner WW, Wahls WP. 2019. Diverse DNA sequence motifs activate meiotic recombination hotspots through a common chromatin remodeling pathway. Genetics 213:789–803
    [Google Scholar]
  98. 98. 
    Nolte DJ. 1968. The chiasma-inducing pheromone of locusts. Chromosoma 23:346–58
    [Google Scholar]
  99. 99. 
    Nuckolls NL, Bravo Núñez MA, Eickbush MT, Young JM, Lange JJ et al. 2017. wtf genes are prolific dual poison-antidote meiotic drivers. eLife 6:e26033
    [Google Scholar]
  100. 100. 
    Okasha S. 2001. Why won't the group selection controversy go away?. Br. J. Phil. Sci. 52:25–50
    [Google Scholar]
  101. 101. 
    Otto SP, Barton NH. 2001. Selection for recombination in small populations. Evolution 55:1921–31
    [Google Scholar]
  102. 102. 
    Otto SP, Lenormand T. 2002. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3:252–61
    [Google Scholar]
  103. 103. 
    Patel L, Kang R, Rosenberg SC, Qiu Y, Raviram R et al. 2019. Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nat. Struct. Mol. Biol. 26:164–74
    [Google Scholar]
  104. 104. 
    Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid O 2011. Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biol 9:24
    [Google Scholar]
  105. 105. 
    Perkins AT, Das TM, Panzera LC, Bickel SE 2016. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. PNAS 113:E6823–30
    [Google Scholar]
  106. 106. 
    Petit M, Astruc JM, Sarry J, Drouilhet L, Fabre S et al. 2017. Variation in recombination rate and its genetic determinism in sheep populations. Genetics 207:767–84
    [Google Scholar]
  107. 107. 
    Plough HH. 1917. The effect of temperature on linkage in the second chromosome of Drosophila. PNAS 3:553–55
    [Google Scholar]
  108. 108. 
    Presgraves DC. 2005. Recombination enhances protein adaptation in Drosophila melanogaster. Curr. Biol. 15:1651–56
    [Google Scholar]
  109. 109. 
    Ramsey J, Schemske D. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29:467–501
    [Google Scholar]
  110. 110. 
    Reddy KC, Villeneuve AM. 2004. C.elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell 118:439–52
    [Google Scholar]
  111. 111. 
    Reeve J, Ortiz-Barrientos D, Engelstädter J. 2016. The evolution of recombination rates in finite populations during ecological speciation. Proc. R. Soc. B 283:20161243
    [Google Scholar]
  112. 112. 
    Reynolds A, Qiao H, Yang Y, Chen JK, Jackson N et al. 2013. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat. Genet. 45:269–78
    [Google Scholar]
  113. 113. 
    Rhoades MM, Dempsey E. 1966. The effect of abnormal chromosome 10 on preferential segregation and crossing over in maize. Genetics 53:989–1020
    [Google Scholar]
  114. 114. 
    Rice WR. 2002. Experimental tests of the adaptive significance of sexual recombination. Nat. Rev. Genet. 3:241–51
    [Google Scholar]
  115. 115. 
    Riley R, Chapman V. 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–15
    [Google Scholar]
  116. 116. 
    Ritz KR, Noor MAF, Singh ND. 2017. Variation in recombination rate: adaptive or not?. Trends Genet 33:364–74
    [Google Scholar]
  117. 117. 
    Rodgers-Melnick E, Bradbury PJ, Elshire RJ, Glaubitz JC, Acharya CB et al. 2015. Recombination in diverse maize is stable, predictable, and associated with genetic load. PNAS 112:3823–28
    [Google Scholar]
  118. 118. 
    Rog O, Köhler S, Dernburg AF 2017. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 6:e21455
    [Google Scholar]
  119. 119. 
    Ross-Ibarra J. 2004. The evolution of recombination under domestication: a test of two hypotheses. Am. Nat. 163:105–12
    [Google Scholar]
  120. 120. 
    Ruiz-Herrera A, Vozdova M, Fernández J, Sebestova H, Capilla L et al. 2017. Recombination correlates with synaptonemal complex length and chromatin loop size in bovids—insights into mammalian meiotic chromosomal organization. Chromosoma 126:615–31
    [Google Scholar]
  121. 121. 
    Rybnikov SR, Frenkel ZM, Korol AB. 2017. What drives the evolution of condition-dependent recombination in diploids? Some insights from simulation modelling. Philos. Trans. R. Soc. B 372:20160460
    [Google Scholar]
  122. 122. 
    Rybnikov SR, Frenkel ZM, Korol AB. 2020. The evolutionary advantage of fitness-dependent recombination in diploids: a deterministic mutation-selection balance model. Ecol. Evol. 10:2074–84
    [Google Scholar]
  123. 123. 
    Salathe M, Kouyos RD, Regoes RR, Bonhoeffer S. 2008. Rapid parasite adaptation drives selection for high recombination rates. Evolution 62:295–300
    [Google Scholar]
  124. 124. 
    Samuk K, Manzano-Winkler B, Ritz KR, Noor MAF. 2020. Natural selection shapes variation in genome-wide recombination rate in Drosophilapseudoobscura. Curr. Biol. 30:1517–28.e6
    [Google Scholar]
  125. 125. 
    Sandor C, Li W, Coppieters W, Druet T, Charlier C, Georges M. 2012. Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLOS Genet 8:e1002854
    [Google Scholar]
  126. 126. 
    Serra H, Lambing C, Griffin CH, Topp SD, Nageswaran DC et al. 2018. Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. PNAS 115:2437–42
    [Google Scholar]
  127. 127. 
    Shaw DD. 1972. Genetic and environmental components of chiasma control. II. The response to selection in Schistocerca. Chromosoma 37:297–308
    [Google Scholar]
  128. 128. 
    Sidhu GK, Warzecha T, Pawlowski WP. 2017. Evolution of meiotic recombination genes in maize and teosinte. BMC Genom 18:106
    [Google Scholar]
  129. 129. 
    Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos. Trans. R. Soc. B 372:20160455
    [Google Scholar]
  130. 130. 
    Storey AJ, Wang HP, Protacio RU, Davidson MK, Tackett AJ, Wahls WP. 2018. Chromatin-mediated regulators of meiotic recombination revealed by proteomics of a recombination hotspot. Epigenetics Chromatin 11:64
    [Google Scholar]
  131. 131. 
    Tock AJ, Henderson IR. 2018. Hotspots for initiation of meiotic recombination. Front. Genet. 9:521
    [Google Scholar]
  132. 132. 
    Turner TL, Levine MT, Eckert ML, Begun DJ. 2008. Genomic analysis of adaptive differentiation in Drosophila melanogaster. Genetics 179:455–73
    [Google Scholar]
  133. 133. 
    Ubeda F, Russell TW, Jansen VAA. 2019. PRDM9 and the evolution of recombination hotspots. Theor. Popul. Biol. 126:19–32
    [Google Scholar]
  134. 134. 
    Underwood CJ, Choi K, Lambing C, Zhao X, Serra H et al. 2018. Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res 28:519–31
    [Google Scholar]
  135. 135. 
    Villeneuve AM, Hillers KJ. 2001. Whence meiosis?. Cell 106:647–50
    [Google Scholar]
  136. 136. 
    Wang RJ, Dumont BL, Jing P, Payseur BA. 2019. A first genetic portrait of synaptonemal complex variation. PLOS Genet 15:e1008337
    [Google Scholar]
  137. 137. 
    Wang RJ, Gray MM, Parmenter MD, Broman KW, Payseur BA. 2017. Recombination rate variation in mice from an isolated island. Mol. Ecol. 26:457–70
    [Google Scholar]
  138. 138. 
    Wang S, Veller C, Sun F, Ruiz-Herrera A, Shang Y et al. 2019. Per-nucleus crossover covariation and implications for evolution. Cell 177:326–38.e16
    [Google Scholar]
  139. 139. 
    Webster MT, Hurst LD. 2012. Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends Genet 28:101–9
    [Google Scholar]
  140. 140. 
    Wright KM, Arnold B, Xue K, Surinova M, O'Connell J, Bomblies K. 2015. Selection on meiosis genes in diploid and tetraploid Arabidopsisarenosa. Mol. Biol. Evol. 32:944–55
    [Google Scholar]
  141. 141. 
    Wu TC, Lichten M. 1994. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–18
    [Google Scholar]
  142. 142. 
    Xu Z, Song Z, Li G, Tu H, Liu W et al. 2016. H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation. Nucleic Acids Res 44:9681–97
    [Google Scholar]
  143. 143. 
    Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD et al. 2013. Meiotic adaptation to genome duplication in Arabidopsisarenosa. Curr. Biol. 23:2151–56
    [Google Scholar]
  144. 144. 
    Yelina NE, Choi K, Chelysheva L, Macaulay M, de Snoo B et al. 2012. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLOS Genet 8:e1002844
    [Google Scholar]
  145. 145. 
    Zamudio N, Barau J, Teissandier A, Walter M, Borsos M et al. 2015. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev 29:1256–70
    [Google Scholar]
  146. 146. 
    Zickler D, Kleckner N. 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33:603–754
    [Google Scholar]
  147. 147. 
    Zickler D, Kleckner N. 2015. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7:a016626
    [Google Scholar]
  148. 148. 
    Ziolkowski PA, Berchowitz LE, Lambing C, Yelina NE, Zhao X et al. 2015. Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis. eLife 4:e03708
    [Google Scholar]
  149. 149. 
    Ziolkowski PA, Underwood CJ, Lambing C, Martinez-Garcia M, Lawrence EJ et al. 2017. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev 31:306–17
    [Google Scholar]
/content/journals/10.1146/annurev-genet-021721-033821
Loading
/content/journals/10.1146/annurev-genet-021721-033821
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error