1932

Abstract

Canalization refers to the evolution of populations such that the number of individuals who deviate from the optimum trait, or experience disease, is minimized. In the presence of rapid cultural, environmental, or genetic change, the reverse process of decanalization may contribute to observed increases in disease prevalence. This review starts by defining relevant concepts, drawing distinctions between the canalization of populations and robustness of individuals. It then considers evidence pertaining to three continuous traits and six domains of disease. In each case, existing genetic evidence for genotype-by-environment interactions is insufficient to support a strong inference of decanalization, but we argue that the advent of genome-wide polygenic risk assessment now makes an empirical evaluation of the role of canalization in preventing disease possible. Finally, the contributions of both rare and common variants to congenital abnormality and adult onset disease are considered in light of a new kerplunk model of genetic effects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-022020-022327
2020-11-23
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-022020-022327.html?itemId=/content/journals/10.1146/annurev-genet-022020-022327&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abadi A, Alyass A, Robiou du Pont S, Bolker B, Singh P et al. 2017. Penetrance of polygenic obesity susceptibility loci across the body mass index distribution. Am. J. Hum. Genet. 101:925–38
    [Google Scholar]
  2. 2. 
    Abi-Rached L, Jobin MJ, Kulkarni S, McWhinnie A, Dalva K et al. 2011. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334:89–94
    [Google Scholar]
  3. 3. 
    Anderson CA, Soranzo N, Zeggini E, Barrett JC 2011. Synthetic associations are unlikely to account for many common disease genome-wide association signals. PLOS Biol 9:e1000580
    [Google Scholar]
  4. 4. 
    Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J et al. 2018. Analysis of shared heritability in common disorders of the brain. Science 360:eaap8757
    [Google Scholar]
  5. 5. 
    Barton NH, Etheridge AM, Véber A 2017. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118:50–73
    [Google Scholar]
  6. 6. 
    Berg JJ, Coop G. 2014. A population genetic signal of polygenic adaptation. PLOS Genet 10:e1004412
    [Google Scholar]
  7. 7. 
    Berger M, Figari O, Bruno B, Raiola A, Dominietto A et al. 2008. Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related mortality. Bone Marrow Transpantl 41:55–62
    [Google Scholar]
  8. 8. 
    Boyle EA, Li YI, Pritchard JK 2017. An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–86
    [Google Scholar]
  9. 9. 
    Brinkmeyer-Langford CL, Guan J, Ji G, Cai JJ 2016. Aging shapes the population-mean and -dispersion of gene expression in human brains. Front. Aging Neurosci. 8:183
    [Google Scholar]
  10. 10. 
    Brown AA, Buil A, Viñuela A, Lappalainen T, Zheng HF et al. 2014. Genetic interactions affecting human gene expression identified by variance association mapping. eLife 3:e01381
    [Google Scholar]
  11. 11. 
    Campbell RF, McGrath PT, Paaby AB 2018. Analysis of epistasis in natural traits using model organisms. Trends Genet 34:883–98
    [Google Scholar]
  12. 12. 
    Canela-Xandri O, Rawlik K, Tenesa A 2018. An atlas of genetic associations in the UK Biobank. Nat. Genet. 50:1593–99
    [Google Scholar]
  13. 13. 
    Cao Y, Wei P, Bailey M, Kauwe JSK, Maxwell TJ 2014. A versatile omnibus test for detecting mean and variance heterogeneity. Genet. Epidemiol. 38:51–59
    [Google Scholar]
  14. 14. 
    Carr EJ, Dooley J, Garcia-Perez JE, Lagou V, Lee JC et al. 2016. The cellular composition of the human immune system is shaped by age and cohabitation. Nat. Immunol. 17:461–68
    [Google Scholar]
  15. 15. 
    CDC (Cent. Dis. Control Prev.) 2008. Update on overall prevalence of major birth defects—Atlanta, Georgia, 1978–2005. MMWR Morb. Mortal. Wkly. Rep. 57:1–5
    [Google Scholar]
  16. 16. 
    Chandler CH, Chari S, Kowalski A, Choi L, Tack D et al. 2017. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects. PLOS Genet 13:e1007075
    [Google Scholar]
  17. 17. 
    Chaves M, Albert R, Sontag ED 2005. Robustness and fragility of Boolean models for genetic regulatory networks. J. Theor. Biol. 235:431–49
    [Google Scholar]
  18. 18. 
    Chen L, Ge B, Casale FP, Vasquez L, Kwan T et al. 2016. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167:1398–414
    [Google Scholar]
  19. 19. 
    Corruble E, Falissard B, Gorwood P 2006. Life events exposure before a treated major depressive episode depends on the number of past episodes. Eur. Psychiatry 21:364–66
    [Google Scholar]
  20. 20. 
    Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S et al. 2017. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 9:eaal5209
    [Google Scholar]
  21. 21. 
    Daetwyler HD, Villanueva B, Woolliams JA 2008. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLOS ONE 3:e3395
    [Google Scholar]
  22. 22. 
    Dalton VS, Kolshus E, McLoughlin DM 2014. Epigenetics and depression: return of the repressed. J. Affect. Disord. 155:1–12
    [Google Scholar]
  23. 23. 
    Demerath EW, Choh AC, Johnson W, Curran JE, Lee M et al. 2013. The positive association of obesity variants with adulthood adiposity strengthens over an 80-year period: a gene-by-birth year interaction. Hum. Hered. 75:175–85
    [Google Scholar]
  24. 24. 
    Dewey FE, Murray MF, Overton JD, Habegger L, Leader JB et al. 2016. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science 354:aaf6814
    [Google Scholar]
  25. 25. 
    Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB 2010. Rare variants create synthetic genome-wide associations. PLOS Biol 8:e1000294
    [Google Scholar]
  26. 26. 
    Dudbridge F. 2013. Power and predictive accuracy of polygenic risk scores. PLOS Genet 9:e1003348
    [Google Scholar]
  27. 27. 
    Dudbridge F, Pashayan N, Yang J 2018. Predictive accuracy of combined genetic and environmental risk scores. Genet. Epidemiol. 42:4–19
    [Google Scholar]
  28. 28. 
    Duncan L, Yilmaz Z, Gaspar H, Walters R, Goldstein J et al. 2017. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am. J. Psychiatry 174:850–58
    [Google Scholar]
  29. 29. 
    El-Brolosy MA, Stainier DYR. 2017. Genetic compensation: a phenomenon in search of mechanisms. PLOS Genet 13:e1006780
    [Google Scholar]
  30. 30. 
    Fan CC, McGrath JJ, Appadurai V, Buil A, Gandal MJ et al. 2018. Spatial fine-mapping for gene-by-environment effects identifies risk hot spots for schizophrenia. Nat. Commun. 9:5296
    [Google Scholar]
  31. 31. 
    Feldkamp ML, Carey JC, Byrne JLB, Krikov S, Botto LD 2017. Etiology and clinical presentation of birth defects: population based study. BMJ 357:j2249
    [Google Scholar]
  32. 32. 
    Felix MA, Barkoulas M. 2015. Pervasive robustness in biological systems. Nat. Rev. Genet. 16:483–96
    [Google Scholar]
  33. 33. 
    Flatt T. 2005. The evolutionary genetics of canalization. Q. Rev. Biol. 80:287–316
    [Google Scholar]
  34. 34. 
    Frankel N, Davis GK, Vargas D, Wang S, Payre F, Stern DL 2010. Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature 466:490–93
    [Google Scholar]
  35. 35. 
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM et al. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–94
    [Google Scholar]
  36. 36. 
    Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S et al. 2014. De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–84
    [Google Scholar]
  37. 37. 
    Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V et al. 2016. The genetic architecture of type 2 diabetes. Nature 536:41–47
    [Google Scholar]
  38. 38. 
    Geiler-Samerotte K, Sartori FMO, Siegal ML 2018. Decanalizing thinking on genetic canalization. Semin. Cell Dev. Biol. 88:64–66
    [Google Scholar]
  39. 39. 
    Gerstein M, Kundaje A, Hariharan M, Landt SG, Yan KK et al. 2012. Architecture of the human regulatory network derived from ENCODE data. Nature 489:91–100
    [Google Scholar]
  40. 40. 
    Gibson G. 2009. Decanalization and the origin of complex disease. Nat. Rev. Genet. 10:134–40
    [Google Scholar]
  41. 41. 
    Gibson G, Dworkin I. 2004. Uncovering cryptic genetic variation. Nat. Rev. Genet. 5:681–90
    [Google Scholar]
  42. 42. 
    Gibson G, Wagner G. 2000. Canalization in evolutionary genetics: a stabilizing theory. ? Bioessays 22:372–80
    [Google Scholar]
  43. 43. 
    Gibson G, Wemple M, van Helden S 1999. Potential variance affecting homeotic Ultrabithorax and Antennapedia phenotypes in Drosophila melanogaster. . Genetics 151:1081–91
    [Google Scholar]
  44. 44. 
    Goodnow CC, Sprent J, de St Groth BF, Vinuesa CG 2005. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435:590–97
    [Google Scholar]
  45. 45. 
    Gratten J, Wray NR, Peyrot W, McGrath JJ, Visscher PM, Goddard ME 2016. Risk of psychiatric illness from advanced paternal age is not predominantly from de novo mutations. Nat. Genet. 48:718–24
    [Google Scholar]
  46. 46. 
    GTEx Consortium 2017. Genetic effects on gene expression across human tissues. Nature 550:204–13
    [Google Scholar]
  47. 47. 
    Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH 2003. Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66
    [Google Scholar]
  48. 48. 
    Hall BK. 2005. Fifty years later: I. Michael Lerner's Genetic Homeostasis 1954—a valiant attempt to integrate genes, organisms and environment. J. Exp. Zool. B 304:187–97
    [Google Scholar]
  49. 49. 
    Hallgrimsson B, Green RM, Katz DC, Fish JL, Bernier FP et al. 2018. The developmental-genetics of canalization. Semin. Cell Dev. Biol. 88:67–79
    [Google Scholar]
  50. 50. 
    Hatton TJ, Bray BE. 2010. Long run trends in the heights of European men, 19th–20th centuries. Econ. Hum. Biol. 8:405–13
    [Google Scholar]
  51. 51. 
    Haworth S, Mitchell R, Corbin L, Wade KH, Dudding T et al. 2019. Apparent latent structure within the UK Biobank sample has implications for epidemiological analysis. Nat. Comm. 10:333
    [Google Scholar]
  52. 52. 
    Hemani G, Shakhbazov K, Westra HJ, Esko T, Henders AK et al. 2014. Detection and replication of epistasis influencing transcription in humans. Nature 508:249–53
    [Google Scholar]
  53. 53. 
    Hermisson J, Hansen TF, Wagner GP 2003. Epistasis in polygenic traits and the evolution of genetic architecture under stabilizing selection. Am. Nat. 161:708–34
    [Google Scholar]
  54. 54. 
    Hermisson J, Wagner GP. 2004. The population genetic theory of hidden variation and genetic robustness. Genetics 168:2271–84
    [Google Scholar]
  55. 55. 
    Hill WG, Goddard ME, Visscher PM 2008. Data and theory point to mainly additive genetic variance for complex traits. PLOS Genet 4:e1000008
    [Google Scholar]
  56. 56. 
    Hodgins-Davis A, Rice DP, Townsend JP 2015. Gene expression evolves under a house-of-cards model of stabilizing selection. Mol. Biol. Evol. 32:2130–40
    [Google Scholar]
  57. 57. 
    Howson JMM, Zhao W, Barnes DR, Ho WK, Young R et al. 2017. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat. Genet. 49:1113–19
    [Google Scholar]
  58. 58. 
    Huang W, Mackay TFC. 2012. Epistasis dominates the genetic architecture of Drosophila quantitative traits. PNAS 109:15553–59
    [Google Scholar]
  59. 59. 
    Hulse AM, Cai JJ. 2013. Genetic variants contribute to gene expression variability in humans. Genetics 193:95–108
    [Google Scholar]
  60. 60. 
    Hunter DJ. 2005. Gene–environment interactions in human diseases. Nat. Rev. Genet. 6:287–98
    [Google Scholar]
  61. 61. 
    Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ et al.(UK Biobank CardioMetab. Consort. CHD Work. Group) 2018. Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J. Am. Coll. Cardiol 72:1883–93
    [Google Scholar]
  62. 62. 
    Johnson NB, Hayes LD, Brown K, Hoo EC, Ethier KA 2014. CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors—United States, 2005–2013. MMWR Suppl 63:3–27
    [Google Scholar]
  63. 63. 
    Kahn SE, Hull RL, Utzschneider KM 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–46
    [Google Scholar]
  64. 64. 
    Kaplun A, Krull M, Lakshman K, Matys V, Lewicki B, Hogan JD 2016. Establishing and validating regulatory regions for variant annotation and expression analysis. BMC Genom 17:393
    [Google Scholar]
  65. 65. 
    Karras GI, Yi S, Sahni N, Fischer M, Xie J et al. 2017. HSP90 shapes the consequences of human genetic variation. Cell 168:856–66.e12
    [Google Scholar]
  66. 66. 
    Kauffman S, Peterson C, Samuelsson B, Troein C 2004. Genetic networks with canalyzing Boolean rules are always stable. PNAS 101:17102–7
    [Google Scholar]
  67. 67. 
    Keinan A, Clark AG. 2012. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336:740–43
    [Google Scholar]
  68. 68. 
    Kessler RC, Bromet EJ. 2013. The epidemiology of depression across cultures. Annu. Rev. Public Health 4:119–38
    [Google Scholar]
  69. 69. 
    Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C et al. 2018. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50:1219–24
    [Google Scholar]
  70. 70. 
    Kilpeläinen TO, Qi L, Brage S, Sharp SJ, Sonestedt E et al. 2011. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLOS Med 8:e1001116
    [Google Scholar]
  71. 71. 
    Kim MS, Patel KP, Teng AK, Berens AJ, Lachance J 2018. Genetic disease risks can be misestimated across global populations. Genome Biol 19:179
    [Google Scholar]
  72. 72. 
    Kitano H. 2004. Biological robustness. Nat. Rev. Genet. 5:826–37
    [Google Scholar]
  73. 73. 
    Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS et al. 2005. Complement factor H polymorphism in age-related macular degeneration. Science 308:385–89
    [Google Scholar]
  74. 74. 
    Kobayashi Y, Yang S, Nykamp K, Garcia J, Lincoln SE, Topper SE 2017. Pathogenic variant burden in the ExAC database: an empirical approach to evaluating population data for clinical variant interpretation. Genome Med 9:13
    [Google Scholar]
  75. 75. 
    Kodama K, Tojjar D, Yamada S, Toda K, Patel CJ, Butte AJ 2013. Ethnic differences in the relationship between insulin sensitivity and insulin response: a systematic review and meta-analysis. Diabetes Care 36:1789–96
    [Google Scholar]
  76. 76. 
    Konganti K, Ehrlich A, Rusyn I, Threadgill DW 2018. gQTL: a web application for QTL analysis using the Collaborative Cross mouse genetic reference population. G3 8:2559–62
    [Google Scholar]
  77. 77. 
    LaBar T, Adami C. 2017. Evolution of drift robustness in small populations. Nat. Commun. 8:1012
    [Google Scholar]
  78. 78. 
    Lassi G, Taylor AE, Timpson NJ, Kenny PJ, Mather RJ et al. 2016. The CHRNA5-A3-B4 gene cluster and smoking: from discovery to therapeutics. Trends Neurosci 39:851–61
    [Google Scholar]
  79. 79. 
    Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O et al. 2018. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50:1112–21
    [Google Scholar]
  80. 80. 
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–91
    [Google Scholar]
  81. 81. 
    Li YR, Zhao SD, Li J, Bradfield JP, Mohebnasab M et al. 2015. Genetic sharing and heritability of paediatric age of onset autoimmune diseases. Nat. Commun. 6:8442
    [Google Scholar]
  82. 82. 
    Liu X, Li YI, Pritchard JK 2019. Trans effects on gene expression can drive omnigenic inheritance. Cell 177:1022–34.e6
    [Google Scholar]
  83. 83. 
    Lloyd-Jones LR, Holloway A, McRae A, Yang J, Small K et al. 2017. The genetic architecture of gene expression in peripheral blood. Am. J. Hum. Genet. 100:228–37
    [Google Scholar]
  84. 84. 
    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH et al. 2015. Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206
    [Google Scholar]
  85. 85. 
    Loftus PA, Wise SK. 2015. Epidemiology and economic burden of asthma. Int. Forum Allergy Rhinol. 5:Suppl. 1S7–10
    [Google Scholar]
  86. 86. 
    Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM et al. 2018. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50:1505–13
    [Google Scholar]
  87. 87. 
    Marigorta UM, Gibson G. 2014. A simulation study of gene-by-environment interactions in GWAS implies ample hidden effects. Front. Genet. 5:225
    [Google Scholar]
  88. 88. 
    Marigorta UM, Navarro A. 2013. High trans-ethnic replicability of GWAS results implies common causal variants. PLOS Genet 9:e1003566
    [Google Scholar]
  89. 89. 
    Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM et al. 2017. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100:635–49
    [Google Scholar]
  90. 90. 
    Martin HC, Jones WD, McIntyre R, Sanchez-Andrade G, Sanderson M et al. 2018. Quantifying the contribution of recessive coding variation to developmental disorders. Science 362:1161–64
    [Google Scholar]
  91. 91. 
    Masel J, Siegal ML. 2009. Robustness: mechanisms and consequences. Trends Genet 25:395–403
    [Google Scholar]
  92. 92. 
    Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N et al. 2015. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528:499–503
    [Google Scholar]
  93. 93. 
    Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M 2010. Genetic susceptibility to breast cancer. Mol. Oncol. 4:174–91
    [Google Scholar]
  94. 94. 
    McGrath JJ, Hannan AJ, Gibson G 2011. Decanalization, brain development and risk of schizophrenia. Transl. Psychiatry 1:e14
    [Google Scholar]
  95. 95. 
    McGrath JJ, Mortensen PB, Visscher PM, Wray NR 2013. Where GWAS and epidemiology meet: opportunities for the simultaneous study of genetic and environmental risk factors in schizophrenia. Schizophr. Bull. 39:955–59
    [Google Scholar]
  96. 96. 
    McKinney BC, Sibille E. 2013. The age-by-disease interaction hypothesis of late-life depression. Am. J. Geriatr. Psychiatry 21:418–32
    [Google Scholar]
  97. 97. 
    Metzger BPH, Yuan DC, Gruber JD, Duveau F, Wittkopp PJ 2015. Selection on noise constrains variation in a eukaryotic promoter. Nature 521:344–47
    [Google Scholar]
  98. 98. 
    Meyer D, Aguiar VRC, Bitarello BD, Brandt DYC, Nunes K 2018. A genomic perspective on HLA evolution. Immunogenetics 70:5–27
    [Google Scholar]
  99. 99. 
    Min J, Chiu DT, Wang Y 2013. Variation in the heritability of body mass index based on diverse twin studies: a systematic review. Obes. Rev. 14:871–82
    [Google Scholar]
  100. 100. 
    Moldaver DM, Larché M, Rudulier CD 2017. An update on lymphocyte subtypes in asthma and airway disease. Chest 151:1122–30
    [Google Scholar]
  101. 101. 
    Murray AL, Molenaar D, Johnson W, Krueger RF 2016. Dependence of gene-by-environment interactions (G×E) on scaling: comparing the use of sum scores, transformed sum scores and IRT scores for the phenotype in tests of G×E. Behav. Genet. 46:552–72
    [Google Scholar]
  102. 102. 
    Naghavi M, Abajobir AA, Abbafati A, Abbas KM, Abd-Allah F et al. 2017. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1151–210
    [Google Scholar]
  103. 103. 
    Nagpal S, Gibson G, Marigorta UM 2018. Pervasive modulation of obesity risk by the environment and genomic background. Genes 9:411
    [Google Scholar]
  104. 104. 
    Najarro MA, Hackett JL, Smith BR, Highfill CA, King EG et al. 2015. Identifying loci contributing to natural variation in xenobiotic resistance in Drosophila. . PLOS Genet 11:e1005663
    [Google Scholar]
  105. 105. 
    Nambot S, Thevenon J, Kuentz P, Duffourd Y, Tisserant E et al. 2018. Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of prospective annual reanalysis. Genet. Med. 20:645–54
    [Google Scholar]
  106. 106. 
    Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE et al. 2012. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–45
    [Google Scholar]
  107. 107. 
    Nédélec Y, Sanz J, Baharian G, Szpiech ZA, Pacis A et al. 2016. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167:657–69.e21
    [Google Scholar]
  108. 108. 
    Nelson MR, Wegmann D, Ehm MG, Kessner D, St Jean P et al. 2012. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337:100–4
    [Google Scholar]
  109. 109. 
    Nettleton JA, Follis JL, Ngwa JS, Smith CE, Ahmad S et al. 2015. Gene × dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry. Hum. Mol. Genet. 24:4728–38
    [Google Scholar]
  110. 110. 
    Niemi MEK, Martin HC, Rice DL, Gallone G, Gordon S et al. 2018. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 562:268–71
    [Google Scholar]
  111. 111. 
    Ntzani EE, Liberopoulos G, Manolio TA, Ioannidis JP 2012. Consistency of genome-wide associations across major ancestral groups. Hum. Genet. 131:1057–71
    [Google Scholar]
  112. 112. 
    O'Neal WK, Knowles MR. 2018. Cystic fibrosis disease modifiers: Complex genetics defines the phenotypic diversity in a monogenic disease. Annu. Rev. Genom. Hum. Genet. 19:201–22
    [Google Scholar]
  113. 113. 
    Ongen H, Andersen CL, Bramsen JB, Oster B, Rasmussen MH et al. 2014. Putative cis-regulatory drivers in colorectal cancer. Nature 512:87–90
    [Google Scholar]
  114. 114. 
    Osterwalder M, Barozzi I, Tissières V, Fukuda-Yuzawa Y, Mannion BJ et al. 2018. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554:239–43
    [Google Scholar]
  115. 115. 
    Paaby AB, Rockman MV. 2014. Cryptic genetic variation: evolution's hidden substrate. Nat. Rev. Genet. 15:247–58
    [Google Scholar]
  116. 116. 
    Payne JL, Wagner A. 2015. Mechanisms of mutational robustness in transcriptional regulation. Front. Genet. 6:322
    [Google Scholar]
  117. 117. 
    Polaczyk PJ, Gasperini R, Gibson G 1998. Naturally occurring genetic variation affects Drosophila photoreceptor determination. Dev. Genes Evol. 207:462–70
    [Google Scholar]
  118. 118. 
    Proulx SR, Phillips PC. 2005. The opportunity for canalization and the evolution of genetic networks. Am. Nat. 165:147–62
    [Google Scholar]
  119. 119. 
    Quach H, Rotival M, Pothlichet J, Loh YE, Dannemann M et al. 2016. Genetic adaptation and Neandertal admixture shaped the immune system of human populations. Cell 167:643–56.e17
    [Google Scholar]
  120. 120. 
    Rambotti S. 2015. Recalibrating the spirit level: an analysis of the interaction of income inequality and poverty and its effect on health. Soc. Sci. Med. 139:123–31
    [Google Scholar]
  121. 121. 
    Rask-Andersen M, Karlsson T, Ek WE, Johansson Å 2017. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLOS Genet 13:e1006977
    [Google Scholar]
  122. 122. 
    Rice SH. 1998. The evolution of canalization and the breaking of von Baer's laws: modeling the evolution of development with epistasis. Evolution 52:647–56
    [Google Scholar]
  123. 123. 
    Rimfeld K, Krapohl E, Trzaskowski M, Coleman JRI, Selzam S et al. 2018. Genetic influence on social outcomes during and after the Soviet era in Estonia. Nat. Hum. Behav. 2:269–75
    [Google Scholar]
  124. 124. 
    Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H et al. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–27
    [Google Scholar]
  125. 125. 
    Rishishwar L, Conley AB, Wigington CH, Wang L, Valderrama-Aguirre A, Jordan IK 2015. Ancestry, admixture and fitness in Colombian genomes. Sci. Rep. 5:12376
    [Google Scholar]
  126. 126. 
    Robinson MR, English G, Moser G, Lloyd-Jones LR, Triplett MA et al. 2017. Genotype-covariate interaction effects and the heritability of adult body mass index. Nat. Genet. 49:1174–81
    [Google Scholar]
  127. 127. 
    Robinson MR, Hemani G, Medina-Gomez C, Mezzavilla M, Esko T et al. 2015. Population genetic differentiation of height and body mass index across Europe. Nat. Genet. 47:1357–62
    [Google Scholar]
  128. 128. 
    Robinson MR, Wray NR, Visscher PM 2014. Explaining additional genetic variation in complex traits. Trends Genet 30:124–32
    [Google Scholar]
  129. 129. 
    Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M 2010. Genome-wide association studies in diverse populations. Nat. Rev. Genet. 11:356–66
    [Google Scholar]
  130. 130. 
    Saglani S, Lloyd CM. 2015. Novel concepts in airway inflammation and remodelling in asthma. Eur. Respir. J. 46:1796–804
    [Google Scholar]
  131. 131. 
    Salam MT, Li YF, Langholz B, Gilliland FD 2004. Early-life environmental risk factors for asthma: findings from the Children's Health Study. Environ. Health Perspect. 112:760–65
    [Google Scholar]
  132. 132. 
    Schmalhausen II 1949. Factors of Evolution: The Theory of Stabilizing Selection Oxford, UK: Blakiston
    [Google Scholar]
  133. 133. 
    Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G 2002. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20:370–75
    [Google Scholar]
  134. 134. 
    Schultz WM, Kelli HM, Lisko JC, Varghese T, Shen J et al. 2018. Socioeconomic status and cardiovascular outcomes: challenges and interventions. Circulation 137:2166–78
    [Google Scholar]
  135. 135. 
    Shai I, Jiang R, Manson JE, Stampfer MJ, Willett WC et al. 2006. Ethnicity, obesity, and risk of type 2 diabetes in women: a 20-year follow-up study. Diabetes Care 29:1585–90
    [Google Scholar]
  136. 136. 
    Shensa A, Escobar-Viera CG, Sidani JE, Bowman ND, Marshal MP, Primack BA 2017. Problematic social media use and depressive symptoms among U.S. young adults: a nationally-representative study. Soc. Sci. Med. 182:150–57
    [Google Scholar]
  137. 137. 
    Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE et al. 2015. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518:187–96
    [Google Scholar]
  138. 138. 
    Siegal ML, Leu JY. 2014. On the nature and evolutionary impact of phenotypic robustness mechanisms. Annu. Rev. Ecol. Evol. Syst. 45:496–517
    [Google Scholar]
  139. 139. 
    Simons YB, Bullaughey K, Hudson RR, Sella G 2018. A population genetic interpretation of GWAS findings for human quantitative traits. PLOS Biol 16:e2002985
    [Google Scholar]
  140. 140. 
    Simonti CN, Vernot B, Bastarache L, Bottinger E, Carrell DS et al. 2016. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351:737–41
    [Google Scholar]
  141. 141. 
    Singh T, Walters JTR, Johnstone M, Curtis D, Suvisaari J et al. 2017. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat. Genet. 49:1167–73
    [Google Scholar]
  142. 142. 
    Sosnay PR, Siklosi KR, Van Goor F, Kaniecki K, Yu H et al. 2013. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 45:1160–67
    [Google Scholar]
  143. 143. 
    Southwick SM, Bonanno GA, Masten AS, Panter-Brick C, Yehuda R 2014. Resilience definitions, theory, and challenges: interdisciplinary perspectives. Eur. J. Psychotraumatol. 5:25338
    [Google Scholar]
  144. 144. 
    Stocks J, Hislop A, Sonnappa S 2013. Early lung development: lifelong effect on respiratory health and disease. Lancet Respir. Med. 1:728–42
    [Google Scholar]
  145. 145. 
    Takahashi KH. 2018. Multiple modes of canalization: links between genetic, environmental canalizations and developmental stability, and their trait-specificity. Semin. Cell Dev. Biol. 88:14–20
    [Google Scholar]
  146. 146. 
    Taylor MB, Ehrenreich IM. 2014. Genetic interactions involving five or more genes contribute to a complex trait in yeast. PLOS Genet 10:e1004324
    [Google Scholar]
  147. 147. 
    Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE et al. 2012. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337:64–69
    [Google Scholar]
  148. 148. 
    Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U et al. 1995. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–34
    [Google Scholar]
  149. 149. 
    Tyrrell J, Wood AR, Ames RM, Yaghootkar H, Beaumont RN et al. 2017. Gene-obesogenic environment interactions in the UK Biobank study. Int. J. Epidemiol. 46:559–75
    [Google Scholar]
  150. 150. 
    Verma A, Bang L, Miller JE, Zhang Y, Lee MTM et al.(DiscovEHR Collab.) 2019. Human-disease phenotype map derived from PheWAS across 38,682 individuals. Am. J. Hum. Genet. 104:55–64
    [Google Scholar]
  151. 151. 
    Visscher PM, Wray NR. 2015. Concepts and misconceptions about the polygenic additive model applied to disease. Hum. Hered. 80:165–70
    [Google Scholar]
  152. 152. 
    Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI et al. 2017. 10 Years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101:5–22
    [Google Scholar]
  153. 153. 
    von Dassow G, Meir E, Munro EM, Odell GM 2000. The segment polarity network is a robust developmental module. Nature 406:188–92
    [Google Scholar]
  154. 154. 
    Waddington CH. 2014 (1957). The Strategy of the Genes Oxford, UK: Routledge
    [Google Scholar]
  155. 155. 
    Waddington CH. 1959. Canalization of development and genetic assimilation of acquired characters. Nature 183:1654–55
    [Google Scholar]
  156. 156. 
    Waddington CH. 1966. Principles of Development and Differentiation New York: Macmillan
    [Google Scholar]
  157. 157. 
    Wagner GP, Booth G, Bagheri-Chaichian H 1997. A population genetic theory of canalization. Evolution 51:329–47
    [Google Scholar]
  158. 158. 
    Walter S, Mejía-Guevara I, Estrada K, Liu SY, Glymour MM 2016. Association of a genetic risk score with body mass index across different birth cohorts. JAMA 316:63–69
    [Google Scholar]
  159. 159. 
    Whitesell L, Santagata S, Mendillo ML, Lin NU, Proia DA, Lindquist S 2014. HSP90 empowers evolution of resistance to hormonal therapy in human breast cancer models. PNAS 111:18297–302
    [Google Scholar]
  160. 160. 
    Wilkinson RG, Pickett KE. 2006. Income inequality and population health: a review and explanation of the evidence. Soc. Sci. Med. 62:1768–84
    [Google Scholar]
  161. 161. 
    Wilkinson RG, Pickett KE. 2006. The Spirit Level: Why Greater Equality Makes Societies Stronger New York: Bloomsbury
    [Google Scholar]
  162. 162. 
    Wray NR, Purcell SM, Visscher PM 2011. Synthetic associations created by rare variants do not explain most GWAS results. PLOS Biol 9:e1000579
    [Google Scholar]
  163. 163. 
    Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM et al. 2018. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50:668–81
    [Google Scholar]
  164. 164. 
    Wray NR, Wijmenga C, Sullivan PF, Yang J, Visscher PM 2018. Common disease is more complex than implied by the core gene omnigenic model. Cell 173:1573–80
    [Google Scholar]
  165. 165. 
    Wu Y, Zeng J, Zhang F, Zhu Z, Qi T et al. 2018. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat. Comm. 9:918
    [Google Scholar]
  166. 166. 
    Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK et al. 2012. FTO genotype is associated with phenotypic variability of body mass index. Nature 490:267–72
    [Google Scholar]
  167. 167. 
    Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A et al. 2013. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 369:1502–11
    [Google Scholar]
  168. 168. 
    Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR et al.(GIANT Consort.) 2018. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27:3641–49
    [Google Scholar]
  169. 169. 
    Young AI, Wauthier FL, Donnelly P 2018. Identifying loci affecting trait variability and detecting interactions in genome-wide association studies. Nat. Genet. 50:1608–14
    [Google Scholar]
  170. 170. 
    Zhang XS. 2008. Increase in quantitative variation after exposure to environmental stresses and/or introduction of a major mutation: G × E interaction and epistasis or canalization. ? Genetics 180:687–95
    [Google Scholar]
  171. 171. 
    Zhu Z, Bakshi A, Vinkhuyzen AA, Hemani G, Lee SH et al. 2015. Dominance genetic variation contributes little to the missing heritability for human complex traits. Am. J. Hum. Genet. 96:377–85
    [Google Scholar]
  172. 172. 
    Zoledziewska M, Sidore C, Chiang CWK, Sanna S, Mulas A et al. 2015. Height-reducing variants and selection for short stature in Sardinia. Nat. Genet. 47:1352–56
    [Google Scholar]
/content/journals/10.1146/annurev-genet-022020-022327
Loading
/content/journals/10.1146/annurev-genet-022020-022327
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error