1932

Abstract

Prokaryotes have developed numerous defense strategies to combat the constant threat posed by the diverse genetic parasites that endanger them. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas loci guard their hosts with an adaptive immune system against foreign nucleic acids. Protection starts with an immunization phase, in which short pieces of the invader's genome, known as spacers, are captured and integrated into the CRISPR locus after infection. Next, during the targeting phase, spacers are transcribed into CRISPR RNAs (crRNAs) that guide CRISPR-associated (Cas) nucleases to destroy the invader's DNA or RNA. Here we describe the many different molecular mechanisms of CRISPR targeting and how they are interconnected with the immunization phase through a third phase of the CRISPR-Cas immune response: primed spacer acquisition. In this phase, Cas proteins direct the crRNA-guided acquisition of additional spacers to achieve a more rapid and robust immunization of the population.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-022120-112523
2020-11-23
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-022120-112523.html?itemId=/content/journals/10.1146/annurev-genet-022120-112523&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM et al. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573
    [Google Scholar]
  2. 2. 
    Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S, Shinkai A 2010. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J. Mol. Biol. 395:270–81
    [Google Scholar]
  3. 3. 
    Al-Shayeb B, Sachdeva R, Chen LX, Ward F, Munk P et al. 2020. Clades of huge phages from across Earth's ecosystems. Nature 578:425–31
    [Google Scholar]
  4. 4. 
    Almendros C, Nobrega FL, McKenzie RE, Brouns SJJ 2019. Cas4–Cas1 fusions drive efficient PAM selection and control CRISPR adaptation. Nucleic Acids Res 47:5223–30
    [Google Scholar]
  5. 5. 
    Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L 2013. Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol. Direct 8:15
    [Google Scholar]
  6. 6. 
    Andersson AF, Banfield JF. 2008. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:1047–50
    [Google Scholar]
  7. 7. 
    Arslan Z, Hermanns V, Wurm R, Wagner R, Pul U 2014. Detection and characterization of spacer integration intermediates in type I-E CRISPR–Cas system. Nucleic Acids Res 42:7884–93
    [Google Scholar]
  8. 8. 
    Arslan Z, Wurm R, Brener O, Ellinger P, Nagel-Steger L et al. 2013. Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2. Nucleic Acids Res 41:6347–59
    [Google Scholar]
  9. 9. 
    Athukoralage JS, McMahon SA, Zhang C, Gruschow S, Graham S et al. 2020. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577:572–75
    [Google Scholar]
  10. 10. 
    Athukoralage JS, Rouillon C, Graham S, Gruschow S, White MF 2018. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 562:277–80
    [Google Scholar]
  11. 11. 
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12
    [Google Scholar]
  12. 12. 
    Bernheim A, Calvo-Villamanan A, Basier C, Cui L, Rocha EPC et al. 2017. Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Nat. Commun. 8:2094
    [Google Scholar]
  13. 13. 
    Bernheim A, Sorek R. 2020. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18:113–19
    [Google Scholar]
  14. 14. 
    Blosser TR, Loeff L, Westra ER, Vlot M, Kunne T et al. 2015. Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Mol. Cell 58:60–70
    [Google Scholar]
  15. 15. 
    Bolotin A, Quinquis B, Sorokin A, Ehrlich SD 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–61
    [Google Scholar]
  16. 16. 
    Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–32
    [Google Scholar]
  17. 17. 
    Borges AL, Zhang JY, Rollins MF, Osuna BA, Wiedenheft B, Bondy-Denomy J 2018. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174:917–25.e10
    [Google Scholar]
  18. 18. 
    Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–64
    [Google Scholar]
  19. 19. 
    Brüssow H, Canchaya C, Hardt WD 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560–602
    [Google Scholar]
  20. 20. 
    Burroughs AM, Zhang D, Schaffer DE, Iyer LM, Aravind L 2015. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res 43:10633–54
    [Google Scholar]
  21. 21. 
    Cady KC, White AS, Hammond JH, Abendroth MD, Karthikeyan RS et al. 2011. Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates. Microbiology 157:430–37
    [Google Scholar]
  22. 22. 
    Carte J, Pfister NT, Compton MM, Terns RM, Terns MP 2010. Binding and cleavage of CRISPR RNA by Cas6. RNA 16:2181–88
    [Google Scholar]
  23. 23. 
    Carte J, Wang R, Li H, Terns RM, Terns MP 2008. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22:3489–96
    [Google Scholar]
  24. 24. 
    Chen JS, Ma E, Harrington LB, Da Costa M, Tian X et al. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–39
    [Google Scholar]
  25. 25. 
    Clarke R, Heler R, MacDougall MS, Yeo NC, Chavez A et al. 2018. Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated dislodging of Cas9 from double-strand DNA breaks. Mol. Cell 71:42–55.e8
    [Google Scholar]
  26. 26. 
    Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F 2012. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat. Commun. 3:968
    [Google Scholar]
  27. 27. 
    Crowley VM, Catching A, Taylor HN, Borges AL, Metcalf J et al. 2019. A type IV-A CRISPR-Cas system in Pseudomonas aeruginosa mediates RNA-guided plasmid interference in vivo. . CRISPR J 2:434–40
    [Google Scholar]
  28. 28. 
    Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E 2012. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3:945
    [Google Scholar]
  29. 29. 
    Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–7
    [Google Scholar]
  30. 30. 
    Deng L, Garrett RA, Shah SA, Peng X, She Q 2013. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. . Microbiol 87:1088–99
    [Google Scholar]
  31. 31. 
    Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C et al. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. . Bacteriol 190:1390–400
    [Google Scholar]
  32. 32. 
    Deveau H, Garneau JE, Moineau S 2010. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64:475–93
    [Google Scholar]
  33. 33. 
    Dillard KE, Brown MW, Johnson NV, Xiao Y, Dolan A et al. 2018. Assembly and translocation of a CRISPR-Cas primed acquisition complex. Cell 175:934–46.e15
    [Google Scholar]
  34. 34. 
    Dong D, Ren K, Qiu X, Zheng J, Guo M et al. 2016. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532:522–26
    [Google Scholar]
  35. 35. 
    Dong L, Guan X, Li N, Zhang F, Zhu Y et al. 2019. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat. Struct. Mol. Biol. 26:308–14
    [Google Scholar]
  36. 36. 
    Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
    [Google Scholar]
  37. 37. 
    Drabavicius G, Sinkunas T, Silanskas A, Gasiunas G, Venclovas C, Siksnys V 2018. DnaQ exonuclease-like domain of Cas2 promotes spacer integration in a type I-E CRISPR-Cas system. EMBO Rep 19:e45543
    [Google Scholar]
  38. 38. 
    East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JHD et al. 2016. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270–73
    [Google Scholar]
  39. 39. 
    Fagerlund RD, Wilkinson ME, Klykov O, Barendregt A, Pearce FG et al. 2017. Spacer capture and integration by a type I-F Cas1–Cas2-3 CRISPR adaptation complex. PNAS 114:E5122–288
    [Google Scholar]
  40. 40. 
    Fineran PC, Gerritzen MJ, Suarez-Diez M, Kunne T, Boekhorst J et al. 2014. Degenerate target sites mediate rapid primed CRISPR adaptation. PNAS 111:E1629–38
    [Google Scholar]
  41. 41. 
    Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E 2016. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–21
    [Google Scholar]
  42. 42. 
    Gasiunas G, Barrangou R, Horvath P, Siksnys V 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–86
    [Google Scholar]
  43. 43. 
    Goldberg GW, Jiang W, Bikard D, Marraffini LA 2014. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514:633–37
    [Google Scholar]
  44. 44. 
    Goren MG, Doron S, Globus R, Amitai G, Sorek R, Qimron U 2016. Repeat size determination by two molecular rulers in the type I-E CRISPR array. Cell Rep 16:2811–18
    [Google Scholar]
  45. 45. 
    Haft DH, Selengut J, Mongodin EF, Nelson KE 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol. 1:e60
    [Google Scholar]
  46. 46. 
    Hale CR, Kleppe K, Terns RM, Terns MP 2008. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. . RNA 14:2572–79
    [Google Scholar]
  47. 47. 
    Hale CR, Zhao P, Olson S, Duff MO, Graveley BR et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–56
    [Google Scholar]
  48. 48. 
    Hampton HG, Watson BNJ, Fineran PC 2020. The arms race between bacteria and their phage foes. Nature 577:327–36
    [Google Scholar]
  49. 49. 
    Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA 2010. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–58
    [Google Scholar]
  50. 50. 
    Hayes RP, Xiao Y, Ding F, van Erp PB, Rajashankar K et al. 2016. Structural basis for promiscuous PAM recognition in type I–E Cascade from E. coli. . Nature 530:499–503
    [Google Scholar]
  51. 51. 
    Heler R, Samai P, Modell JW, Weiner C, Goldberg GW et al. 2015. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519:199–202
    [Google Scholar]
  52. 52. 
    Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH et al. 2014. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. PNAS 111:6618–23
    [Google Scholar]
  53. 53. 
    Huo Y, Nam KH, Ding F, Lee H, Wu L et al. 2014. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat. Struct. Mol. Biol. 21:771–77
    [Google Scholar]
  54. 54. 
    Ivancic-Bace I, Cass SD, Wearne SJ, Bolt EL 2015. Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res 43:10821–30
    [Google Scholar]
  55. 55. 
    Jackson RN, Golden SM, van Erp PBG, Carter J, Westra ER et al. 2014. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. . Science 345:1473–79
    [Google Scholar]
  56. 56. 
    Jansen R, Embden JD, Gaastra W, Schouls LM 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43:1565–75
    [Google Scholar]
  57. 57. 
    Jeon Y, Choi YH, Jang Y, Yu J, Goo J et al. 2018. Direct observation of DNA target searching and cleavage by CRISPR-Cas12a. Nat. Commun. 9:2777
    [Google Scholar]
  58. 58. 
    Jia N, Jones R, Yang G, Ouerfelli O, Patel DJ 2019. CRISPR-Cas III-A Csm6 CARF domain is a ring nuclease triggering stepwise cA4 cleavage with ApA>p formation terminating RNase activity. Mol. Cell 75:944–56.e6
    [Google Scholar]
  59. 59. 
    Jia N, Mo CY, Wang C, Eng ET, Marraffini LA, Patel DJ 2019. Type III-A CRISPR-Cas Csm complexes: assembly, periodic RNA cleavage, DNase activity regulation, and autoimmunity. Mol. Cell 73:264–77.e5
    [Google Scholar]
  60. 60. 
    Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K et al. 2016. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351:867–71
    [Google Scholar]
  61. 61. 
    Jiang F, Zhou K, Ma L, Gressel S, Doudna JA 2015. A Cas9–guide RNA complex preorganized for target DNA recognition. Science 348:1477–81
    [Google Scholar]
  62. 62. 
    Jiang W, Samai P, Marraffini LA 2016. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity. Cell 164:710–21
    [Google Scholar]
  63. 63. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  64. 64. 
    Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997
    [Google Scholar]
  65. 65. 
    Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER et al. 2011. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18:529–36
    [Google Scholar]
  66. 66. 
    Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G, Siksnys V 2017. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357:605–9
    [Google Scholar]
  67. 67. 
    Kazlauskiene M, Tamulaitis G, Kostiuk G, Venclovas C, Siksnys V 2016. Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol. Cell 62:295–306
    [Google Scholar]
  68. 68. 
    Kim S, Loeff L, Colombo S, Jergic S, Brouns SJJ, Joo C 2020. Selective loading and processing of prespacers for precise CRISPR adaptation. Nature 579:141–45
    [Google Scholar]
  69. 69. 
    Knott GJ, Thornton BW, Lobba MJ, Liu JJ, Al-Shayeb B et al. 2019. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat. Struct. Mol. Biol. 26:315–21
    [Google Scholar]
  70. 70. 
    Krivoy A, Rutkauskas M, Kuznedelov K, Musharova O, Rouillon C et al. 2018. Primed CRISPR adaptation in Escherichia coli cells does not depend on conformational changes in the Cascade effector complex detected in vitro. . Nucleic Acids Res 46:4087–98
    [Google Scholar]
  71. 71. 
    Krupovic M, Beguin P, Koonin EV 2017. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Curr. Opin. Microbiol. 38:36–43
    [Google Scholar]
  72. 72. 
    Künne T, Kieper SN, Bannenberg JW, Vogel AI, Miellet WR et al. 2016. Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation. Mol. Cell 63:852–64
    [Google Scholar]
  73. 73. 
    Landsberger M, Gandon S, Meaden S, Rollie C, Chevallereau A et al. 2018. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174:908–16.e12
    [Google Scholar]
  74. 74. 
    Lau RK, Ye Q, Birkholz EA, Berg KR, Patel L et al. 2020. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity. Mol. Cell 77:723–33.e6
    [Google Scholar]
  75. 75. 
    Lee H, Dhingra Y, Sashital DG 2019. The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation. eLife 8:e44248
    [Google Scholar]
  76. 76. 
    Lee H, Zhou Y, Taylor DW, Sashital DG 2018. Cas4-dependent prespacer processing ensures high-fidelity programming of CRISPR arrays. Mol. Cell 70:48–59.e5
    [Google Scholar]
  77. 77. 
    Levy A, Goren MG, Yosef I, Auster O, Manor M et al. 2015. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505–10
    [Google Scholar]
  78. 78. 
    Li M, Wang R, Zhao D, Xiang H 2014. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res 42:2483–92
    [Google Scholar]
  79. 79. 
    Lillestøl RK, Shah SA, Brugger K, Redder P, Phan H et al. 2009. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol. Microbiol. 72:259–72
    [Google Scholar]
  80. 80. 
    Liu L, Li X, Ma J, Li Z, You L et al. 2017. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170:714–26.e10
    [Google Scholar]
  81. 81. 
    Liu L, Li X, Wang J, Wang M, Chen P et al. 2017. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168:121–34.e12
    [Google Scholar]
  82. 82. 
    Liu TY, Liu JJ, Aditham AJ, Nogales E, Doudna JA 2019. Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble. Nat. Commun. 10:3001
    [Google Scholar]
  83. 83. 
    Makarova KS, Anantharaman V, Grishin NV, Koonin EV, Aravind L 2014. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front. Genet. 5:102
    [Google Scholar]
  84. 84. 
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. 2019. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18:67–83
    [Google Scholar]
  85. 85. 
    Malone LM, Warring SL, Jackson SA, Warnecke C, Gardner PP et al. 2020. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat. Microbiol. 5:48–55
    [Google Scholar]
  86. 86. 
    Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–45
    [Google Scholar]
  87. 87. 
    Marraffini LA, Sontheimer EJ. 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568–71
    [Google Scholar]
  88. 88. 
    McDonald ND, Regmi A, Morreale DP, Borowski JD, Boyd EF 2019. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genom 20:105
    [Google Scholar]
  89. 89. 
    McGinn J, Marraffini LA. 2018. Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat. Rev. Microbiol. 17:7–12
    [Google Scholar]
  90. 90. 
    McMahon SA, Zhu W, Graham S, Rambo R, White MF, Gloster TM 2020. Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. Nat. Commun. 11:500
    [Google Scholar]
  91. 91. 
    Meeske AJ, Marraffini LA. 2018. RNA guide complementarity prevents self-targeting in type VI CRISPR systems. Mol. Cell 71:791–801.e3
    [Google Scholar]
  92. 92. 
    Meeske AJ, Nakandakari-Higa S, Marraffini LA 2019. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570:241–45
    [Google Scholar]
  93. 93. 
    Mendoza SD, Nieweglowska ES, Govindarajan S, Leon LM, Berry JD et al. 2020. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 577:244–48
    [Google Scholar]
  94. 94. 
    Modell JW, Jiang W, Marraffini LA 2017. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544:101–4
    [Google Scholar]
  95. 95. 
    Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–40
    [Google Scholar]
  96. 96. 
    Mulepati S, Bailey S. 2013. In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. J. Biol. Chem. 288:22184–92
    [Google Scholar]
  97. 97. 
    Mulepati S, Heroux A, Bailey S 2014. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345:1479–84
    [Google Scholar]
  98. 98. 
    Muller HP, Varmus HE. 1994. DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. EMBO J 13:4704–14
    [Google Scholar]
  99. 99. 
    Musharova O, Sitnik V, Vlot M, Savitskaya E, Datsenko KA et al. 2019. Systematic analysis of Type I-E Escherichia coli CRISPR-Cas PAM sequences ability to promote interference and primed adaptation. Mol. Microbiol. 111:1558–70
    [Google Scholar]
  100. 100. 
    Nam KH, Haitjema C, Liu X, Ding F, Wang H et al. 2012. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20:1574–84
    [Google Scholar]
  101. 101. 
    Nicholson TJ, Jackson SA, Croft BI, Staals RHJ, Fineran PC, Brown CM 2018. Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems. RNA Biol 16:566–76
    [Google Scholar]
  102. 102. 
    Niewoehner O, Garcia-Doval C, Rostol JT, Berk C, Schwede F et al. 2017. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548:543–48
    [Google Scholar]
  103. 103. 
    Novick RP. 1998. Contrasting lifestyles of rolling-circle phages and plasmids. Trends Biochem. Sci. 23:434–38
    [Google Scholar]
  104. 104. 
    Nunez JK, Bai L, Harrington LB, Hinder TL, Doudna JA 2016. CRISPR immunological memory requires a host factor for specificity. Mol. Cell 62:824–33
    [Google Scholar]
  105. 105. 
    Nunez JK, Harrington LB, Kranzusch PJ, Engelman AN, Doudna JA 2015. Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527:535–8
    [Google Scholar]
  106. 106. 
    Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA 2014. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21:528–34
    [Google Scholar]
  107. 107. 
    Nunez JK, Lee AS, Engelman A, Doudna JA 2015. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519:193–98
    [Google Scholar]
  108. 108. 
    Nussenzweig PM, McGinn J, Marraffini LA 2019. Cas9 cleavage of viral genomes primes the acquisition of new immunological memories. Cell Host Microbe 26:515–26.e6
    [Google Scholar]
  109. 109. 
    Pawluk A, Staals RH, Taylor C, Watson BN, Saha S et al. 2016. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 1:16085
    [Google Scholar]
  110. 110. 
    Peng W, Feng M, Feng X, Liang YX, She Q 2015. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Res 43:406–17
    [Google Scholar]
  111. 111. 
    Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L et al. 2019. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 48:2000–12
    [Google Scholar]
  112. 112. 
    Pourcel C, Salvignol G, Vergnaud G 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–63
    [Google Scholar]
  113. 113. 
    Pyenson NC, Gayvert K, Varble A, Elemento O, Marraffini LA 2017. Broad targeting specificity during bacterial type III CRISPR-Cas immunity constrains viral escape. Cell Host Microbe 22:343–53.e3
    [Google Scholar]
  114. 114. 
    Ramachandran A, Summerville L, Learn BA, DeBell L, Bailey S 2020. Processing and integration of functionally oriented prespacers in the Escherichia coli CRISPR system depends on bacterial host exonucleases. J. Biol. Chem. 295:3403–14
    [Google Scholar]
  115. 115. 
    Redding S, Sternberg SH, Marshall M, Gibb B, Bhat P et al. 2015. Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell 163:854–65
    [Google Scholar]
  116. 116. 
    Richter C, Dy RL, McKenzie RE, Watson BN, Taylor C et al. 2014. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res 42:8516–26
    [Google Scholar]
  117. 117. 
    Rollins MF, Chowdhury S, Carter J, Golden SM, Wilkinson RA et al. 2017. Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. PNAS 114:E5113–21
    [Google Scholar]
  118. 118. 
    Rollins MF, Schuman JT, Paulus K, Bukhari HS, Wiedenheft B 2015. Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. . Nucleic Acids Res 43:2216–22
    [Google Scholar]
  119. 119. 
    Rostol JT, Marraffini LA. 2019. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. Nat. Microbiol. 4:656–62
    [Google Scholar]
  120. 120. 
    Rouillon C, Athukoralage JS, Graham S, Gruschow S, White MF 2018. Control of cyclic oligoadenylate synthesis in a type III CRISPR system. eLife 7:e36734
    [Google Scholar]
  121. 121. 
    Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V et al. 2013. Structure of the CRISPR interference complex CSM reveals key similarities with Cascade. Mol. Cell 52:124–34
    [Google Scholar]
  122. 122. 
    Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R 2015. Directional R-loop formation by the CRISPR-Cas surveillance complex Cascade provides efficient off-target site rejection. Cell Rep 10:P1534–43
    [Google Scholar]
  123. 123. 
    Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A, Marraffini LA 2015. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161:1164–74
    [Google Scholar]
  124. 124. 
    Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V 2011. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. . Nucleic Acids Res 39:9275–82
    [Google Scholar]
  125. 125. 
    Sashital DG, Jinek M, Doudna JA 2011. An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat. Struct. Mol. Biol. 18:680–87
    [Google Scholar]
  126. 126. 
    Sashital DG, Wiedenheft B, Doudna JA 2012. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 46:606–15
    [Google Scholar]
  127. 127. 
    Seed KD, Lazinski DW, Calderwood SB, Camilli A 2013. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489–91
    [Google Scholar]
  128. 128. 
    Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108:10098–103
    [Google Scholar]
  129. 129. 
    Semenova E, Savitskaya E, Musharova O, Strotskaya A, Vorontsova D et al. 2016. Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex. PNAS 113:7626–31
    [Google Scholar]
  130. 130. 
    Shah SA, Alkhnbashi OS, Behler J, Han W, She Q et al. 2018. Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families. RNA Biol 16:530–42
    [Google Scholar]
  131. 131. 
    Shao Y, Richter H, Sun S, Sharma K, Urlaub H et al. 2016. A non-stem-loop CRISPR RNA is processed by dual binding Cas6. Structure 24:547–54
    [Google Scholar]
  132. 132. 
    Shiimori M, Garrett SC, Chambers DP, Glover CVC III, Graveley BR, Terns MP 2017. Role of free DNA ends and protospacer adjacent motifs for CRISPR DNA uptake in Pyrococcus furiosus. . Nucleic Acids Res 45:11281–94
    [Google Scholar]
  133. 133. 
    Shiimori M, Garrett SC, Graveley BR, Terns MP 2018. Cas4 nucleases define the PAM, length, and orientation of DNA fragments integrated at CRISPR loci. Mol. Cell 70:814–24.e6
    [Google Scholar]
  134. 134. 
    Shiriaeva AA, Savitskaya E, Datsenko KA, Vvedenskaya IO, Fedorova I et al. 2019. Detection of spacer precursors formed in vivo during primed CRISPR adaptation. Nat. Commun. 10:4603
    [Google Scholar]
  135. 135. 
    Shmakov SA, Makarova KS, Wolf YI, Severinov KV, Koonin EV 2018. Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis. PNAS 115:E5307–16
    [Google Scholar]
  136. 136. 
    Shmakov SA, Smargon A, Scott D, Cox D, Pyzocha N et al. 2017. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15:169–82
    [Google Scholar]
  137. 137. 
    Silas S, Mohr G, Sidote DJ, Markham LM, Sanchez-Amat A et al. 2016. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351:aad4234
    [Google Scholar]
  138. 138. 
    Singh D, Mallon J, Poddar A, Wang Y, Tippana R et al. 2018. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). PNAS 115:5444–49
    [Google Scholar]
  139. 139. 
    Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V 2011. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30:1335–42
    [Google Scholar]
  140. 140. 
    Sinkunas T, Gasiunas G, Waghmare SP, Dickman MJ, Barrangou R et al. 2013. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. . EMBO J 32:385–94
    [Google Scholar]
  141. 141. 
    Sokolowski RD, Graham S, White MF 2014. Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system. Nucleic Acids Res 42:6532–41
    [Google Scholar]
  142. 142. 
    Staals RH, Jackson SA, Biswas A, Brouns SJ, Brown CM, Fineran PC 2016. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. Nat. Commun. 7:12853
    [Google Scholar]
  143. 143. 
    Staals RH, Zhu Y, Taylor DW, Kornfeld JE, Sharma K et al. 2014. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol. . Cell 56:518–30
    [Google Scholar]
  144. 144. 
    Stanley SY, Borges AL, Chen KH, Swaney DL, Krogan NJ et al. 2019. Anti-CRISPR-associated proteins are crucial repressors of anti-CRISPR transcription. Cell 178:1452–64.e13
    [Google Scholar]
  145. 145. 
    Stanley SY, Maxwell KL. 2018. Phage-encoded anti-CRISPR defenses. Annu. Rev. Genet. 52:445–64
    [Google Scholar]
  146. 146. 
    Sternberg SH, LaFrance B, Kaplan M, Doudna JA 2015. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:110–13
    [Google Scholar]
  147. 147. 
    Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67
    [Google Scholar]
  148. 148. 
    Swarts DC, Jinek M. 2019. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a. Mol. Cell 73:589–600.e4
    [Google Scholar]
  149. 149. 
    Swarts DC, Mosterd C, van Passel MW, Brouns SJ 2012. CRISPR interference directs strand specific spacer acquisition. PLOS ONE 7:e35888
    [Google Scholar]
  150. 150. 
    Swarts DC, van der Oost J, Jinek M 2017. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 66:221–33.e4
    [Google Scholar]
  151. 151. 
    Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T et al. 2014. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. PNAS 111:9798–803
    [Google Scholar]
  152. 152. 
    Tamulaitis G, Kazlauskiene M, Manakova E, Venclovas C, Nwokeoji AO et al. 2014. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol. Cell 56:506–17
    [Google Scholar]
  153. 153. 
    Toro N, Mestre MR, Martínez-Abarca F, González-Delgado A 2019. Recruitment of reverse transcriptase-Cas1 fusion proteins by type VI-A CRISPR-Cas systems. Front. Microbiol. 10:2160
    [Google Scholar]
  154. 154. 
    van Houte S, Ekroth AK, Broniewski JM, Chabas H, Ashby B et al. 2016. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532:385–88
    [Google Scholar]
  155. 155. 
    Varble A, Marraffini LA. 2019. Three new Cs for CRISPR: collateral, communicate, cooperate. Trends Genet 35:446–56
    [Google Scholar]
  156. 156. 
    Wang J, Li J, Zhao H, Sheng G, Wang M et al. 2015. Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163:840–53
    [Google Scholar]
  157. 157. 
    Wang L, Mo CY, Wasserman MR, Rostol JT, Marraffini LA, Liu S 2019. Dynamics of Cas10 govern discrimination between self and non-self in type III CRISPR-Cas immunity. Mol. Cell 73:278–90.e4
    [Google Scholar]
  158. 158. 
    Wang R, Li M, Gong L, Hu S, Xiang H 2016. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica. . Nucleic Acids Res 44:4266–77
    [Google Scholar]
  159. 159. 
    Wang X, Yao D, Xu JG, Li AR, Xu J et al. 2016. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat. Struct. Mol. Biol. 23:868–70
    [Google Scholar]
  160. 160. 
    Wei Y, Chesne MT, Terns RM, Terns MP 2015. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. . Nucleic Acids Res 43:1749–58
    [Google Scholar]
  161. 161. 
    Wei Y, Terns RM, Terns MP 2015. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 29:356–61
    [Google Scholar]
  162. 162. 
    Westra ER, van Erp PB, Kunne T, Wong SP, Staals RH et al. 2012. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46:595–605
    [Google Scholar]
  163. 163. 
    Wilkinson M, Drabavicius G, Silanskas A, Gasiunas G, Siksnys V, Wigley DB 2019. Structure of the DNA-bound spacer capture complex of a type II CRISPR-Cas system. Mol. Cell 75:90–101.e5
    [Google Scholar]
  164. 164. 
    Wright AV, Doudna JA. 2016. Protecting genome integrity during CRISPR immune adaptation. Nat. Struct. Mol. Biol. 23:876–83
    [Google Scholar]
  165. 165. 
    Wright AV, Liu JJ, Knott GJ, Doxzen KW, Nogales E, Doudna JA 2017. Structures of the CRISPR genome integration complex. Science 357:1113–18
    [Google Scholar]
  166. 166. 
    Xiao Y, Luo M, Hayes RP, Kim J, Ng S et al. 2017. Structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR-Cas system. Cell 170:48–60.e11
    [Google Scholar]
  167. 167. 
    Xiao Y, Ng S, Nam KH, Ke A 2017. How type II CRISPR-Cas establish immunity through Cas1–Cas2-mediated spacer integration. Nature 550:137–41
    [Google Scholar]
  168. 168. 
    Xue C, Seetharam AS, Musharova O, Severinov K, Brouns SJ et al. 2015. CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res 43:10831–47
    [Google Scholar]
  169. 169. 
    Xue C, Whitis NR, Sashital DG 2016. Conformational control of Cascade interference and priming activities in CRISPR immunity. Mol. Cell 64:826–34
    [Google Scholar]
  170. 170. 
    Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM et al. 2016. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165:949–62
    [Google Scholar]
  171. 171. 
    Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E et al. 2018. Functionally diverse type V CRISPR-Cas systems. Science 363:88–91
    [Google Scholar]
  172. 172. 
    Yoganand KN, Sivathanu R, Nimkar S, Anand B 2017. Asymmetric positioning of Cas1–2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system. Nucleic Acids Res 45:367–81
    [Google Scholar]
  173. 173. 
    Yosef I, Goren MG, Qimron U 2012. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. . Nucleic Acids Res 40:5569–76
    [Google Scholar]
  174. 174. 
    You L, Ma J, Wang J, Artamonova D, Wang M et al. 2019. Structure studies of the CRISPR-Csm complex reveal mechanism of co-transcriptional interference. Cell 176:239–53.e16
    [Google Scholar]
  175. 175. 
    Zebec Z, Manica A, Zhang J, White MF, Schleper C 2014. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. . Nucleic Acids Res 42:5280–88
    [Google Scholar]
  176. 176. 
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–71
    [Google Scholar]
  177. 177. 
    Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K et al. 2012. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol. Cell 45:303–13
    [Google Scholar]
  178. 178. 
    Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS et al. 2013. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50:488–503
    [Google Scholar]
/content/journals/10.1146/annurev-genet-022120-112523
Loading
/content/journals/10.1146/annurev-genet-022120-112523
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error