1932

Abstract

Alleles that introgress between species can influence the evolutionary and ecological fate of species exposed to novel environments. Hybrid offspring of different species are often unfit, and yet it has long been argued that introgression can be a potent force in evolution, especially in plants. Over the last two decades, genomic data have increasingly provided evidence that introgression is a critically important source of genetic variation and that this additional variation can be useful in adaptive evolution of both animals and plants. Here, we review factors that influence the probability that foreign genetic variants provide long-term benefits (so-called adaptive introgression) and discuss their potential benefits. We find that introgression plays an important role in adaptive evolution, particularly when a species is far from its fitness optimum, such as when they expand their range or are subject to changing environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-021821-020805
2021-11-23
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-021821-020805.html?itemId=/content/journals/10.1146/annurev-genet-021821-020805&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE et al. 2013. Hybridization and speciation. J. Evol. Biol. 26:229–46
    [Google Scholar]
  2. 2. 
    Aeschbacher S, Selby JP, Willis JH, Coop G 2017. Population-genomic inference of the strength and timing of selection against gene flow. PNAS 114:7061–66
    [Google Scholar]
  3. 3. 
    Allendorf FW, Hohenlohe PA, Luikart G. 2010. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11:697–709
    [Google Scholar]
  4. 4. 
    Allendorf FW, Luikhart G. 2007. Conservation and the Genetics of Populations Malden, MA: Blackwell Publ.
    [Google Scholar]
  5. 5. 
    Anderson E 1953. Introgressive hybridization. Biol. Rev. 28:280–307
    [Google Scholar]
  6. 6. 
    Anderson E, Stebbins GL 1954. Hybridization as an evolutionary stimulus. Evolution 8:378–88
    [Google Scholar]
  7. 7. 
    Angert AL, Bontrager MG, Ågren J. 2020. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51:341–61
    [Google Scholar]
  8. 8. 
    Angert AL, Bradshaw HD, Schemske DW. 2008. Using experimental evolution to investigate geographic range limits in monkeyflowers. Evolution 62:2660–75
    [Google Scholar]
  9. 9. 
    Arias CF, Giraldo N, McMillan WO, Lamas G, Jiggins CD, Salazar C. 2017. A new subspecies in a Heliconius butterfly adaptive radiation (Lepidoptera: Nymphalidae). Zool. J. Linnean Soc. 180:805–18
    [Google Scholar]
  10. 10. 
    Arnold ML. 1992. Natural hybridization as an evolutionary process. Annu. Rev. Ecol. Syst. 23:237–61
    [Google Scholar]
  11. 11. 
    Arnold ML. 2004. Transfer and origin of adaptations through natural hybridization: Were Anderson and Stebbins right?. Plant Cell 16:562–70
    [Google Scholar]
  12. 12. 
    Arnold ML, Hodges SA. 1995. Are natural hybrids fit or unfit relative to their parents?. Trends Ecol. Evol. 10:67–71
    [Google Scholar]
  13. 13. 
    Arnold ML, Sapir Y, Martin NH. 2008. Genetic exchange and the origin of adaptations: prokaryotes to primates. Philos. Trans. R. Soc. B 363:2813–20
    [Google Scholar]
  14. 14. 
    Baack EJ, Rieseberg LH. 2007. A genomic view of introgression and hybrid speciation. Curr. Opin. Genet. Dev. 17:513–18
    [Google Scholar]
  15. 15. 
    Barton NH. 2001. The role of hybridization in evolution. Mol. Ecol. 10:551–68
    [Google Scholar]
  16. 16. 
    Barton NH. 2020. On the completion of speciation. Philos. Trans. R. Soc. B 375:20190530
    [Google Scholar]
  17. 17. 
    Bay RA, Taylor EB, Schluter D 2019. Parallel introgression and selection on introduced alleles in a native species. Mol. Ecol. 28:2802–13
    [Google Scholar]
  18. 18. 
    Begun DJ, Aquadro CF. 1992. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356:519–20
    [Google Scholar]
  19. 19. 
    Begun DJ, Aquadro CF. 1993. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature 365:548–50
    [Google Scholar]
  20. 20. 
    Benson WW. 1972. Natural selection for Müllerian mimicry in Heliconius erato in Costa Rica. Science 176:936–39
    [Google Scholar]
  21. 21. 
    Berg JJ, Coop G. 2014. A population genetic signal of polygenic adaptation. PLOS Genet 10:e1004412
    [Google Scholar]
  22. 22. 
    Blair C, Ané C. 2019. Phylogenetic trees and networks can serve as powerful and complementary approaches for analysis of genomic data. Syst. Biol. 69:593–601
    [Google Scholar]
  23. 23. 
    Blischak PD, Chifman J, Wolfe AD, Kubatko LS. 2018. HyDe: a python package for genome-scale hybridization detection. Syst. Biol. 67:821–29
    [Google Scholar]
  24. 24. 
    Buffon (Comte de) G-LL. 1753. Description de la partie du Cabinet qui a rapport à l'histoire naturelle du cheval. L'asne. Histoire Naturelle, Générale et Particuliére, avec la Description du Cabinet du Roy, Vol. 4377–403 Paris: Imprimerie royale
    [Google Scholar]
  25. 25. 
    Burri R. 2017. Interpreting differentiation landscapes in the light of long-term linked selection. Evol. Lett. 1:118–31
    [Google Scholar]
  26. 26. 
    Charlesworth B, Barton NH. 2018. The spread of an inversion with migration and selection. Genetics 208:377–82
    [Google Scholar]
  27. 27. 
    Coyne JA, Orr HA. 1989. Patterns of speciation in Drosophila. Evolution 43:362–81
    [Google Scholar]
  28. 28. 
    Coyne JA, Orr HA. 1997.. “ Patterns of speciation in Drosophila” revisited. Evolution 51:295–303
    [Google Scholar]
  29. 29. 
    Coyne JA, Orr HA. 2004. Speciation Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  30. 30. 
    Crow JF. 1948. Alternative hypotheses of hybrid vigor. Genetics 33:477–87
    [Google Scholar]
  31. 31. 
    Cutter AD, Payseur BA. 2013. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat. Rev. Genet. 14:262–74
    [Google Scholar]
  32. 32. 
    Dalquen D, Zhu T, Yang Z 2017. Maximum likelihood implementation of an isolation-with-migration model for three species. Syst. Biol. 66:379–98
    [Google Scholar]
  33. 33. 
    Darwin CR. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life London: John Murray
    [Google Scholar]
  34. 34. 
    Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A et al. (Heliconius Genome Consort.) 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98
    [Google Scholar]
  35. 35. 
    DeGiorgio M, Huber CD, Hubisz MJ, Hellmann I, Nielsen R 2016. SWEEPFINDER 2: increased sensitivity, robustness and flexibility. Bioinformatics 32:1895–97
    [Google Scholar]
  36. 36. 
    Dobzhansky T. 1937. Genetics and the Origin of Species New York: Columbia Univ. Press
    [Google Scholar]
  37. 37. 
    Drake JM. 2006. Heterosis, the catapult effect and establishment success of a colonizing bird. Biol. Lett. 2:304–7
    [Google Scholar]
  38. 38. 
    Eberlein C, Hénault M, Fijarczyk A, Charron G, Bouvier M et al. 2019. Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. Nat. Commun. 10:923
    [Google Scholar]
  39. 39. 
    Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J et al. 2019. Genomic architecture and introgression shape a butterfly radiation. Science 366:594–99
    [Google Scholar]
  40. 40. 
    Ellegren H. 2014. Genome sequencing and population genomics in non-model organisms. Trends Ecol. Evol. 29:51–63
    [Google Scholar]
  41. 41. 
    Elworth RAL, Ogilvie HA, Zhu J, Nakhleh L 2019. Advances in computational methods for phylogenetic networks in the presence of hybridization. Bioinformatics and Phylogenetics T Warnow 317–60 Cham, Switz.: Springer Nat.
    [Google Scholar]
  42. 42. 
    Field Y, Boyle EA, Telis N, Gao Z, Gaulton KJ et al. 2016. Detection of human adaptation during the past 2000 years. Science 354:760–64
    [Google Scholar]
  43. 43. 
    Figueiró HV, Li G, Trindade FJ, Assis J, Pais F et al. 2017. Genome-wide signatures of complex introgression and adaptive evolution in the big cats. Sci. Adv. 3:e1700299
    [Google Scholar]
  44. 44. 
    Fisher RA. 1930. The Genetical Theory of Natural Selection Oxford, UK: Clarendon Press
    [Google Scholar]
  45. 45. 
    Fitzpatrick BM, Johnson JR, Kump DK, Smith JJ, Voss SR, Shaffer HB. 2010. Rapid spread of invasive genes into a threatened native species. PNAS 107:3606–10
    [Google Scholar]
  46. 46. 
    Fitzpatrick SW, Bradburd GS, Kremer CT, Salerno PE, Angeloni LM, Funk WC. 2020. Genomic and fitness consequences of genetic rescue in wild populations. Curr. Biol. 30:517–22
    [Google Scholar]
  47. 47. 
    Flouri T, Jiao X, Rannala B, Yang Z 2019. A Bayesian implementation of the multispecies coalescent model with introgression for phylogenomic analysis. Mol. Biol. Evol. 37:1211–23
    [Google Scholar]
  48. 48. 
    Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE et al. 2015. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347:1258524
    [Google Scholar]
  49. 49. 
    Foote AD, Martin MD, Louis M, Pacheco G, Robertson KM et al. 2019. Killer whale genomes reveal a complex history of recurrent admixture and vicariance. Mol. Ecol. 28:3427–44
    [Google Scholar]
  50. 50. 
    Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K et al. 2011. Predicting the probability of outbreeding depression. Conserv. Biol. 25:465–75
    [Google Scholar]
  51. 51. 
    Giraldo N, Salazar C, Jiggins CD, Bermingham E, Linares M 2008. Two sisters in the same dress: Heliconius cryptic species. BMC Evol. Biol. 8:324
    [Google Scholar]
  52. 52. 
    Gompert Z, Buerkle CA. 2011. Bayesian estimation of genomic clines. Mol. Ecol. 20:2111–27
    [Google Scholar]
  53. 53. 
    Gompert Z, Lucas LK, Nice CC, Buerkle CA. 2013. Genome divergence and the genetic architecture of barriers to gene flow between Lycaeides idas and L. melissa. Evolution 67:2498–514
    [Google Scholar]
  54. 54. 
    Gourbière S, Mallet J 2010. Are species real? The shape of the species boundary with exponential failure, reinforcement, and the “missing snowball. .” Evolution 64:1–24
    [Google Scholar]
  55. 55. 
    Grant PR, Grant BR. 1992. Hybridization of bird species. Science 256:193–97
    [Google Scholar]
  56. 56. 
    Grant V. 1971. Plant Speciation New York: Columbia Univ. Press
    [Google Scholar]
  57. 57. 
    Green RE, Krause J, Briggs AW, Maricic T, Stenzel U et al. 2010. A draft sequence of the Neandertal genome. Science 328:710–22
    [Google Scholar]
  58. 58. 
    Hahn MW, Nakhleh L. 2016. Irrational exuberance for resolved species trees. Evolution 70:7–17
    [Google Scholar]
  59. 59. 
    Harris K, Nielsen R 2016. The genetic cost of Neanderthal introgression. Genetics 203:881–91
    [Google Scholar]
  60. 60. 
    Hartl DL, Clark AG. 2007. Principles of Population Genetics. Sunderland, MA: Sinauer. , 4th ed..
    [Google Scholar]
  61. 61. 
    Hausmann AE, Kuo C-Y, Freire M, Rueda-M N, Linares M et al. 2021. Light environment influences mating behaviours during the early stages of divergence in tropical butterflies. Proc. R. Soc. B 288:20210157
    [Google Scholar]
  62. 62. 
    Hawks J, Cochran G. 2006. Dynamics of adaptive introgression from archaic to modern humans. PalaeoAnthropology 2006:101–15
    [Google Scholar]
  63. 63. 
    Hey J. 2010. Isolation with migration models for more than two populations. Mol. Biol. Evol. 27:905–20
    [Google Scholar]
  64. 64. 
    Hibbins MS, Hahn MW. 2021. Phylogenomic approaches to detecting and characterizing introgression. EcoEvoRxiv uahd8. https://doi.org/10.32942/osf.io/uahd8
    [Crossref]
  65. 65. 
    Huxley TH. 1899. The origin of species (1860). Collected Essays, Vol. 2: Darwiniana22–79. London: Macmillan
    [Google Scholar]
  66. 66. 
    Jay P, Whibley A, Frézal L, de Cara MÁR, Nowell RW et al. 2018. Supergene evolution triggered by the introgression of a chromosomal inversion. Curr. Biol. 28:1839–45
    [Google Scholar]
  67. 67. 
    Johnson MS, Martsul A, Kryazhimskiy S, Desai MM 2019. Higher-fitness yeast genotypes are less robust to deleterious mutations. Science 366:490–93
    [Google Scholar]
  68. 68. 
    Jones MR, Mills LS, Alves PC, Callahan CM, Alves JM et al. 2018. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360:1355–58
    [Google Scholar]
  69. 69. 
    Jones MR, Mills LS, Jensen JD, Good JM. 2020. The origin and spread of locally adaptive seasonal camouflage in snowshoe hares. Am. Nat. 196:316–32
    [Google Scholar]
  70. 70. 
    Juric I, Aeschbacher S, Coop G 2016. The strength of selection against Neanderthal introgression. PLOS Genet 12:e1006340
    [Google Scholar]
  71. 71. 
    Kim BY, Huber CD, Lohmueller KE. 2018. Deleterious variation shapes the genomic landscape of introgression. PLOS Genet 14:e1007741
    [Google Scholar]
  72. 72. 
    Kim SC, Rieseberg LH. 1999. Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics 153:965–77
    [Google Scholar]
  73. 73. 
    Kim Y, Stephan W 2002. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 160:765–77
    [Google Scholar]
  74. 74. 
    Kirkpatrick M, Barton NH. 2006. Chromosome inversions, local adaptation and speciation. Genetics 173:419–34 Corrigendum 2018. Genetics 208:433
    [Google Scholar]
  75. 75. 
    Kozak KM, Joron M, McMillan WO, Jiggins CD. 2021. Rampant genome-wide admixture across the Heliconius radiation. Genome Biol. Evol 13:evab099
    [Google Scholar]
  76. 76. 
    Kryvokhyzha D. 2014. Whole-genome resequencing of Heliconius butterflies revolutionizes our view of the level of admixture between species MA Thesis Uppsala Univ. Uppsala, Swed:.
    [Google Scholar]
  77. 77. 
    Kubatko LS. 2009. Identifying hybridization events in the presence of coalescence via model selection. Syst. Biol. 58:478–88
    [Google Scholar]
  78. 78. 
    Kyriazis CC, Wayne RK, Lohmueller KE 2021. Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol. Lett. 5:33–47
    [Google Scholar]
  79. 79. 
    Lamichhaney S, Berglund J, Almen MS, Maqbool K, Grabherr M et al. 2015. Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature 518:371–75
    [Google Scholar]
  80. 80. 
    Langham GM. 2004. Specialized avian predators repeatedly attack novel colour morphs of Heliconius butterflies. Evolution 58:2783–87
    [Google Scholar]
  81. 81. 
    Leitwein M, Cayuela H, Ferchaud A-L, Normandeau É, Gagnaire P-A, Bernatchez L. 2019. The role of recombination on genome-wide patterns of local ancestry exemplified by supplemented brook charr populations. Mol. Ecol. 28:4755–69
    [Google Scholar]
  82. 82. 
    Leitwein M, Duranton M, Rougemont Q, Gagnaire P-A, Bernatchez L. 2020. Using haplotype information for conservation genomics. Trends Ecol. Evol. 35:245–58
    [Google Scholar]
  83. 83. 
    Li G, Figueiró HV, Eizirik E, Murphy WJ 2019. Recombination-aware phylogenomics reveals the structured genomic landscape of hybridizing cat species. Mol. Biol. Evol. 36:2111–26
    [Google Scholar]
  84. 84. 
    Lopes JS, Beaumont MA. 2010. ABC: A useful Bayesian tool for the analysis of population data. Infect. Genet. Evol. 10:825–32
    [Google Scholar]
  85. 85. 
    Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J et al. 2021. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590:438–44
    [Google Scholar]
  86. 86. 
    MacGuigan DJ, Near TJ. 2018. Phylogenomic signatures of ancient introgression in a rogue lineage of darters (Teleostei: Percidae). Syst. Biol. 68:329–46
    [Google Scholar]
  87. 87. 
    Maddison WP. 1997. Gene trees in species trees. Syst. Biol. 46:523–36
    [Google Scholar]
  88. 88. 
    Mailund T, Halager AE, Westergaard M, Dutheil JY, Munch K et al. 2012. A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species. PLOS Genet 8:e1003125
    [Google Scholar]
  89. 89. 
    Mallet J. 2005. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20:229–37
    [Google Scholar]
  90. 90. 
    Mallet J. 2007. Hybrid speciation. Nature 446:279–83
    [Google Scholar]
  91. 91. 
    Mallet J 2009. Rapid speciation, hybridization and adaptive radiation in the Heliconius melpomene group. Speciation and Patterns of Diversity RK Butlin, JR Bridle, D Schluter 177–94 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  92. 92. 
    Mallet J, Barton NH. 1989. Strong natural selection in a warning color hybrid zone. Evolution 43:421–31
    [Google Scholar]
  93. 93. 
    Mallet J, Beltrán M, Neukirchen W, Linares M 2007. Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evol. Biol. 7:28
    [Google Scholar]
  94. 94. 
    Mallet J, Besansky N, Hahn MW. 2016. How reticulated are species?. BioEssays 38:140–49
    [Google Scholar]
  95. 95. 
    Marques DA, Meier JI, Seehausen O. 2019. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34:531–44
    [Google Scholar]
  96. 96. 
    Martin SH, Davey JW, Salazar C, Jiggins CD. 2019. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLOS Biol 17:e2006288
    [Google Scholar]
  97. 97. 
    Matute DR, Butler IA, Turissini DA, Coyne JA. 2010. A test of the snowball theory for the rate of evolution of hybrid incompatibilities. Science 329:1518–21
    [Google Scholar]
  98. 98. 
    Mavárez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M. 2006. Speciation by hybridization in Heliconius butterflies. Nature 441:868–71
    [Google Scholar]
  99. 99. 
    Mavárez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M. 2021. Author correction: speciation by hybridization in Heliconius butterflies. Nature 592:E4–5
    [Google Scholar]
  100. 100. 
    Mayr E. 1963. Animal Species and Evolution Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  101. 101. 
    McClellan J, King M-C. 2010. Genetic heterogeneity in human disease. Cell 141:210–17
    [Google Scholar]
  102. 102. 
    McKelvey KS, Young MK, Wilcox TM, Bingham DM, Pilgrim KL, Schwartz MK. 2016. Patterns of hybridization among cutthroat trout and rainbow trout in northern Rocky Mountain streams. Ecol. Evol. 6:688–706
    [Google Scholar]
  103. 103. 
    Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O. 2017. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8:14363
    [Google Scholar]
  104. 104. 
    Meier JI, Marques DA, Wagner CE, Excoffier L, Seehausen O. 2018. Genomics of parallel ecological speciation in Lake Victoria cichlids. Mol. Biol. Evol. 35:1489–506
    [Google Scholar]
  105. 105. 
    Meier JI, Salazar PA, Kučka M, Davies RW, Dréau A et al. 2021. Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. PNAS 118:e2015005118
    [Google Scholar]
  106. 106. 
    Menon M, Bagley JC, Page GFM, Whipple AV, Schoettle AW et al. 2021. Adaptive evolution in a conifer hybrid zone is driven by a mosaic of recently introgressed and background genetic variants. Commun. Biol. 4:160
    [Google Scholar]
  107. 107. 
    Mérot C, Mavárez J, Evin A, Dasmahapatra KK, Mallet J et al. 2013. Genetic differentiation without mimicry shift in a pair of hybridizing Heliconius species (Lepidoptera: Nymphalidae). Biol. J. Linnean Soc. 109:830–47
    [Google Scholar]
  108. 108. 
    Moest M, Van Belleghem SM, James JE, Salazar C, Martin SH et al. 2020. Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. PLOS Biol 18:e3000597
    [Google Scholar]
  109. 109. 
    Moyle LC, Nakazato T. 2010. Hybrid incompatibility “snowballs” between Solanum species. Science 329:1521–23
    [Google Scholar]
  110. 110. 
    Muller HJ 1942. Isolating mechanisms, evolution and temperature. Biological Symposia, Vol. 6 T Dobzhansky 71–125 Lancaster, PA: Jacques Cattell Press
    [Google Scholar]
  111. 111. 
    Nachman MW, Payseur BA. 2012. Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Philos. Trans. R. Soc. B 367:409–21
    [Google Scholar]
  112. 112. 
    Nieto Feliner G, Alvarez I, Fuertes-Aguilar J, Heuertz M, Marques I et al. 2017. Is homoploid hybrid speciation that rare? An empiricist's view. Heredity 118:513–16
    [Google Scholar]
  113. 113. 
    Norris LC, Main BJ, Lee Y, Collier TC, Fofana A et al. 2015. Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. PNAS 112:815–20
    [Google Scholar]
  114. 114. 
    Orr HA. 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52:935–49
    [Google Scholar]
  115. 115. 
    Orr HA. 2000. Adaptation and the cost of complexity. Evolution 54:13–20
    [Google Scholar]
  116. 116. 
    Orr HA, Turelli M. 2001. The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities. Evolution 55:1085–94
    [Google Scholar]
  117. 117. 
    Palkopoulou E, Lipson M, Mallick S, Nielsen S, Rohland N et al. 2018. A comprehensive genomic history of extinct and living elephants. PNAS 115:E2566–74
    [Google Scholar]
  118. 118. 
    Patterson NJ, Moorjani P, Luo Y, Mallick S, Rohland N et al. 2012. Ancient admixture in human history. Genetics 192:1065–93
    [Google Scholar]
  119. 119. 
    Payseur BA, Rieseberg LH. 2016. A genomic perspective on hybridization and speciation. Mol. Ecol. 25:2337–60
    [Google Scholar]
  120. 120. 
    Pease JB, Haak DC, Hahn MW, Moyle LC. 2016. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLOS Biol 14:e1002379
    [Google Scholar]
  121. 121. 
    Peter BM. 2016. Admixture, population structure, and F-statistics. Genetics 202:1485–501
    [Google Scholar]
  122. 122. 
    Pfennig KS, Kelly AL, Pierce AA 2016. Hybridization as a facilitator of species range expansion. Proc. R. Soc. B 283:20161329
    [Google Scholar]
  123. 123. 
    Phadnis N. 2011. Genetic architecture of male sterility and segregation distortion in Drosophila pseudoobscura Bogota–USA hybrids. Genetics 189:1001–9
    [Google Scholar]
  124. 124. 
    Piálek J, Barton NH. 1997. The spread of an advantageous allele across a barrier: the effects of random drift and selection against heterozygotes. Genetics 145:493–504
    [Google Scholar]
  125. 125. 
    Pouyet F, Aeschbacher S, Thiéry A, Excoffier L. 2018. Background selection and biased gene conversion affect more than 95% of the human genome and bias demographic inferences. eLife 7:e36317
    [Google Scholar]
  126. 126. 
    Pulido-Santacruz P, Aleixo A, Weir JT 2020. Genomic data reveal a protracted window of introgression during the diversification of a neotropical woodcreeper radiation. Evolution 74:842–58
    [Google Scholar]
  127. 127. 
    Rabosky DL, Hutchinson MN, Donnellan SC, Talaba AL, Lovette IJ. 2014. Phylogenetic disassembly of species boundaries in a widespread group of Australian skinks (Scincidae: Ctenotus). Mol. Phylogenet. Evol. 77:71–82
    [Google Scholar]
  128. 128. 
    Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. 2015. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16:350–71
    [Google Scholar]
  129. 129. 
    Rieseberg LH. 1997. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 28:359–89
    [Google Scholar]
  130. 130. 
    Rieseberg LH. 2006. Hybrid speciation in wild sunflowers. Ann. Missouri Bot. Garden 93:34–48
    [Google Scholar]
  131. 131. 
    Rieseberg LH, Soltis DE, Palmer JD. 1988. A molecular reexamination of introgression between Helianthus annuus and H. bolanderi (Compositae). Evolution 42:227–38
    [Google Scholar]
  132. 132. 
    Roesti M, Hendry AP, Salzburger W, Berner D. 2012. Genome divergence during evolutionary diversification as revealed in replicate lake–stream stickleback population pairs. Mol. Ecol. 21:2852–62
    [Google Scholar]
  133. 133. 
    Roesti M, Moser D, Berner D. 2013. Recombination in the threespine stickleback genome—patterns and consequences. Mol. Ecol. 22:3014–27
    [Google Scholar]
  134. 134. 
    Rogers J, Raveendran M, Harris RA, Mailund T, Leppälä K et al. 2019. The comparative genomics and complex population history of Papio baboons. Sci. Adv. 5:eaau6947
    [Google Scholar]
  135. 135. 
    Romanes GJ. 1886. Physiological selection; an additional suggestion on the origin of species. Zoöl. J. Linnean Soc. 19:337–411
    [Google Scholar]
  136. 136. 
    Rosser N, Dasmahapatra KK, Mallet J. 2014. Stable Heliconius butterfly hybrid zones are correlated with a local rainfall peak at the edge of the Amazon basin. Evolution 68:3470–84
    [Google Scholar]
  137. 137. 
    Rosser N, Queste L, Cama B, Edelman N, Mann F et al. 2019. Geographic contrasts between pre- and postzygotic barriers are consistent with reinforcement in Heliconius butterflies. Evolution 73:1821–38
    [Google Scholar]
  138. 138. 
    Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ et al. 2002. Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832–37
    [Google Scholar]
  139. 139. 
    Schield DR, Adams RH, Card DC, Perry BW, Pasquesi GM et al. 2017. Insight into the roles of selection in speciation from genomic patterns of divergence and introgression in secondary contact in venomous rattlesnakes. Ecol. Evol. 7:3951–66
    [Google Scholar]
  140. 140. 
    Schluter D. 2000. The Ecology of Adaptive Radiation New York: Oxford Univ. Press
    [Google Scholar]
  141. 141. 
    Schumer M, Rosenthal G, Andolfatto P. 2014. How common is homoploid hybrid speciation?. Evolution 68:1553–60
    [Google Scholar]
  142. 142. 
    Schumer M, Xu C, Powell DL, Durvasula A, Skov L et al. 2018. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 360:656–60
    [Google Scholar]
  143. 143. 
    Seehausen O. 2004. Hybridization and adaptive radiation. Trends Ecol. Evol. 19:198–207
    [Google Scholar]
  144. 144. 
    Setter D, Mousset S, Cheng X, Nielsen R, DeGiorgio M, Hermisson J 2020. VolcanoFinder: genomic scans for adaptive introgression. PLOS Genet 16:e1008867
    [Google Scholar]
  145. 145. 
    Shull GH. 1952. Beginnings of the heterosis concept. Heterosis: A Record of Researches Directed Toward Explaining and Utilizing the Vigor of Hybrids JW Gowen 14–48 Ames, Iowa: Iowa State College Press
    [Google Scholar]
  146. 146. 
    Slate J. 2005. Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol. Ecol. 14:363–79
    [Google Scholar]
  147. 147. 
    Slowinski JB, Page RDM. 1999. How should species phylogenies be inferred from sequence data?. Syst. Biol. 48:814–25
    [Google Scholar]
  148. 148. 
    Solís-Lemus C, Ané C. 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLOS Genet 12:e1005896
    [Google Scholar]
  149. 149. 
    Soltis PS, Soltis DE. 2009. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60:561–88
    [Google Scholar]
  150. 150. 
    Song Y, Endepols S, Klemann N, Richter D, Matuschka FR et al. 2011. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between Old World mice. Curr. Biol. 21:1296–301
    [Google Scholar]
  151. 151. 
    Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos. Trans. R. Soc. B 372:20160455
    [Google Scholar]
  152. 152. 
    Staubach F, Lorenc A, Messer PW, Tang K, Petrov DA, Tautz D. 2012. Genome patterns of selection and introgression of haplotypes in natural populations of the house mouse (Mus musculus). PLOS Genet 8:e1002891
    [Google Scholar]
  153. 153. 
    Suvorov A, Kim BY, Wang J, Armstrong EE, Peede D et al. 2021. Widespread introgression across a phylogeny of 155 Drosophila genomes. bioRxiv 2020.12.14.422758. https://doi.org/10.1101/2020.12.14.422758
    [Crossref]
  154. 154. 
    Svardal H, Quah FX, Malinsky M, Ngatunga BP, Miska EA et al. 2019. Ancestral hybridization facilitated species diversification in the Lake Malawi cichlid fish adaptive radiation. Mol. Biol. Evol. 37:1100–13
    [Google Scholar]
  155. 155. 
    Taylor SA, Larson EL. 2019. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3:170–77
    [Google Scholar]
  156. 156. 
    Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT et al. 2016. Hybridization and extinction. Evol. Appl. 9:892–908
    [Google Scholar]
  157. 157. 
    Turelli M, Lipkowitz JR, Brandvain Y. 2014. On the Coyne and Orr-igin of species: effects of intrinsic postzygotic isolation, ecological differentiation, X chromosome size, and sympatry on Drosophila speciation. Evolution 68:1176–87
    [Google Scholar]
  158. 158. 
    Valencia-Montoya WA, Elfekih S, North HL, Meier JI, Warren IA et al. 2020. Adaptive introgression across semipermeable species boundaries between local Helicoverpa zea and invasive Helicoverpa armigera moths. Mol. Biol. Evol. 37:2568–83
    [Google Scholar]
  159. 159. 
    Veller C, Edelman NB, Muralidhar P, Nowak MA 2019. Recombination, variance in genetic relatedness, and selection against introgressed DNA. bioRxiv 846147. https://doi.org/10.1101/846147
    [Crossref]
  160. 160. 
    Veller C, Kleckner N, Nowak MA. 2019. A rigorous measure of genome-wide genetic shuffling that takes into account crossover positions and Mendel's second law. PNAS 116:1659–68
    [Google Scholar]
  161. 161. 
    Voight BF, Kudaravalli S, Wen X, Pritchard JK 2006. A map of recent positive selection in the human genome. PLOS Biol 4:e72
    [Google Scholar]
  162. 162. 
    Wallbank RWR, Baxter SW, Pardo-Diaz C, Hanly JJ, Martin SH et al. 2016. Evolutionary novelty in a butterfly wing pattern through enhancer shuffling. PLOS Biol 14:e1002353
    [Google Scholar]
  163. 163. 
    Walsh J, Kovach AI, Olsen BJ, Shriver WG, Lovette IJ. 2018. Bidirectional adaptive introgression between two ecologically divergent sparrow species. Evolution 72:2076–89
    [Google Scholar]
  164. 164. 
    Weber AA-T, Rajkov J, Smailus K, Egger B, Salzburger W. 2021. Diversification dynamics and (non-)parallel evolution along an ecological gradient in African cichlid fishes. bioRxiv 2021.01.12.426414. https://doi.org/10.1101/2021.01.12.426414
    [Crossref]
  165. 165. 
    Wen D, Nakhleh L 2018. Coestimating reticulate phylogenies and gene trees from multilocus sequence data. Syst. Biol. 67:439–57
    [Google Scholar]
  166. 166. 
    Wright S. 1931. Evolution in Mendelian populations. Genetics 10:97–159
    [Google Scholar]
/content/journals/10.1146/annurev-genet-021821-020805
Loading
/content/journals/10.1146/annurev-genet-021821-020805
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error