1932

Abstract

The ease and throughput of single-cell genomics have steadily improved, and its current trajectory suggests that surveying single-cell populations will become routine. We discuss the merger of quantitative genetics with single-cell genomics and emphasize how this synergizes with advantages intrinsic to plants. Single-cell population genomics provides increased detection resolution when mapping variants that control molecular traits, including gene expression or chromatin accessibility. Additionally, single-cell population genomics reveals the cell types in which variants act and, when combined with organism-level phenotype measurements, unveils which cellular contexts impact higher-order traits. Emerging technologies, notably multiomics, can facilitate the measurement of both genetic changes and genomic traits in single cells, enabling single-cell genetic experiments. The implementation of single-cell genetics will advance the investigation of the genetic architecture of complex molecular traits and provide new experimental paradigms to study eukaryotic genetics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-022123-110824
2023-11-27
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/genet/57/1/annurev-genet-022123-110824.html?itemId=/content/journals/10.1146/annurev-genet-022123-110824&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J et al. 2016. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:2481–91
    [Google Scholar]
  2. 2.
    Alonso M, Stepanova AN, Leisse TJ, Kim CJ, Chen H et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:5633653–57
    [Google Scholar]
  3. 3.
    Ashrafi H, Kinkade M, Foolad MR. 2009. A new genetic linkage map of tomato based on a Solanum lycopersicum × S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes. Genome 52:11935–56
    [Google Scholar]
  4. 4.
    Baek S, Lee I. 2020. Single-cell ATAC sequencing analysis: from data preprocessing to hypothesis generation. Comput. Struct. Biotechnol. J. 18:1429–39
    [Google Scholar]
  5. 5.
    Bailey DW. 1971. Recombinant-inbred strains: an aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11:325–27
    [Google Scholar]
  6. 6.
    Beche E, Gillman JD, Song Q, Nelson R, Beissinger T et al. 2020. Nested association mapping of important agronomic traits in three interspecific soybean populations. Theor. Appl. Genet. 133:31039–54
    [Google Scholar]
  7. 7.
    Benaglio P, Newsome J, Han JY, Chiou J, Aylward A et al. 2020. Mapping genetic effects on cell type-specific chromatin accessibility and annotating complex trait variants using single nucleus ATAC-seq. bioRxiv 2020.12.03.387894 . https://doi.org/10.1101/2020.12.03.387894
    [Crossref]
  8. 8.
    Brem RB, Yvert G, Clinton R, Kruglyak L. 2002. Genetic dissection of transcriptional regulation in budding yeast. Science 296:5568752–55
    [Google Scholar]
  9. 9.
    Buar E. 1909. Das Wesen und die Erblichkietsverhaltnisse der “Varietates Albomarginata Hort” von Pelargonium Zonale. Zeit. Indukt. Abstamm. Vererb. 1:330–51
    [Google Scholar]
  10. 10.
    Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al. 2009. The genetic architecture of maize flowering time. Science 325:5941714–18
    [Google Scholar]
  11. 11.
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10:121213–18
    [Google Scholar]
  12. 12.
    Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM et al. 2019. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:7745496–502
    [Google Scholar]
  13. 13.
    Chahal HS, Wu W, Ransohoff KJ, Yang L, Hedlin H et al. 2016. Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma. Nat. Commun. 7:12510
    [Google Scholar]
  14. 14.
    Chen A, Liao S, Cheng M, Ma K, Wu L et al. 2022. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185:101777–92.e21
    [Google Scholar]
  15. 15.
    Chen Q, Yang CJ, York AM, Xue W, Daskalska LL et al. 2019. TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize. Genetics 213:31065–78
    [Google Scholar]
  16. 16.
    Chen Z, Debernardi JM, Dubcovsky J, Gallavotti A. 2022. The combination of morphogenic regulators BABY BOOM and GRF-GIF improves maize transformation efficiency. bioRxiv 2022.09.02.506370 . https://doi.org/10.1101/2022.09.02.506370
    [Crossref]
  17. 17.
    Cirulli ET, Goldstein DB. 2010. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 11:6415–25
    [Google Scholar]
  18. 18.
    Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:6735–43
    [Google Scholar]
  19. 19.
    Colasanti J, Yuan Z, Sundaresan V. 1998. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603
    [Google Scholar]
  20. 20.
    Ctortecka C, Hartlmayr D, Seth A, Mendjan S, Tourniaire G et al. 2022. An automated workflow for multiplexed single-cell proteomics sample preparation at unprecedented sensitivity. bioRxiv 2021.04.14.439828 . https://doi.org/10.1101/2021.04.14.439828
    [Crossref]
  21. 21.
    Cuomo ASE, Seaton DD, McCarthy DJ, Martinez I, Bonder MJ et al. 2020. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. Commun. 11:1810
    [Google Scholar]
  22. 22.
    Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA et al. 2018. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174:51309–24.e18
    [Google Scholar]
  23. 23.
    Datlinger P, Rendeiro AF, Boenke T, Senekowitsch M, Krausgruber T et al. 2021. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat. Methods 18:6635–42
    [Google Scholar]
  24. 24.
    de Veylder L, Larkin JC, Schnittger A. 2011. Molecular control and function of endoreplication in development and physiology. Trends Plant Sci. 16:11624–34
    [Google Scholar]
  25. 25.
    Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. 2019. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev. Cell 48:6840–52.e5
    [Google Scholar]
  26. 26.
    Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66.e17
    [Google Scholar]
  27. 27.
    Doebley J, Stec A, Gustus C. 1995. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:1333–46
    [Google Scholar]
  28. 28.
    Domcke S, Hill AJ, Daza RM, Cao J, O'Day DR et al. 2020. A human cell atlas of fetal chromatin accessibility. Science 370:6518eaba7612
    [Google Scholar]
  29. 29.
    Dorrity MW, Alexandre CM, Hamm MO, Vigil A-L, Fields S et al. 2021. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun. 12:13334
    [Google Scholar]
  30. 30.
    Dubin MJ, Zhang P, Meng D, Remigereau MS, Osborne EJ et al. 2015. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4:Maye05255
    [Google Scholar]
  31. 31.
    Dunwell JM. 2010. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. 8:4377–424
    [Google Scholar]
  32. 32.
    Eli RM, Daniel LV, Hank WB, Edward SB. 2016. Open chromatin reveals the functional maize genome. PNAS 113:223177–84
    [Google Scholar]
  33. 33.
    Elling U, Woods M, Forment JV, Fu B, Yang F et al. 2019. Derivation and maintenance of mouse haploid embryonic stem cells. Nat. Protoc. 14:71991–2014
    [Google Scholar]
  34. 34.
    Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. 2021. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant 14:3372–83
    [Google Scholar]
  35. 35.
    Fisher RA. 1935. The Design of Experiments Edinburgh, UK: Oliver and Boyd
    [Google Scholar]
  36. 36.
    Forsberg LA, Gisselsson D, Dumanski JP. 2017. Mosaicism in health and disease—clones picking up speed. Nat. Rev. Genet. 18:2128–42
    [Google Scholar]
  37. 37.
    Gage JL, Monier B, Giri A, Buckler ES. 2020. Ten years of the maize nested association mapping population: impact, limitations, and future directions. Plant Cell 32:72083–93
    [Google Scholar]
  38. 38.
    Gate RE, Cheng CS, Aiden AP, Siba A, Tabaka M et al. 2018. Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nat. Genet. 50:81140–50
    [Google Scholar]
  39. 39.
    Gibson G. 2012. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13:2135–45
    [Google Scholar]
  40. 40.
    Gibson G, Powell JE, Marigorta UM. 2015. Expression quantitative trait locus analysis for translational medicine. Genome Med. 7:160
    [Google Scholar]
  41. 41.
    Gray MM, Parmenter MD, Hogan CA, Ford I, Cuthber RJ et al. 2015. Genetics of rapid and extreme size evolution in island mice. Genetics 201:1213–28
    [Google Scholar]
  42. 42.
    Grossen C, Guillaume F, Keller LF, Croll D. 2020. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11:11001
    [Google Scholar]
  43. 43.
    GTEx Consort 2020. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369:65091318–30
    [Google Scholar]
  44. 44.
    Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV et al. 2008. Many sequence variants affecting diversity of adult human height. Nat. Genet. 40:5609–15
    [Google Scholar]
  45. 45.
    Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA et al. 1983. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306:5940234–38
    [Google Scholar]
  46. 46.
    Haley CS, Visscher PM. 1998. Strategies to utilize marker-quantitative trait loci associations. J. Dairy Sci. 81:Suppl. 285–97
    [Google Scholar]
  47. 47.
    Hickey JM, Chiurugwi T, Mackay I, Powell W. 2017. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat. Genet. 49:91297–303
    [Google Scholar]
  48. 48.
    Hocquigny S, Pelsy F, Dumas V, Kindt S, Heloir MC, Merdinoglu D. 2004. Diversification within grapevine cultivars goes through chimeric states. Genome 47:3579–89
    [Google Scholar]
  49. 49.
    Hosmani PS, Flores-Gonzalez M, van de Geest H, Maumus F, Bakker LV et al. 2019. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. bioRxiv 767764 . https://doi.org/10.1101/767764
    [Crossref]
  50. 50.
    Huerta-Sánchez E, Jin X, Asan Bianba Z, Peter BM et al. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512:7513194–97
    [Google Scholar]
  51. 51.
    Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S et al. 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373:6555655–62
    [Google Scholar]
  52. 52.
    Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB et al. 2011. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21:71160–67
    [Google Scholar]
  53. 53.
    Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L et al. 2019. Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell 31:5993–1011
    [Google Scholar]
  54. 54.
    Jerber J, Seaton DD, Cuomo ASE, Kumasaka N, Haldane J et al. 2021. Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation. Nat. Genet. 53:3304–12
    [Google Scholar]
  55. 55.
    Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC et al. 2017. Improved maize reference genome with single-molecule technologies. Nature 546:7659524–27
    [Google Scholar]
  56. 56.
    Kasha KJ, Kao KN. 1970. High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:5235874–76
    [Google Scholar]
  57. 57.
    Kawakatsu T, Huang SSC, Jupe F, Sasaki E, Schmitz RJ et al. 2016. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166:2492–505
    [Google Scholar]
  58. 58.
    Kehr J, Kragler F. 2018. Long distance RNA movement. New Phytol. 218:129–40
    [Google Scholar]
  59. 59.
    Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B et al. 2017. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:7639105–9
    [Google Scholar]
  60. 60.
    Kim-Hellmuth S, Aguet F, Oliva M, Muñoz-Aguirre M, Kasela S et al. 2020. Cell type–specific genetic regulation of gene expression across human tissues. Science 369:6509eaaz8528
    [Google Scholar]
  61. 61.
    Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS et al. 2005. Complement factor H polymorphism in age-related macular degeneration. Science 308:5720385–89
    [Google Scholar]
  62. 62.
    Kremling KAG, Chen SY, Su MH, Lepak NK, Romay MC et al. 2018. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555:7697520–23
    [Google Scholar]
  63. 63.
    Ladejobi O, Elderfield J, Gardner KA, Gaynor RC, Hickey J et al. 2016. Maximizing the potential of multi-parental crop populations. Appl. Transl. Genom. 11:9–17
    [Google Scholar]
  64. 64.
    Laitinen RAE, Nikoloski Z. 2019. Genetic basis of plasticity in plants. J. Exp. Bot. 70:3795–804
    [Google Scholar]
  65. 65.
    Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD et al. 2019. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37:8916–24
    [Google Scholar]
  66. 66.
    Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D et al. 2004. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168:42141–55
    [Google Scholar]
  67. 67.
    Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI et al. 2008. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40:5584–91
    [Google Scholar]
  68. 68.
    Li X, Zhang X, Gao S, Cui F, Chen W et al. 2022. Single-cell RNA sequencing reveals the landscape of maize root tips and assists in identification of cell type-specific nitrate-response genes. Crop. J. 10:61589–600
    [Google Scholar]
  69. 69.
    Li Y, Shuai L. 2017. A versatile genetic tool: haploid cells. Stem Cell Res. Ther. 8:1197
    [Google Scholar]
  70. 70.
    Li YH, Zhou G, Ma J, Jiang W, Jin LG et al. 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32:101045–52
    [Google Scholar]
  71. 71.
    Liang Z, Myers ZA, Petrella D, Engelhorn J, Hartwig T, Springer NM. 2022. Mapping responsive genomic elements to heat stress in a maize diversity panel. Genome Biol. 23:1234
    [Google Scholar]
  72. 72.
    Liu H-J, Yan J 2019. Crop genome-wide association study: a harvest of biological relevance. Plant J. 97:18–18
    [Google Scholar]
  73. 73.
    Liu Q, Liang Z, Feng D, Jiang S, Wang Y et al. 2021. Transcriptional landscape of rice roots at the single-cell resolution. Mol. Plant 14:3384–94
    [Google Scholar]
  74. 74.
    Liu X, Li YI, Pritchard JK. 2019. Trans effects on gene expression can drive omnigenic inheritance. Cell 177:41022–34.e6
    [Google Scholar]
  75. 75.
    Liu Y, Du H, Li P, Shen Y, Peng H et al. 2020. Pan-genome of wild and cultivated soybeans. Cell 182:1162–76.e13
    [Google Scholar]
  76. 76.
    López-Cortegano E, Caballero A. 2019. Inferring the nature of missing heritability in human traits using data from the GWAS catalog. Genetics 212:3891–904
    [Google Scholar]
  77. 77.
    Mackay I, Powell W. 2007. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci. 12:257–63
    [Google Scholar]
  78. 78.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:51202–14
    [Google Scholar]
  79. 79.
    Maher B. 2008. Personal genomes: the case of the missing heritability. Nature 456:721818–21
    [Google Scholar]
  80. 80.
    Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA et al. 2009. Finding the missing heritability of complex diseases. Nature 461:7265747–53
    [Google Scholar]
  81. 81.
    Marand AP, Chen Z, Gallavotti A, Schmitz RJ. 2021. A cis-regulatory atlas in maize at single-cell resolution. Cell 184:113041–55.e21
    [Google Scholar]
  82. 82.
    Marand AP, Schmitz RJ. 2022. Single-cell analysis of cis-regulatory elements. Curr. Opin. Plant Biol. 65:102094
    [Google Scholar]
  83. 83.
    Marcon C, Altrogge L, Win YN, Stöcker T, Gardiner JM et al. 2020. BonnMu: a sequence-indexed resource of transposon-induced maize mutations for functional genomics studies. Plant Physiol. 184:2620–31
    [Google Scholar]
  84. 84.
    Marcotrigiano M, Bernatzky R. 1995. Arrangement of cell layers in the shoot apical meristems of periclinal chimeras influences cell fate. Plant J. 7:2193–202
    [Google Scholar]
  85. 85.
    Matthews LJ, Turkheimer E. 2022. Three legs of the missing heritability problem. Stud. Hist. Philos. Sci. 93:183–91
    [Google Scholar]
  86. 86.
    McCarty DR, Suzuki M, Hunter C, Collins J, Avigne WT, Koch KE. 2013. Genetic and molecular analyses of UniformMu transposon insertion lines. Methods Mol. Biol. 1057:157–66
    [Google Scholar]
  87. 87.
    McDaniel CN, Poethig RS. 1988. Cell-lineage patterns in the shoot apical meristem of the germinating maize embryo. Planta 175:113–22
    [Google Scholar]
  88. 88.
    Migicovsky Z, Gardner KM, Richards C, Chao CT, Schwaninger HR et al. 2021. Genomic consequences of apple improvement. Hortic. Res. 8:19
    [Google Scholar]
  89. 89.
    Muyas F, Li R, Rahbari R, Mitchell TJ, Hormoz S, Cortés-Ciriano I. 2022. Accurate de novo detection of somatic mutations in high-throughput single-cell profiling data sets. bioRxiv 2022.11.22.517567 . https://doi.org/10.1101/2022.11.22.517567
    [Crossref]
  90. 90.
    Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F et al. 2011. Genetic structure and domestication history of the grape. PNAS 108:93530–35
    [Google Scholar]
  91. 91.
    Nathan A, Asgari S, Ishigaki K, Valencia C, Amariuta T et al. 2022. Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature 606:7912120–28
    [Google Scholar]
  92. 92.
    Nelms B, Walbot V. 2019. Defining the developmental program leading to meiosis in maize. Science 364:643552–56
    [Google Scholar]
  93. 93.
    Nelms B, Walbot V. 2022. Gametophyte genome activation occurs at pollen mitosis I in maize. Science 375:6579424–29
    [Google Scholar]
  94. 94.
    Nica AC, Dermitzakis ET. 2013. Expression quantitative trait loci: present and future. Philos. Trans. R. Soc. B 368:162020120362
    [Google Scholar]
  95. 95.
    Nobori T, Oliva M, Lister R, Ecker JR. 2022. PHYTOMap: Multiplexed single-cell 3D spatial gene expression analysis in plant tissue. bioRxiv 2022.07.28.501915. https://doi.org/10.1101/2022.07.28.501915
    [Crossref]
  96. 96.
    O'Brien SJ, Johnson WE, Driscoll CA, Dobrynin P, Marker L. 2017. Conservation genetics of the cheetah: lessons learned and new opportunities. J. Hered. 108:6671–77
    [Google Scholar]
  97. 97.
    O'Malley RC, Barragan CC, Ecker JR. 2015. A user's guide to the Arabidopsis T-DNA insertion mutant collections. Methods Mol. Biol. 1284:323–42
    [Google Scholar]
  98. 98.
    Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R et al. 2002. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32:4650–54
    [Google Scholar]
  99. 99.
    Palmer CM, Bush SM, Maloof JN. 2012. Phenotypic and developmental plasticity in plants. eLS. https://doi.org/10.1002/9780470015902.a0002092.pub2
    [Crossref] [Google Scholar]
  100. 100.
    Perez RK, Gordon MG, Subramaniam M, Kim MC, Hartoularos GC et al. 2022. Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. Science 376:6589eabf1970
    [Google Scholar]
  101. 101.
    Peripolli E, Munari DP, Silva MVGB, Lima ALF, Irgang R, Baldi F. 2017. Runs of homozygosity: current knowledge and applications in livestock. Anim. Genet. 48:3255–71
    [Google Scholar]
  102. 102.
    Picard CL, Povilus RA, Williams BP, Gehring M. 2021. Transcriptional and imprinting complexity in Arabidopsis seeds at single-nucleus resolution. Nat. Plants 7:6730–38
    [Google Scholar]
  103. 103.
    Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU. 2007. Termination of asymmetric cell division and differentiation of stomata. Nature 445:7127501–5
    [Google Scholar]
  104. 104.
    Poethig RS, Szymkowiak EJ. 1995. Clonal analysis of leaf development in maize. Maydica 40:167–76
    [Google Scholar]
  105. 105.
    Povysil G, Petrovski S, Hostyk J, Aggarwal V, Allen AS, Goldstein DB. 2019. Rare-variant collapsing analyses for complex traits: guidelines and applications. Nat. Rev. Genet. 20:12747–59
    [Google Scholar]
  106. 106.
    Preece DA. 1990. R. A. Fisher and experimental design: a review. Biometrics 46:4925–35
    [Google Scholar]
  107. 107.
    Preissl S, Gaulton KJ, Ren B. 2023. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. 24:121–43
    [Google Scholar]
  108. 108.
    Procko C, Lee T, Borsuk A, Bargmann BOR, Dabi T et al. 2022. Leaf cell-specific and single-cell transcriptional profiling reveals a role for the palisade layer in UV light protection. Plant Cell 34:93261–79
    [Google Scholar]
  109. 109.
    Qin P, Lu H, Du H, Wang H, Chen W et al. 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184:133542–58.e16
    [Google Scholar]
  110. 110.
    Ravi M, Chan SWL. 2010. Haploid plants produced by centromere-mediated genome elimination. Nature 464:7288615–18
    [Google Scholar]
  111. 111.
    Replogle JM, Saunders RA, Pogson AN, Hussmann JA, Lenail A et al. 2022. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185:142559–75.e28
    [Google Scholar]
  112. 112.
    Rhee SY, Mutwil M. 2014. Towards revealing the functions of all genes in plants. Trends Plant Sci. 19:4212–21
    [Google Scholar]
  113. 113.
    Roszak P, Heo J-O, Blob B, Toyokura K, Sugiyama Y et al. 2021. Cell-by-cell dissection of phloem development links a maturation gradient to cell specialization. Science 374:6575eaba5531
    [Google Scholar]
  114. 114.
    Satina S, Blakeslee AF, Avery AG. 1940. Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot. 27:10895–905
    [Google Scholar]
  115. 115.
    Satterlee JW, Strable J, Scanlon MJ. 2020. Plant stem-cell organization and differentiation at single-cell resolution. PNAS 117:5233689–99
    [Google Scholar]
  116. 116.
    Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N et al. 2003. Genetics of gene expression surveyed in maize, mouse and man. Nature 422:6929297–302
    [Google Scholar]
  117. 117.
    Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M et al. 2013. Patterns of population epigenomic diversity. Nature 495:7440193–98
    [Google Scholar]
  118. 118.
    Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326:59561112–15
    [Google Scholar]
  119. 119.
    Shahan R, Hsu C-W, Nolan TM, Cole BJ, Taylor IW et al. 2022. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev. Cell 57:4543–60.e9
    [Google Scholar]
  120. 120.
    Sharman BC. 1942. Developmental anatomy of the shoot of Zea mays L. Ann. Bot. 6:2245–82
    [Google Scholar]
  121. 121.
    Shaw R, Tian X, Xu J. 2021. Single-cell transcriptome analysis in plants: advances and challenges. Mol. Plant 14:1115–26
    [Google Scholar]
  122. 122.
    Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y et al. 2019. High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep. 27:72241–47.e4
    [Google Scholar]
  123. 123.
    Singleton RW. 1946. Inheritance of indeterminate growth in maize. J. Hered. 37:261–64
    [Google Scholar]
  124. 124.
    Song Q, Yan L, Quigley C, Jordan BD, Fickus E et al. 2017. Genetic characterization of the soybean nested association mapping population. Plant Genome 10:2). https://doi.org/10.3835/plantgenome2016.10.0109
    [Crossref] [Google Scholar]
  125. 125.
    Sparks E, Wachsman G, Benfey PN. 2013. Spatiotemporal signalling in plant development. Nat. Rev. Genet. 14:9631–44
    [Google Scholar]
  126. 126.
    Springer NM, Anderson SN, Andorf CM, Ahern KR, Bai F et al. 2018. The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 50:1282–88
    [Google Scholar]
  127. 127.
    Stewart RN, Dermen H. 1979. Ontogeny in monocotyledons as revealed by studies of the developmental anatomy of periclinal chloroplast chimeras. Am. J. Bot. 66:147–58
    [Google Scholar]
  128. 128.
    Strable J. 2021. Developmental genetics of maize vegetative shoot architecture. Mol. Breed. 41:319
    [Google Scholar]
  129. 129.
    Strable J, Nelissen H. 2021. The dynamics of maize leaf development: patterned to grow while growing a pattern. Curr. Opin. Plant Biol. 63:102038
    [Google Scholar]
  130. 130.
    Stuart T, Satija R. 2019. Integrative single-cell analysis. Nat. Rev. Genet. 20:5257–72
    [Google Scholar]
  131. 131.
    Su X, Wang B, Geng X, Du Y, Yang Q et al. 2021. A high-continuity and annotated tomato reference genome. BMC Genom. 22:1898
    [Google Scholar]
  132. 132.
    Sud RM, Dengler NG. 2000. Cell lineage of vein formation in variegated leaves of the C4 grass Stenotaphrum secundatum. Ann. Bot. 86:199–112
    [Google Scholar]
  133. 133.
    Sultan SE. 1996. Phenotypic plasticity for offspring traits in Polygonum persicaria. Ecology 77:61791–807
    [Google Scholar]
  134. 134.
    Sun G, Xia M, Li J, Ma W, Li Q et al. 2022. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Plant Cell 34:51890–911
    [Google Scholar]
  135. 135.
    Takei H, Shirasawa K, Kuwabara K, Toyoda A, Matsuzawa Y et al. 2021. De novo genome assembly of two tomato ancestors, Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme, by long-read sequencing. DNA Res. 28:1dsaa029
    [Google Scholar]
  136. 136.
    Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. 2019. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20:8467–84
    [Google Scholar]
  137. 137.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C et al. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6:5377–82
    [Google Scholar]
  138. 138.
    Thoday JM. 1961. Location of polygenes. Nature 191:368–70
    [Google Scholar]
  139. 139.
    Thorpe J, Osei-Owusu IA, Avigdor BE, Tupler R, Pevsner J. 2020. Mosaicism in human health and disease. Annu. Rev. Genet. 54:487–510
    [Google Scholar]
  140. 140.
    Todesco M, Owens GL, Bercovich N, Légaré JS, Soudi S et al. 2020. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584:7822602–7
    [Google Scholar]
  141. 141.
    Tu X, Marand AP, Schmitz RJ, Zhong S. 2022. A combinatorial indexing strategy for low-cost epigenomic profiling of plant single cells. Plant Commun. 3:4100308
    [Google Scholar]
  142. 142.
    Umans BD, Battle A, Gilad Y. 2021. Where are the disease-associated eQTLs?. Trends Genet. 37:2109–24
    [Google Scholar]
  143. 143.
    Ursu O, Neal JT, Shea E, Thakore PI, Jerby-Arnon L et al. 2022. Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat. Biotechnol. 40:6896–905
    [Google Scholar]
  144. 144.
    van de Peer Y, Ashman TL, Soltis PS, Soltis DE. 2021. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33:111–26
    [Google Scholar]
  145. 145.
    van der Wijst MGP, de Vries DH, Groot HE, Trynka G, Hon CC et al. 2020. The single-cell eQTLGen consortium. eLife 9:e52155
    [Google Scholar]
  146. 146.
    van Leeuwen C, Roby J-P, Alonso-Villaverde V, Gindro K. 2013. Impact of clonal variability in Vitis vinifera cabernet franc on grape composition, wine quality, leaf blade stilbene content, and downy mildew resistance. J. Agric. Food Chem. 61:119–24
    [Google Scholar]
  147. 147.
    Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P et al. 2021. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53:91300–10
    [Google Scholar]
  148. 148.
    Wang N, Gent JI, Dawe RK. 2021. Haploid induction by a maize cenh3 null mutant. Sci. Adv. 7:4eabe2299
    [Google Scholar]
  149. 149.
    Wang S, Xu S, Chao S, Sun Q, Liu S, Xia G. 2019. A genome-wide association study of highly heritable agronomic traits in durum wheat. Front. Plant Sci. 10:919
    [Google Scholar]
  150. 150.
    Warschefsky EJ, von Wettberg EJB. 2019. Population genomic analysis of mango (Mangifera indica) suggests a complex history of domestication. New Phytol. 222:42023–37
    [Google Scholar]
  151. 151.
    Watanabe K, Stringer S, Frei O, Umićević Mirkov M, de Leeuw C et al. 2019. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51:91339–48
    [Google Scholar]
  152. 152.
    Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM et al. 2008. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40:5575–83
    [Google Scholar]
  153. 153.
    Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69:5843–59
    [Google Scholar]
  154. 154.
    Wendrich JR, Yang BJ, Vandamme N, Verstaen K, Smet W et al. 2020. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science 370:6518eaay4970
    [Google Scholar]
  155. 155.
    Winter SMJ, Shelp BJ, Anderson TR, Welacky TW, Rajcan I. 2007. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B. Theor. Appl. Genet. 114:3461–72
    [Google Scholar]
  156. 156.
    Xia K, Sun HX, Li J, Li J, Zhao Y et al. 2022. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev. Cell 57:101299–310.e4
    [Google Scholar]
  157. 157.
    Xie H, Li W, Hu Y, Yang C, Lu J et al. 2022. De novo assembly of human genomes at single-cell levels. Nucleic Acids Res. 50:137479–92
    [Google Scholar]
  158. 158.
    Xu X, Crow M, Rice BR, Li F, Harris B et al. 2021. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev. Cell 56:4557–68.e6
    [Google Scholar]
  159. 159.
    Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM. 2017. Concepts, estimation and interpretation of SNP-based heritability. Nat. Genet. 49:91304–10
    [Google Scholar]
  160. 160.
    Yao L, Zhang Y, Liu C, Liu Y, Wang Y et al. 2018. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants 4:8530–33
    [Google Scholar]
  161. 161.
    Yazar S, Alquicira-Hernandez J, Wing K, Senabouth A, Gordon MG et al. 2022. Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science 376:6589eabf3041
    [Google Scholar]
  162. 162.
    Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR et al. 2018. Meta-analysis of genome-wide association studies for height and body mass index in ∼700 000 individuals of European ancestry. Hum. Mol. Genet. 27:203641–49
    [Google Scholar]
  163. 163.
    Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E et al. 2022. A saturated map of common genetic variants associated with human height. Nature 610:704–12
    [Google Scholar]
  164. 164.
    Yu J, Holland JB, McMullen MD, Buckler ES. 2008. Genetic design and statistical power of nested association mapping in maize. Genetics 178:1539–51
    [Google Scholar]
  165. 165.
    Zhang R, Kuo R, Coulter M, Calixto CPG, Entizne JC et al. 2022. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. Genome Biol. 23:1149
    [Google Scholar]
  166. 166.
    Zhang T-Q, Chen Y, Liu Y, Lin W-H, Wang J-W. 2021. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat. Commun. 12:12053
    [Google Scholar]
  167. 167.
    Zhang T-Q, Xu Z-G, Shang G-D, Wang J-W. 2019. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol. Plant 12:5648–60
    [Google Scholar]
  168. 168.
    Zhao S, Hong CKY, Myers CA, Granas DM, White MA et al. 2023. A single-cell massively parallel reporter assay detects cell-type-specific gene regulation. Nat. Genet. 55:2346–54
    [Google Scholar]
/content/journals/10.1146/annurev-genet-022123-110824
Loading
/content/journals/10.1146/annurev-genet-022123-110824
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error