1932

Abstract

A transition from qualitative to quantitative descriptors of morphology has been facilitated through the growing field of morphometrics, representing the conversion of shapes and patterns into numbers. The analysis of plant form at the macromorphological scale using morphometric approaches quantifies what is commonly referred to as a phenotype. Quantitative phenotypic analysis of individuals with contrasting genotypes in turn provides a means to establish links between genes and shapes. The path from a gene to a morphological phenotype is, however, not direct, with instructive information progressing both across multiple scales of biological complexity and through nonintuitive feedback, such as mechanical signals. In this review, we explore morphometric approaches used to perform whole-plant phenotyping and quantitative approaches in capture processes in the mesoscales, which bridge the gaps between genes and shapes in plants. Quantitative frameworks involving both the computational simulation and the discretization of data into networks provide a putative path to predicting emergent shape from underlying genetic programs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-022620-094553
2020-11-23
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/genet/54/1/annurev-genet-022620-094553.html?itemId=/content/journals/10.1146/annurev-genet-022620-094553&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Arabidopsis Interactome Mapp. Consort 2011. Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–7
    [Google Scholar]
  2. 2. 
    Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–31
    [Google Scholar]
  3. 3. 
    Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA 2009. A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol 150:700–9
    [Google Scholar]
  4. 4. 
    Backhaus A, Kuwabara A, Bauch M, Monk N, Sanguinetti G, Fleming A 2010. LEAFPROCESSOR: a new leaf phenotyping tool using contour bending energy and shape cluster analysis. New Phytol 187:251–61
    [Google Scholar]
  5. 5. 
    Bao Y, Aggarwal P, Robbins NE, Sturrock CJ, Thompson MC et al. 2014. Plant roots use a patterning mechanism to position lateral root branches toward available water. PNAS 111:9319–24
    [Google Scholar]
  6. 6. 
    Barabási A-L. 2016. Network Science Cambridge, UK: Cambridge Univ. Press
  7. 7. 
    Barabási A-L, Oltvai ZN. 2004. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5:101–13
    [Google Scholar]
  8. 8. 
    Barthélemy M. 2011. Spatial networks. Phys. Rep. 499:1–101
    [Google Scholar]
  9. 9. 
    Bassel GW, Smith RS. 2016. Quantifying morphogenesis in plants in 4D. Curr. Opin. Plant Biol. 29:87–94
    [Google Scholar]
  10. 10. 
    Bassel GW, Stamm P, Mosca G, de Reuille PB, Gibbs DJ et al. 2014. Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo. PNAS 111:8685–90
    [Google Scholar]
  11. 11. 
    Biot E, Cortizo M, Burguet J, Kiss A, Oughou M et al. 2016. Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis. Development 143:3417–28
    [Google Scholar]
  12. 12. 
    Birnbaum KD. 2018. Power in numbers: single-cell RNA-seq strategies to dissect complex tissues. Annu. Rev. Genet. 52:203–21
    [Google Scholar]
  13. 13. 
    Bizzarri M, Brash DE, Briscoe J, Grieneisen VA, Stern CD, Levin M 2019. A call for a better understanding of causation in cell biology. Nat. Rev. Mol. Cell Biol. 20:261–62
    [Google Scholar]
  14. 14. 
    Boudaoud A, Burian A, Borowska-Wykręt D, Uyttewaal M, Wrzalik R et al. 2014. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat. Protoc. 9:457–63
    [Google Scholar]
  15. 15. 
    Breuer D, Nowak J, Ivakov A, Somssich M, Persson S, Nikoloski Z 2017. System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells. PNAS 114:E5741–49
    [Google Scholar]
  16. 16. 
    Brewer MT, Lang L, Fujimura K, Dujmovic N, Gray S, van der Knaap E 2006. Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiol 141:15–25
    [Google Scholar]
  17. 17. 
    Bringmann M, Bergmann DC. 2017. Tissue-wide mechanical forces influence the polarity of stomatal stem cells in Arabidopsis. Curr. Biol 27:877–83
    [Google Scholar]
  18. 18. 
    Bucksch A. 2014. A practical introduction to skeletons for the plant sciences. Appl. Plant Sci. 2:1400005
    [Google Scholar]
  19. 19. 
    Chan Y-HM, Marshall WF. 2012. How cells know the size of their organelles. Science 337:1186–89
    [Google Scholar]
  20. 20. 
    Chitwood DH, Headland LR, Kumar R, Peng J, Maloof JN, Sinha NR 2012. The developmental trajectory of leaflet morphology in wild tomato species. Plant Physiol 158:1230–40
    [Google Scholar]
  21. 21. 
    Chitwood DH, Ranjan A, Kumar R, Ichihashi Y, Zumstein K et al. 2014. Resolving distinct genetic regulators of tomato leaf shape within a heteroblastic and ontogenetic context. Plant Cell 26:3616–29
    [Google Scholar]
  22. 22. 
    Chitwood DH, Sinha NR. 2016. Evolutionary and environmental forces sculpting leaf development. Curr. Biol. 26:R297–306
    [Google Scholar]
  23. 23. 
    Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR et al. 2011. Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–65
    [Google Scholar]
  24. 24. 
    Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37
    [Google Scholar]
  25. 25. 
    Coen ES, Rolland-Lagan A-G, Matthews M, Bangham JA, Prusinkiewicz P 2004. The genetics of geometry. PNAS 101:4728–35
    [Google Scholar]
  26. 26. 
    Conn A, Pedmale UV, Chory J, Navlakha S 2017. High-resolution laser scanning reveals plant architectures that reflect universal network design principles. Cell Syst 5:53–62.e3
    [Google Scholar]
  27. 27. 
    Davies JA. 2008. Synthetic morphology: prospects for engineered, self‐constructing anatomies. J. Anat. 212:707–19
    [Google Scholar]
  28. 28. 
    de Boer HJ, Price CA, Wagner‐Cremer F, Dekker SC, Franks PJ, Veneklaas EJ 2016. Optimal allocation of leaf epidermal area for gas exchange. New Phytol 210:1219–28
    [Google Scholar]
  29. 29. 
    de Reuille PB, Routier-Kierzkowska A-L, Kierzkowski D, Bassel GW, Schüpbach T et al. 2015. MorphoGraphX: a platform for quantifying morphogenesis in 4D. eLife 4:e05864
    [Google Scholar]
  30. 30. 
    Dhondt S, Vanhaeren H, Van Loo D, Cnudde V, Inzé D 2010. Plant structure visualization by high-resolution X-ray computed tomography. Trends Plant Sci 15:419–22
    [Google Scholar]
  31. 31. 
    Dhondt S, Wuyts N, Inzé D 2013. Cell to whole-plant phenotyping: The best is yet to come. Trends Plant Sci 18:428–39
    [Google Scholar]
  32. 32. 
    Duran-Nebreda S, Bassel GW. 2017. Bridging scales in plant biology using network science. Trends Plant Sci 22:1001–3
    [Google Scholar]
  33. 33. 
    El Zawily AM, Schwarzländer M, Finkemeier I, Johnston IG, Benamar A et al. 2014. FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis. Plant Physiol 166:808–28
    [Google Scholar]
  34. 34. 
    Esau K. 1965. Plant Anatomy Hoboken, NJ: Wiley
  35. 35. 
    Estelle MA, Somerville C. 1987. Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol. Gen. Genet. 206:200–6
    [Google Scholar]
  36. 36. 
    Fahlgren N, Gehan MA, Baxter I 2015. Lights, camera, action: High-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 24:93–99
    [Google Scholar]
  37. 37. 
    Failmezger H, Lempe J, Khadem N, Cartolano M, Tsiantis M, Tresch A 2018. MowJoe: a method for automated-high throughput dissected leaf phenotyping. Plant Methods 14:27
    [Google Scholar]
  38. 38. 
    Federici F, Dupuy L, Laplaze L, Heisler M, Haseloff J 2012. Integrated genetic and computation methods for in planta cytometry. Nat. Methods 9:483–85
    [Google Scholar]
  39. 39. 
    Freeman LC, Borgatti SP, White DR 1991. Centrality in valued graphs: a measure of betweenness based on network flow. Soc. Netw. 13:141–54
    [Google Scholar]
  40. 40. 
    French A, Ubeda-Tomás S, Holman TJ, Bennett MJ, Pridmore T 2009. High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol 150:1784–95
    [Google Scholar]
  41. 41. 
    Gibson WT, Veldhuis JH, Rubinstein B, Cartwright HN, Perrimon N et al. 2011. Control of the mitotic cleavage plane by local epithelial topology. Cell 144:427–38
    [Google Scholar]
  42. 42. 
    Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S et al. 2011. Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7:2
    [Google Scholar]
  43. 43. 
    Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M et al. 2008. Developmental patterning by mechanical signals in Arabidopsis. . Science 322:1650–55
    [Google Scholar]
  44. 44. 
    Hamilton ES, Jensen GS, Maksaev G, Katims A, Sherp AM, Haswell ES 2015. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350:438–41
    [Google Scholar]
  45. 45. 
    Haralick RM, Shapiro LG. 1985. Image segmentation techniques. Comput. Vis. Graph. Image Proc. 29:100–32
    [Google Scholar]
  46. 46. 
    Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F 2011. HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinform 12:148
    [Google Scholar]
  47. 47. 
    Hay A, Tsiantis M. 2006. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat. Genet 38:942–47
    [Google Scholar]
  48. 48. 
    Herzlinger G, Grosman L. 2018. AGMT3-D: a software for 3-D landmarks-based geometric morphometric shape analysis of archaeological artifacts. PLOS ONE 13:e0207890
    [Google Scholar]
  49. 49. 
    Hill K, Porco S, Lobet G, Zappala S, Mooney S et al. 2013. Root systems biology: integrative modeling across scales, from gene regulatory networks to the rhizosphere. Plant Physiol 163:1487–503
    [Google Scholar]
  50. 50. 
    Jackson MD, Duran-Nebreda S, Bassel GW 2017. Network-based approaches to quantify multicellular development. J. R. Soc. Interface 14:20170484
    [Google Scholar]
  51. 51. 
    Jackson MBD, Duran-Nebreda S, Kierzkowski D, Strauss S, Xu H et al. 2019. Global topological order emerges through local mechanical control of cell divisions in the Arabidopsis shoot apical meristem. Cell Syst 8:53–65.e3
    [Google Scholar]
  52. 52. 
    Jackson MD, Xu H, Duran-Nebreda S, Stamm P, Bassel GW 2017. Topological analysis of multicellular complexity in the plant hypocotyl. eLife 6:e26023
    [Google Scholar]
  53. 53. 
    Jacques E, Buytaert J, Wells DM, Lewandowski M, Bennett MJ et al. 2013. MicroFilament Analyzer, an image analysis tool for quantifying fibrillar orientation, reveals changes in microtubule organization during gravitropism. Plant J 74:1045–58
    [Google Scholar]
  54. 54. 
    Kaminuma E, Yoshizumi T, Wada T, Matsui M, Toyoda T 2008. Quantitative analysis of heterogeneous spatial distribution of Arabidopsis leaf trichomes using micro X‐ray computed tomography. Plant J 56:470–82
    [Google Scholar]
  55. 55. 
    Kennaway R, Coen E, Green A, Bangham A 2011. Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLOS Comput. Biol. 7:e1002071
    [Google Scholar]
  56. 56. 
    Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L, Weber A, Bayer E et al. 2012. Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–99
    [Google Scholar]
  57. 57. 
    Kierzkowski D, Runions A, Vuolo F, Strauss S, Lymbouridou R et al. 2019. A growth-based framework for leaf shape development and diversity. Cell 177:1405–18.e17
    [Google Scholar]
  58. 58. 
    Klingenberg CP. 2011. MORPHOJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11:353–57
    [Google Scholar]
  59. 59. 
    Komis G, Novák D, Ovečka M, Šamajová O, Šamaj J 2018. Advances in imaging plant cell dynamics. Plant Physiol 176:80–93
    [Google Scholar]
  60. 60. 
    Korte A, Farlow A. 2013. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29
    [Google Scholar]
  61. 61. 
    Kurihara D, Mizuta Y, Sato Y, Higashiyama T 2015. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142:4168–79
    [Google Scholar]
  62. 62. 
    Landrein B, Ingram G. 2019. Connected through the force: mechanical signals in plant development. J. Exp. Bot. 70:3507–19
    [Google Scholar]
  63. 63. 
    Lee K, Avondo J, Morrison H, Blot L, Stark M et al. 2006. Visualizing plant development and gene expression in three dimensions using optical projection tomography. Plant Cell 18:2145–56
    [Google Scholar]
  64. 64. 
    Lestrel PE. 1997. Fourier Descriptors and Their Applications in Biology Cambridge, UK: Cambridge Univ. Press
  65. 65. 
    Li M, Yuan B. 2005. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognit. Lett. 26:527–32
    [Google Scholar]
  66. 66. 
    Liu M, Yadav RK, Roy‐Chowdhury A, Reddy GV 2010. Automated tracking of stem cell lineages of Arabidopsis shoot apex using local graph matching. Plant J 62:135–47
    [Google Scholar]
  67. 67. 
    Lobet G, Pagès L, Draye X 2011. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39
    [Google Scholar]
  68. 68. 
    Lohmann G. 1983. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. J. Int. Assoc. Math. Geol. 15:659–72
    [Google Scholar]
  69. 69. 
    Louveaux M, Julien J-D, Mirabet V, Boudaoud A, Hamant O 2016. Cell division plane orientation based on tensile stress in Arabidopsis thaliana. . PNAS 113:E4294–303
    [Google Scholar]
  70. 70. 
    Lynch JP, Brown KM. 2012. New roots for agriculture: exploiting the root phenome. Philos. Trans. R. Soc. B 367:1598–604
    [Google Scholar]
  71. 71. 
    Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett M et al. 2012. RooTrak: automated recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiol 158:561–69
    [Google Scholar]
  72. 72. 
    Maloof JN, Nozue K, Mumbach MR, Palmer CM 2013. LeafJ: an ImageJ plugin for semi-automated leaf shape measurement. JoVE 71:e50028
    [Google Scholar]
  73. 73. 
    Mathers AW, Hepworth C, Baillie AL, Sloan J, Jones H et al. 2018. Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography. Plant Methods 14:99
    [Google Scholar]
  74. 74. 
    Mathur J, Chua N-H. 2000. Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. Plant Cell 12:465–77
    [Google Scholar]
  75. 75. 
    Mathur J, Mathur N, Kernebeck B, Hülskamp M 2003. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15:1632–45
    [Google Scholar]
  76. 76. 
    Michelin G, Refahi Y, Wightman R, Jönsson H, Traas J et al. 2016. Spatio-temporal registration of 3D microscopy image sequences of Arabidopsis floral meristems. Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)1127–30 New York: IEEE
    [Google Scholar]
  77. 77. 
    Minervini M, Giuffrida MV, Perata P, Tsaftaris SA 2017. Phenotiki: an open software and hardware platform for affordable and easy image‐based phenotyping of rosette‐shaped plants. Plant J 90:204–16
    [Google Scholar]
  78. 78. 
    Mitteroecker P, Gunz P. 2009. Advances in geometric morphometrics. Evol. Biol. 36:235–47
    [Google Scholar]
  79. 79. 
    Montenegro-Johnson TD, Stamm P, Strauss S, Topham AT, Tsagris M et al. 2015. Digital single-cell analysis of plant organ development using 3DCellAtlas. Plant Cell 27:1018–33
    [Google Scholar]
  80. 80. 
    Montenegro-Johnson TD, Strauss S, Jackson MD, Walker L, Smith RS, Bassel GW 2019. 3DCellAtlas Meristem: a tool for the global cellular annotation of shoot apical meristems. Plant Methods 15:33
    [Google Scholar]
  81. 81. 
    Mora C, Kwan A. 2000. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement Concrete Res 30:351–58
    [Google Scholar]
  82. 82. 
    Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J-P 2010. Community structure in time-dependent, multiscale, and multiplex networks. Science 328:876–78
    [Google Scholar]
  83. 83. 
    Nagel KA, Putz A, Gilmer F, Heinz K, Fischbach A et al. 2012. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct. Plant Biol. 39:891–904
    [Google Scholar]
  84. 84. 
    Newman ME. 2005. A measure of betweenness centrality based on random walks. Soc. Netw. 27:39–54
    [Google Scholar]
  85. 85. 
    Niklas KJ. 1999. Evolutionary walks through a land plant morphospace. J. Exp. Bot. 50:39–52
    [Google Scholar]
  86. 86. 
    Orman-Ligeza B, Morris EC, Parizot B, Lavigne T, Babé A et al. 2018. The xerobranching response represses lateral root formation when roots are not in contact with water. Curr. Biol. 28:3165–73.e5
    [Google Scholar]
  87. 87. 
    Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M 2019. Quantitative analysis of plant ER architecture and dynamics. Nat. Commun. 10:984
    [Google Scholar]
  88. 88. 
    Paproki A, Sirault X, Berry S, Furbank R, Fripp J 2012. A novel mesh processing based technique for 3D plant analysis. BMC Plant Biol 12:63
    [Google Scholar]
  89. 89. 
    Paulus S, Dupuis J, Mahlein A-K, Kuhlmann H 2013. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinform 14:238
    [Google Scholar]
  90. 90. 
    Perico C, Sparkes I. 2018. Plant organelle dynamics: cytoskeletal control and membrane contact sites. New Phytol 220:381–94
    [Google Scholar]
  91. 91. 
    Phillips MJ, Voeltz GK. 2016. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17:69–82
    [Google Scholar]
  92. 92. 
    Pincus Z, Theriot J. 2007. Comparison of quantitative methods for cell‐shape analysis. J. Microsc. 227:140–56
    [Google Scholar]
  93. 93. 
    Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM et al. 2010. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. . Science 329:223–26
    [Google Scholar]
  94. 94. 
    Prokhnevsky AI, Peremyslov VV, Dolja VV 2008. Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. PNAS 105:19744–49
    [Google Scholar]
  95. 95. 
    Prusinkiewicz P, Lindenmayer A. 2012. The Algorithmic Beauty of Plants New York: Springer-Verlag
  96. 96. 
    Reich PB, Walters M, Tjoelker M, Vanderklein D, Buschena C 1998. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct. Ecol. 12:395–405
    [Google Scholar]
  97. 97. 
    Rellán-Álvarez R, Lobet G, Lindner H, Pradier P-L, Sebastian J et al. 2015. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. eLife 4:e07597
    [Google Scholar]
  98. 98. 
    Rhee SY, Birnbaum KD, Ehrhardt DW 2019. Towards building a plant cell atlas. Trends Plant Sci 24:303–10
    [Google Scholar]
  99. 99. 
    Richtsmeier JT, Lele SR, Cole TM III 2005. Landmark morphometrics and the analysis of variation. Variation B Hallgrímsson, BK Hall 49–69 New York: Elsevier
    [Google Scholar]
  100. 100. 
    Rizk A, Paul G, Incardona P, Bugarski M, Mansouri M et al. 2014. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nat. Protoc. 9:586–96
    [Google Scholar]
  101. 101. 
    Roeder AH, Tarr PT, Tobin C, Zhang X, Chickarmane V et al. 2011. Computational morphodynamics of plants: integrating development over space and time. Nat. Rev. Mol. Cell Biol. 12:265–73
    [Google Scholar]
  102. 102. 
    Rohlf FJ. 1990. Morphometrics. Annu. Rev. Ecol. Syst. 21:299–316
    [Google Scholar]
  103. 103. 
    Rosas U, Cibrian-Jaramillo A, Ristova D, Banta JA, Gifford ML et al. 2013. Integration of responses within and across Arabidopsis natural accessions uncovers loci controlling root systems architecture. PNAS 110:15133–38
    [Google Scholar]
  104. 104. 
    Sahlin P, Jönsson H. 2010. A modeling study on how cell division affects properties of epithelial tissues under isotropic growth. PLOS ONE 5:e11750
    [Google Scholar]
  105. 105. 
    Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A et al. 2014. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3:e01967
    [Google Scholar]
  106. 106. 
    Sapala A, Runions A, Routier-Kierzkowska A-L, Gupta MD, Hong L et al. 2018. Why plants make puzzle cells, and how their shape emerges. eLife 7:e32794
    [Google Scholar]
  107. 107. 
    Savriama Y. 2018. A step-by-step guide for geometric morphometrics of floral symmetry. Front. Plant Sci. 9:1433
    [Google Scholar]
  108. 108. 
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:676–82
    [Google Scholar]
  109. 109. 
    Schmidt T, Pasternak T, Liu K, Blein T, Aubry‐Hivet D et al. 2014. The iRoCS Toolbox–3D analysis of the plant root apical meristem at cellular resolution. Plant J 77:806–14
    [Google Scholar]
  110. 110. 
    Slice DE. 2007. Geometric morphometrics. Annu. Rev. Anthropol. 36:261–81
    [Google Scholar]
  111. 111. 
    Souter T, Cornette R, Pedraza J, Hutchinson J, Baylac M 2010. Two applications of 3D semi-landmark morphometrics implying different template designs: the theropod pelvis and the shrew skull. C. R. Palevol 9:411–22
    [Google Scholar]
  112. 112. 
    Suetsugu N, Wada M. 2007. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol. Chem. 388:927–35
    [Google Scholar]
  113. 113. 
    Sultan SE. 2000. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–42
    [Google Scholar]
  114. 114. 
    Tanksley SD. 2004. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–89
    [Google Scholar]
  115. 115. 
    Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M 2017. Plant phenomics, from sensors to knowledge. Curr. Biol. 27:R770–83
    [Google Scholar]
  116. 116. 
    Thompson DW. 1942. On Growth and Form Cambridge, UK: Cambridge Univ. Press
  117. 117. 
    Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee C-R, Zurek PR et al. 2013. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. PNAS 110:E1695–704
    [Google Scholar]
  118. 118. 
    Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J et al. 2008. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. . Plant Cell 20:1494–503
    [Google Scholar]
  119. 119. 
    Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M et al. 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 45:1097–102
    [Google Scholar]
  120. 120. 
    Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykręt D et al. 2012. Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. . Cell 149:439–51
    [Google Scholar]
  121. 121. 
    Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U et al. 2017. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:162–67
    [Google Scholar]
  122. 122. 
    Van Zutphen T, Van der Klei IJ 2011. Quantitative analysis of organelle abundance, morphology and dynamics. Curr. Opin. Biotechnol. 22:127–32
    [Google Scholar]
  123. 123. 
    Verboven P, Herremans E, Borisjuk L, Helfen L, Ho QT et al. 2013. Void space inside the developing seed of Brassica napus and the modelling of its function. New Phytol 199:936–47
    [Google Scholar]
  124. 124. 
    Vőfély RV, Gallagher J, Pisano GD, Bartlett M, Braybrook SA 2019. Of puzzles and pavements: a quantitative exploration of leaf epidermal cell shape. New Phytol 221:540–52
    [Google Scholar]
  125. 125. 
    von Goethe JW. 1847. The Metamorphosis of Plants London: J. Murray
  126. 126. 
    Wachsman G, Sparks EE, Benfey PN 2015. Genes and networks regulating root anatomy and architecture. New Phytol 208:26–38
    [Google Scholar]
  127. 127. 
    Wada M, Suetsugu N. 2004. Plant organelle positioning. Curr. Opin. Plant Biol. 7:626–31
    [Google Scholar]
  128. 128. 
    Wang C-N, Hsu H-C, Wang C-C, Lee T-K, Kuo Y-F 2015. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers. Front. Plant Sci. 6:724
    [Google Scholar]
  129. 129. 
    Weight C, Parnham D, Waites R 2008. LeafAnalyser: a computational method for rapid and large‐scale analyses of leaf shape variation. Plant J 53:578–86
    [Google Scholar]
  130. 130. 
    Whitewoods CD, Gonçalves B, Cheng J, Cui M, Kennaway R et al. 2020. Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. Science 367:91–96
    [Google Scholar]
  131. 131. 
    Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K et al. 2001. MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–13
    [Google Scholar]
  132. 132. 
    Wu T-C, Belteton SA, Pack J, Szymanski DB, Umulis DM 2016. LobeFinder: a convex hull-based method for quantitative boundary analyses of lobed plant cells. Plant Physiol 171:2331–42
    [Google Scholar]
  133. 133. 
    Xiao H, Jiang N, Schaffner E, Stockinger EJ, Van Der Knaap E 2008. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–30
    [Google Scholar]
  134. 134. 
    Yang W, Duan L, Chen G, Xiong L, Liu Q 2013. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr. Opin. Plant Biol. 16:180–87
    [Google Scholar]
  135. 135. 
    Yoshida S, de Reuille PB, Lane B, Bassel GW, Prusinkiewicz P et al. 2014. Genetic control of plant development by overriding a geometric division rule. Dev. Cell 29:75–87
    [Google Scholar]
  136. 136. 
    Yoshioka Y, Iwata H, Ohsawa R, Ninomiya S 2005. Quantitative evaluation of the petal shape variation in Primula sieboldii caused by breeding process in the last 300 years. Heredity 94:657–63
    [Google Scholar]
  137. 137. 
    Youle RJ, Van Der Bliek AM 2012. Mitochondrial fission, fusion, and stress. Science 337:1062–65
    [Google Scholar]
  138. 138. 
    Ziamtsov I, Navlakha S. 2019. Machine learning approaches to improve three basic plant phenotyping tasks using three-dimensional point clouds. Plant Physiol 181:1425–40
    [Google Scholar]
  139. 139. 
    Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I 2005. QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor. Appl. Genet. 111:437–45
    [Google Scholar]
/content/journals/10.1146/annurev-genet-022620-094553
Loading
/content/journals/10.1146/annurev-genet-022620-094553
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error