1932

Abstract

Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-022123-113904
2023-11-27
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/genet/57/1/annurev-genet-022123-113904.html?itemId=/content/journals/10.1146/annurev-genet-022123-113904&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acosta IC, Posada L, Huertas MG, Zambrano MM. 2020. The effect of aminoglycosides on horizontal gene transfer in Klebsiella pneumoniae. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44:170105–20
    [Google Scholar]
  2. 2.
    Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J. 2009. Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 3:2243–51
    [Google Scholar]
  3. 3.
    Andersson T, Adell AD, Moreno-Switt AI, Spégel P, Turner C et al. 2022. Biogeographical variation in antimicrobial resistance in rivers is influenced by agriculture and is spread through bacteriophages. Environ. Microbiol. 24:104869–84
    [Google Scholar]
  4. 4.
    Andrade-Linares DR, Lehmann A, Rillig MC. 2016. Microbial stress priming: a meta-analysis. Environ. Microbiol. 18:41277–88
    [Google Scholar]
  5. 5.
    Antimicrob. Resist. Collab 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:10325629–55
    [Google Scholar]
  6. 6.
    Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. 2018. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6:123
    [Google Scholar]
  7. 7.
    Araújo S, Silva IAT, Tacão M, Patinha C, Alves A, Henriques I. 2017. Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms. Int. J. Food. Microbiol. 257:192–200
    [Google Scholar]
  8. 8.
    Arias-Andres M, Klümper U, Rojas-Jimenez K, Grossart H-P. 2018. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ. Pollut. 237:253–61
    [Google Scholar]
  9. 9.
    Bae M, Mevers E, Pishchany G, Whaley SG, Rock CO et al. 2021. Chemical exchanges between multilateral symbionts. Org. Lett. 23:51648–52
    [Google Scholar]
  10. 10.
    Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. 2006. Co-selection of antibiotic and metal resistance. Trends Microbiol. 14:4176–82
    [Google Scholar]
  11. 11.
    Baranova AA, Zakalyukina YV, Ovcharenko AA, Korshun VA, Tyurin AP. 2022. Antibiotics from insect-associated actinobacteria. Biology 11:111676
    [Google Scholar]
  12. 12.
    Barnard RL, Osborne CA, Firestone MK. 2015. Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. ISME J. 9:4946–57
    [Google Scholar]
  13. 13.
    Barnhill AE, Weeks KE, Xiong N, Day TA, Carlson SA. 2010. Identification of multiresistant Salmonella isolates capable of subsisting on antibiotics. Appl. Environ. Microbiol. 76:82678–80
    [Google Scholar]
  14. 14.
    Bednorz C, Oelgeschläger K, Kinnemann B, Hartmann S, Neumann K et al. 2013. The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. Int. J. Med. Microbiol. 303:6–7396–403
    [Google Scholar]
  15. 15.
    Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E et al. 2015. The human gut microbiome as a transporter of antibiotic resistance genes between continents. Antimicrob. Agents Chemother. 59:106551–60
    [Google Scholar]
  16. 16.
    Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ. 2014. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 5:648
    [Google Scholar]
  17. 17.
    Benveniste R, Davies J. 1973. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. PNAS 70:82276–80
    [Google Scholar]
  18. 18.
    Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E et al. 2015. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13:5310–17
    [Google Scholar]
  19. 19.
    Berg J, Tom-Petersen A, Nybroe O. 2005. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett. Appl. Microbiol. 40:2146–51
    [Google Scholar]
  20. 20.
    Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED et al. 2012. Antibiotic resistance is prevalent in an isolated cave microbiome. PLOS ONE 7:4e34953
    [Google Scholar]
  21. 21.
    Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F et al. 2016. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4:114
    [Google Scholar]
  22. 22.
    Bottery MJ, Pitchford JW, Friman V-P. 2021. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 15:4939–48
    [Google Scholar]
  23. 23.
    Bouaziz A, Loucif L, Ayachi A, Guehaz K, Bendjama E, Rolain J-M. 2018. Migratory white stork (Ciconia ciconia): a potential vector of the OXA-48-producing Escherichia coli ST38 clone in Algeria. Microb. Drug Resist. 24:4461–68
    [Google Scholar]
  24. 24.
    Branda SS, Vik Å, Friedman L, Kolter R. 2005. Biofilms: the matrix revisited. Trends Microbiol. 13:120–26
    [Google Scholar]
  25. 25.
    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR et al. 2019. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17:9569–86
    [Google Scholar]
  26. 26.
    Che Y, Xia Y, Liu L, Li A-D, Yang Y, Zhang T. 2019. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome 7:144
    [Google Scholar]
  27. 27.
    Chen Q-L, An X-L, Zheng B-X, Gillings M, Peñuelas J et al. 2019. Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecol. Lett. 1:1–23–13
    [Google Scholar]
  28. 28.
    Chen Q-L, An X-L, Zhu Y-G, Su J-Q, Gillings MR et al. 2017. Application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere. Environ. Sci. Technol. 51:148149–57
    [Google Scholar]
  29. 29.
    Chen X, Chen X, Zhao Y, Zhou H, Xiong X, Wu C. 2020. Effects of microplastic biofilms on nutrient cycling in simulated freshwater systems. Sci. Total Environ. 719:137276
    [Google Scholar]
  30. 30.
    Chevrette MG, Thomas CS, Hurley A, Rosario-Meléndez N, Sankaran K et al. 2022. Microbiome composition modulates secondary metabolism in a multispecies bacterial community. PNAS 119:42e2212930119
    [Google Scholar]
  31. 31.
    Chow L, Waldron L, Gillings MR. 2015. Potential impacts of aquatic pollutants: sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance. Front. Microbiol. 6:803
    [Google Scholar]
  32. 32.
    Chu BTT, Petrovich ML, Chaudhary A, Wright D, Murphy B et al. 2018. Metagenomics reveals the impact of wastewater treatment plants on the dispersal of microorganisms and genes in aquatic sediments. Appl. Environ. Microbiol. 84:5e02168-17
    [Google Scholar]
  33. 33.
    Cole D, Drum DJV, Stalknecht DE, White DG, Lee MD et al. 2005. Free-living Canada geese and antimicrobial resistance. Emerg. Infect. Dis. 11:6935–38
    [Google Scholar]
  34. 34.
    Cruz-Loya M, Kang TM, Lozano NA, Watanabe R, Tekin E et al. 2019. Stressor interaction networks suggest antibiotic resistance co-opted from stress responses to temperature. ISME J. 13:112–23
    [Google Scholar]
  35. 35.
    Cuadrat RRC, Sorokina M, Andrade BG, Goris T, Dávila AMR. 2020. Global ocean resistome revealed: exploring antibiotic resistance gene abundance and distribution in TARA Oceans samples. Gigascience 9:5giaa046
    [Google Scholar]
  36. 36.
    Danko D, Bezdan D, Afshin EE, Ahsanuddin S, Bhattacharya C et al. 2021. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 184:133376–93.e17
    [Google Scholar]
  37. 37.
    Dantas G, Sommer MOA, Oluwasegun RD, Church GM. 2008. Bacteria subsisting on antibiotics. Science 320:5872100–03
    [Google Scholar]
  38. 38.
    Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74:3417–33
    [Google Scholar]
  39. 39.
    D'Costa VM, King CE, Kalan L, Morar M, Sung WWL et al. 2011. Antibiotic resistance is ancient. Nature 477:7365457–61
    [Google Scholar]
  40. 40.
    D'Costa VM, McGrann KM, Hughes DW, Wright GD 2006. Sampling the antibiotic resistome. Science 311:5759374–77
    [Google Scholar]
  41. 41.
    de Nies L, Busi SB, Kunath BJ, May P, Wilmes P. 2022. Mobilome-driven segregation of the resistome in biological wastewater treatment. eLife 11:e81196
    [Google Scholar]
  42. 42.
    de Nijs EA, Hicks LC, Leizeaga A, Tietema A, Rousk J. 2019. Soil microbial moisture dependences and responses to drying–rewetting: the legacy of 18 years drought. Glob. Chang. Biol. 25:31005–15
    [Google Scholar]
  43. 43.
    Deng Y, Huang Y, Che Y, Yang Y, Yin X et al. 2021. Microbiome assembly for sulfonamide subsistence and the transfer of genetic determinants. ISME J. 15:102817–29
    [Google Scholar]
  44. 44.
    Ding C, Ma J, Jiang W, Zhao H, Shi M et al. 2021. Chironomidae larvae: a neglected enricher of antibiotic resistance genes in the food chain of freshwater environments. Environ. Pollut. 285:117486
    [Google Scholar]
  45. 45.
    EFSA Panel Biolog. Hazards (BIOHAZ), Koutsoumanis K, Allende A, Álvarez-Ordóñez A, Bolton D et al. 2021. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 19:6e06651
    [Google Scholar]
  46. 46.
    Ellabaan MMH, Munck C, Porse A, Imamovic L, Sommer MOA. 2021. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat. Commun. 12:12435
    [Google Scholar]
  47. 47.
    Entezari S, Al MA, Mostashari A, Ganjidoust H, Ayati B, Yang J 2022. Microplastics in urban waters and its effects on microbial communities: a critical review. Environ. Sci. Pollut. Res. 29:5988410–31
    [Google Scholar]
  48. 48.
    Finkelshtein A, Roth D, Ben Jacob E, Ingham CJ. 2015. Bacterial swarms recruit cargo bacteria to pave the way in toxic environments. mBio 6:3e00074-15
    [Google Scholar]
  49. 49.
    Flemming H-C, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17:4247–60
    [Google Scholar]
  50. 50.
    Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R et al. 2014. Bacterial phylogeny structures soil resistomes across habitats. Nature 509:7502612–16
    [Google Scholar]
  51. 51.
    Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G. 2012. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:60981107–11
    [Google Scholar]
  52. 52.
    García FC, Bestion E, Warfield R, Yvon-Durocher G. 2018. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. PNAS 115:4310989–94
    [Google Scholar]
  53. 53.
    Gekenidis M-T, Walsh F, Drissner D. 2021. Tracing antibiotic resistance genes along the irrigation water chain to chive: Does tap or surface water make a difference?. Antibiotics 10:91100
    [Google Scholar]
  54. 54.
    Ghaly TM, Gillings MR. 2022. New perspectives on mobile genetic elements: a paradigm shift for managing the antibiotic resistance crisis. Philos. Trans. R. Soc. B 377:184220200462
    [Google Scholar]
  55. 55.
    Goh E-B, Yim G, Tsui W, McClure J, Surette MG, Davies J. 2002. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. PNAS 99:2617025–30
    [Google Scholar]
  56. 56.
    González I, Ayuso-Sacido A, Anderson A, Genilloud O. 2005. Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol. Ecol. 54:3401–15
    [Google Scholar]
  57. 57.
    González-Alonso S, Merino LM, Esteban S, López de Alda M, Barceló D et al. 2017. Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environ. Pollut. 229:241–54
    [Google Scholar]
  58. 58.
    Griffin DW. 2007. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 20:3459–77
    [Google Scholar]
  59. 59.
    Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L et al. 2011. Selection of resistant bacteria at very low antibiotic concentrations. PLOS Pathog. 7:7e1002158
    [Google Scholar]
  60. 60.
    Haaf D, Six J, Doetterl S. 2021. Global patterns of geo-ecological controls on the response of soil respiration to warming. Nat. Clim. Chang. 11:7623–27
    [Google Scholar]
  61. 61.
    Hatje V, Sarin M, Sander SG, Omanović D, Ramachandran P et al. 2022. Emergent interactive effects of climate change and contaminants in coastal and ocean ecosystems. Front. Mar. Sci. 9:936109
    [Google Scholar]
  62. 62.
    Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L et al. 2019. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10:11124
    [Google Scholar]
  63. 63.
    Hernández J, González-Acuña D. 2016. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect. Ecol. Epidemiol. 6:32112
    [Google Scholar]
  64. 64.
    Hernando-Amado S, Coque TM, Baquero F, Martínez JL. 2019. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4:91432–42
    [Google Scholar]
  65. 65.
    Herren CM, Baym M. 2022. Decreased thermal niche breadth as a trade-off of antibiotic resistance. ISME J. 16:71843–52
    [Google Scholar]
  66. 66.
    Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A. 2002. β-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob. Agents Chemother. 46:93045–49
    [Google Scholar]
  67. 67.
    Hwengwere K, Paramel Nair H, Hughes KA, Peck LS, Clark MS, Walker CA. 2022. Antimicrobial resistance in Antarctica: Is it still a pristine environment?. Microbiome 10:171
    [Google Scholar]
  68. 68.
    IPCC 2018. Summary for policymakers. . In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty V Masson-Delmotte, P Zhai, H-O Pörtner, D Roberts, J Skea, et al. 8–24. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  69. 69.
    Janke RS, Kaftan F, Niehs SP, Scherlach K, Rodrigues A et al. 2022. Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages. ISME J. 16:122691–701
    [Google Scholar]
  70. 70.
    Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K et al. 2017. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 8:15784
    [Google Scholar]
  71. 71.
    Jutkina J, Marathe NP, Flach C-F, Larsson DGJ. 2018. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 616–17:172–78
    [Google Scholar]
  72. 72.
    Kabir RB, Zaman R, Tania NEJ, Asaduzzaman M, Haque A et al. 2023. Bacterial communities associated with the surfaces of the fresh fruits sold around Dhaka Medical College and Hospital and their anti-microbial profiles. Afr. J. Microbiol. Res. 17:11–7
    [Google Scholar]
  73. 73.
    Karkman A, Pärnänen K, Larsson DGJ. 2019. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 10:180
    [Google Scholar]
  74. 74.
    Kelsic ED, Zhao J, Vetsigian K, Kishony R. 2015. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 521:7553516–19
    [Google Scholar]
  75. 75.
    Kent AG, Garcia CA, Martiny AC. 2018. Increased biofilm formation due to high-temperature adaptation in marine Roseobacter. Nat. Microbiol. 3:9989–95
    [Google Scholar]
  76. 76.
    Khan AU, Maryam L, Zarrilli R. 2017. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol. 17:1101
    [Google Scholar]
  77. 77.
    Khan FA, Söderquist B, Jass J. 2019. Prevalence and diversity of antibiotic resistance genes in Swedish aquatic environments impacted by household and hospital wastewater. Front. Microbiol. 10:688
    [Google Scholar]
  78. 78.
    Kirstein IV, Kirmizi S, Wichels A, Garin-Fernandez A, Erler R et al. 2016. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120:1–8
    [Google Scholar]
  79. 79.
    Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S et al. 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. PNAS 115:15E3463–70
    [Google Scholar]
  80. 80.
    Klümper U, Recker M, Zhang L, Yin X, Zhang T et al. 2019. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 13:122927–37
    [Google Scholar]
  81. 81.
    Knapp CW, Dolfing J, Ehlert PAI, Graham DW. 2010. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44:2580–87
    [Google Scholar]
  82. 82.
    Kraupner N, Hutinel M, Schumacher K, Gray DA, Genheden M et al. 2021. Evidence for selection of multi-resistant E. coli by hospital effluent. Environ. Int. 150:106436
    [Google Scholar]
  83. 83.
    Kümmerer K. 2009. Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:4417–34
    [Google Scholar]
  84. 84.
    Ladau J, Shi Y, Jing X, He J-S, Chen L et al. 2018. Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes. mSystems 3:5e00167-18
    [Google Scholar]
  85. 85.
    Larsen J, Raisen CL, Ba X, Sadgrove NJ, Padilla-González GF et al. 2022. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 602:7895135–41
    [Google Scholar]
  86. 86.
    Larsson DGJ, Flach C-F. 2022. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20:5257–69
    [Google Scholar]
  87. 87.
    Leung MHY, Tong X, Bøifot KO, Bezdan D, Butler DJ et al. 2021. Characterization of the public transit air microbiome and resistome reveals geographical specificity. Microbiome 9:1112
    [Google Scholar]
  88. 88.
    Lewis SL, Maslin MA. 2015. Defining the anthropocene. Nature 519:7542171–80
    [Google Scholar]
  89. 89.
    Li W, Liu C, Ho HC, Shi L, Zeng Y et al. 2023. Association between antibiotic resistance and increasing ambient temperature in China: an ecological study with nationwide panel data. Lancet Reg. Health West. Pac. 30:100628
    [Google Scholar]
  90. 90.
    Liang H, de Haan WP, Cerdà-Domènech M, Méndez J, Lucena F et al. 2023. Detection of faecal bacteria and antibiotic resistance genes in biofilms attached to plastics from human-impacted coastal areas. Environ. Pollut. 319:120983
    [Google Scholar]
  91. 91.
    Lindqvist LL, Jarmusch SA, Sonnenschein EC, Strube ML, Kim J et al. 2023. Tropodithietic acid, a multifunctional antimicrobial, facilitates adaption and colonization of the producer, Phaeobacter piscinae. mSphere 8:e00517-22
    [Google Scholar]
  92. 92.
    Liu G, Bogaj K, Bortolaia V, Olsen JE, Thomsen LE. 2019. Antibiotic-induced, increased conjugative transfer is common to diverse naturally occurring ESBL plasmids in Escherichia coli. Front. Microbiol. 10:2119
    [Google Scholar]
  93. 93.
    Lopes R, Fuentes-Castillo D, Fontana H, Rodrigues L, Dantas K et al. 2021. Endophytic lifestyle of global clones of extended-spectrum β-lactamase-producing priority pathogens in fresh vegetables: a Trojan horse strategy favoring human colonization?. mSystems 6:1e01125-20
    [Google Scholar]
  94. 94.
    MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. 2018. Antibiotic resistance increases with local temperature. Nat. Clim. Chang. 8:6510–14
    [Google Scholar]
  95. 95.
    Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I et al. 2019. Man-made microbial resistances in built environments. Nat. Commun. 10:1968
    [Google Scholar]
  96. 96.
    Marshall CG, Lessard IA, Park I-S, Wright GD. 1998. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob. Agents Chemother. 42:92215–20
    [Google Scholar]
  97. 97.
    Martínez JL, Coque TM, Baquero F. 2015. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 13:2116–23
    [Google Scholar]
  98. 98.
    Martiny H-M, Munk P, Brinch C, Aarestrup FM, Petersen TN. 2022. A curated data resource of 214K metagenomes for characterization of the global antimicrobial resistome. PLOS Biol. 20:9e3001792
    [Google Scholar]
  99. 99.
    McCann CM, Christgen B, Roberts JA, Su J-Q, Arnold KE et al. 2019. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environ. Int. 125:497–504
    [Google Scholar]
  100. 100.
    Mesak LR, Miao V, Davies J. 2008. Effects of subinhibitory concentrations of antibiotics on SOS and DNA repair gene expression in Staphylococcus aureus. Antimicrob. Agents Chemother. 52:93394–97
    [Google Scholar]
  101. 101.
    Mira P, Lozano-Huntelman N, Johnson A, Savage VM, Yeh P. 2022. Evolution of antibiotic resistance impacts optimal temperature and growth rate in Escherichia coli and Staphylococcus epidermidis. J. Appl. Microbiol. 133:42655–67
    [Google Scholar]
  102. 102.
    Moon K, Jeon JH, Kang I, Park KS, Lee K et al. 2020. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. Microbiome 8:175
    [Google Scholar]
  103. 103.
    Mughini-Gras L, van der Plaats RQJ, van der Wielen PWJJ, Bauerlein PS, de Roda Husman AM. 2021. Riverine microplastic and microbial community compositions: a field study in the Netherlands. Water Res. 192:116852
    [Google Scholar]
  104. 104.
    Munk P, Brinch C, Møller FD, Petersen TN, Hendriksen RS et al. 2022. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat. Commun. 13:17251
    [Google Scholar]
  105. 105.
    Murray AK, Zhang L, Yin X, Zhang T, Buckling A et al. 2018. Novel insights into selection for antibiotic resistance in complex microbial communities. mBio 9:4e00969-18
    [Google Scholar]
  106. 106.
    Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK et al. 2022. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13:1342
    [Google Scholar]
  107. 107.
    Nielsen TK, Browne PD, Hansen LH. 2022. Antibiotic resistance genes are differentially mobilized according to resistance mechanism. GigaScience 11:giac072
    [Google Scholar]
  108. 108.
    Numberger D, Zoccarato L, Woodhouse J, Ganzert L, Sauer S et al. 2022. Urbanization promotes specific bacteria in freshwater microbiomes including potential pathogens. Sci. Total Environ. 845:157321
    [Google Scholar]
  109. 109.
    One Health High-Lev. Expert Panel (OHHLEP), Adisasmito WB, Almuhairi S, Behravesh CB, Bilivogui P et al. 2022. One Health: a new definition for a sustainable and healthy future. PLOS Pathog. 18:6e1010537
    [Google Scholar]
  110. 110.
    Pärnänen K, Karkman A, Tamminen M, Lyra C, Hultman J et al. 2016. Evaluating the mobility potential of antibiotic resistance genes in environmental resistomes without metagenomics. Sci. Rep. 6:35790
    [Google Scholar]
  111. 111.
    Pärnänen KMM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D et al. 2019. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 5:3eaau9124
    [Google Scholar]
  112. 112.
    Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31:4e00088-17
    [Google Scholar]
  113. 113.
    Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR. 2021. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. npj Biofilms Microbiomes 7:180
    [Google Scholar]
  114. 114.
    Pishchany G, Kolter R. 2020. On the possible ecological roles of antimicrobials. Mol. Microbiol. 113:3580–87
    [Google Scholar]
  115. 115.
    Poirel L, Kämpfer P, Nordmann P. 2002. Chromosome-encoded Ambler class A β-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 46:124038–40
    [Google Scholar]
  116. 116.
    Poirel L, Rodriguez-Martinez J-M, Mammeri H, Liard A, Nordmann P. 2005. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob. Agents Chemother. 49:83523–25
    [Google Scholar]
  117. 117.
    Posada-Perlaza CE, Ramírez-Rojas A, Porras P, Adu-Oppong B, Botero-Coy A-M et al. 2019. Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes. Sci. Rep. 9:111764
    [Google Scholar]
  118. 118.
    Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35:9833–44
    [Google Scholar]
  119. 119.
    Reis AC, Kolvenbach BA, Nunes OC, Corvini PFX. 2020. Biodegradation of antibiotics: the new resistance determinants—part II. N. Biotechnol. 54:13–27
    [Google Scholar]
  120. 120.
    Rijkers R, Rousk J, Aerts R, Sigurdsson BD, Weedon JT. 2022. Optimal growth temperature of Arctic soil bacterial communities increases under experimental warming. Glob. Chang. Biol. 28:206050–64
    [Google Scholar]
  121. 121.
    Rocklöv J, Dubrow R. 2020. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 21:5479–83
    [Google Scholar]
  122. 122.
    Rodó X, Curcoll R, Robinson M, Ballester J, Burns JC et al. 2014. Tropospheric winds from northeastern China carry the etiologic agent of Kawasaki disease from its source to Japan. PNAS 111:227952–57
    [Google Scholar]
  123. 123.
    Rodríguez-Verdugo A, Gaut BS, Tenaillon O. 2013. Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evol. Biol. 13:150
    [Google Scholar]
  124. 124.
    Rodríguez-Verdugo A, Lozano-Huntelman N, Cruz-Loya M, Savage V, Yeh P. 2020. Compounding effects of climate warming and antibiotic resistance. iScience 23:4101024
    [Google Scholar]
  125. 125.
    Rodríguez-Verdugo A, Tenaillon O, Gaut BS. 2016. First-step mutations during adaptation restore the expression of hundreds of genes. Mol. Biol. Evol. 33:125–39
    [Google Scholar]
  126. 126.
    Salazar C, Giménez M, Riera N, Parada A, Puig J et al. 2022. Human microbiota drives hospital-associated antimicrobial resistance dissemination in the urban environment and mirrors patient case rates. Microbiome 10:1208
    [Google Scholar]
  127. 127.
    Sanchez-Cid C, Guironnet A, Keuschnig C, Wiest L, Vulliet E, Vogel TM. 2022. Gentamicin at sub-inhibitory concentrations selects for antibiotic resistance in the environment. ISME Commun. 2:129
    [Google Scholar]
  128. 128.
    Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA et al. 2015. Gut microbiome of an 11th century A.D. pre-Columbian Andean mummy. PLOS ONE 10:9e0138135
    [Google Scholar]
  129. 129.
    Schloss PD. 2018. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio 9:3e00525-18
    [Google Scholar]
  130. 130.
    Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y et al. 2013. Distribution of antibiotic resistance genes in glacier environments. Environ. Microbiol. Rep. 5:1127–34
    [Google Scholar]
  131. 131.
    Seto KC, Fragkias M, Güneralp B, Reilly MK. 2011. A meta-analysis of global urban land expansion. PLOS ONE 6:8e23777
    [Google Scholar]
  132. 132.
    Sheinman M, Arkhipova K, Arndt PF, Dutilh BE, Hermsen R, Massip F. 2021. Identical sequences found in distant genomes reveal frequent horizontal transfer across the bacterial domain. eLife 10:e62719
    [Google Scholar]
  133. 133.
    Sheridan EA, Fonvielle JA, Cottingham S, Zhang Y, Dittmar T et al. 2022. Plastic pollution fosters more microbial growth in lakes than natural organic matter. Nat. Commun. 13:14175
    [Google Scholar]
  134. 134.
    Sierra MA, Danko DC, Sandoval TA, Pishchany G, Moncada B et al. 2020. The microbiomes of seven lichen genera reveal host specificity, a reduced core community and potential as source of antimicrobials. Front. Microbiol. 11:398
    [Google Scholar]
  135. 135.
    Sommer MOA, Dantas G, Church GM. 2009. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:59441128–31
    [Google Scholar]
  136. 136.
    Song J, Jongmans-Hochschulz E, Mauder N, Imirzalioglu C, Wichels A, Gerdts G. 2020. The travelling particles: Investigating microplastics as possible transport vectors for multidrug resistant E. coli in the Weser estuary (Germany). Sci. Total Environ. 720:137603
    [Google Scholar]
  137. 137.
    Spencer SJ, Tamminen MV, Preheim SP, Guo MT, Briggs AW et al. 2016. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10:2427–36
    [Google Scholar]
  138. 138.
    Stalder T, Press MO, Sullivan S, Liachko I, Top EM. 2019. Linking the resistome and plasmidome to the microbiome. ISME J. 13:102437–46
    [Google Scholar]
  139. 139.
    Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:62231259855
    [Google Scholar]
  140. 140.
    Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH et al. 2006. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ. Microbiol. 8:91510–14
    [Google Scholar]
  141. 141.
    Torres-Cortés G, Millán V, Ramírez-Saad HC, Nisa-Martínez R, Toro N, Martínez-Abarca F. 2011. Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. Environ. Microbiol. 13:41101–14
    [Google Scholar]
  142. 142.
    Urai AE, Kelly C. 2023. Rethinking academia in a time of climate crisis. eLife 12:e84991
    [Google Scholar]
  143. 143.
    Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP. 2018. A reservoir of “historical” antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6:140
    [Google Scholar]
  144. 144.
    von Wintersdorff CJH, Penders J, Stobberingh EE, Oude Lashof AML, Hoebe CJPA et al. 2014. High rates of antimicrobial drug resistance gene acquisition after international travel, the Netherlands. Emerg. Infect. Dis. 20:4649–57
    [Google Scholar]
  145. 145.
    Wang F-H, Qiao M, Chen Z, Su J-Q, Zhu Y-G. 2015. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J. Hazard. Mater. 299:215–21
    [Google Scholar]
  146. 146.
    Wang S, Gao X, Gao Y, Li Y, Cao M et al. 2017. Tetracycline resistance genes identified from distinct soil environments in China by functional metagenomics. Front. Microbiol. 8:1406
    [Google Scholar]
  147. 147.
    Wang Y, Lu J, Zhang S, Li J, Mao L et al. 2021. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. ISME J. 15:92493–508
    [Google Scholar]
  148. 148.
    Watson MJ, Watson DM. 2020. Post-Anthropocene conservation. Trends Ecol. Evol. 35:11–3
    [Google Scholar]
  149. 149.
    Wright GD. 2019. Environmental and clinical antibiotic resistomes, same only different. Curr. Opin. Microbiol. 51:57–63
    [Google Scholar]
  150. 150.
    Yang Y, Jiang X, Chai B, Ma L, Li B et al. 2016. ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics 32:152346–51
    [Google Scholar]
  151. 151.
    Yergeau E, Lawrence JR, Waiser MJ, Korber DR, Greer CW. 2010. Metatranscriptomic analysis of the response of river biofilms to pharmaceutical products, using anonymous DNA microarrays. Appl. Environ. Microbiol. 76:165432–39
    [Google Scholar]
  152. 152.
    Yergeau E, Sanschagrin S, Waiser MJ, Lawrence JR, Greer CW. 2012. Sub-inhibitory concentrations of different pharmaceutical products affect the meta-transcriptome of river biofilm communities cultivated in rotating annular reactors. Environ. Microbiol. Rep. 4:3350–59
    [Google Scholar]
  153. 153.
    Yim G, Wang HH, Davies J. 2007. Antibiotics as signalling molecules. Philos. Trans. R Soc. B 362:14831195–200
    [Google Scholar]
  154. 154.
    Yoon E-J, Goussard S, Touchon M, Krizova L, Cerqueira G et al. 2014. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3′)-VI. mBio 5:5e01972-14
    [Google Scholar]
  155. 155.
    Zhang A-N, Gaston JM, Dai CL, Zhao S, Poyet M et al. 2021. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat. Commun. 12:14765
    [Google Scholar]
  156. 156.
    Zhang AN, Hou C-J, Negi M, Li L-G, Zhang T. 2020. Online searching platform for the antibiotic resistome in bacterial tree of life and global habitats. FEMS Microbiol. Ecol. 96:7fiaa107
    [Google Scholar]
  157. 157.
    Zhang Y, Gu AZ, He M, Li D, Chen J. 2017. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ. Sci. Technol. 51:1570–80
    [Google Scholar]
  158. 158.
    Zhang Y, Hao X, Thomas BW, McAllister TA, Workentine M et al. 2023. Soil antibiotic resistance genes accumulate at different rates over four decades of manure application. J. Hazard. Mater. 443:Part B130136
    [Google Scholar]
  159. 159.
    Zhang Z, Wang Y, Chen B, Lei C, Yu Y et al. 2022. Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms. Environ. Pollut. 306:119396
    [Google Scholar]
  160. 160.
    Zhang Z, Zhang Q, Wang T, Xu N, Lu T et al. 2022. Assessment of global health risk of antibiotic resistance genes. Nat. Commun. 13:11553
    [Google Scholar]
  161. 161.
    Zhao J, Jin L, Wu D, Xie J-W, Li J et al. 2022. Global airborne bacterial community–interactions with Earth's microbiomes and anthropogenic activities. PNAS 119:42e2204465119
    [Google Scholar]
  162. 162.
    Zheng D, Yin G, Liu M, Hou L, Yang Y et al. 2022. Global biogeography and projection of soil antibiotic resistance genes. Sci. Adv. 8:46eabq8015
    [Google Scholar]
  163. 163.
    Zhu D, Ma J, Li G, Rillig MC, Zhu Y-G. 2022. Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens. ISME J. 16:2521–32
    [Google Scholar]
  164. 164.
    Zhu Y-G, Gillings M, Simonet P, Stekel D, Banwart S, Penuelas J. 2017. Microbial mass movements. Science 357:63561099–100
    [Google Scholar]
  165. 165.
    Zhu Y-G, Gillings M, Simonet P, Stekel D, Banwart S, Penuelas J. 2018. Human dissemination of genes and microorganisms in Earth's Critical Zone. Glob. Chang. Biol. 24:41488–99
    [Google Scholar]
  166. 166.
    Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X et al. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. PNAS 110:93435–40
    [Google Scholar]
  167. 167.
    Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y et al. 2017. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2:16270
    [Google Scholar]
/content/journals/10.1146/annurev-genet-022123-113904
Loading
/content/journals/10.1146/annurev-genet-022123-113904
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error