1932

Abstract

Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-030123-084224
2023-11-27
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/genet/57/1/annurev-genet-030123-084224.html?itemId=/content/journals/10.1146/annurev-genet-030123-084224&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adeeb F, Dorris ER, Morgan NE, Lawless D, Maqsood A et al. 2021. A novel RELA truncating mutation in a familial Behçet's disease-like mucocutaneous ulcerative condition. Arthritis Rheumatol. 73:3490–497
    [Google Scholar]
  2. 2.
    Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD et al. 2010. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am. J. Hum. Genet. 87:6866–72
    [Google Scholar]
  3. 3.
    Ahmad L, Zhang S-Y, Casanova J-L, Sancho-Shimizu V. 2016. Human TBK1: a gatekeeper of neuroinflammation. Trends Mol. Med. 22:6511–27
    [Google Scholar]
  4. 4.
    Akkaya-Ulum YZ, Akbaba TH, Tavukcuoglu Z, Chae JJ, Yilmaz E et al. 2021. Familial Mediterranean fever-related miR-197-3p targets IL1R1 gene and modulates inflammation in monocytes and synovial fibroblasts. Sci. Rep. 11:1685
    [Google Scholar]
  5. 5.
    Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J et al. 2009. An autoinflammatory disease with deficiency of the interleukin-1–receptor antagonist. N. Engl. J. Med. 360:232426–37
    [Google Scholar]
  6. 6.
    Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT et al. 2002. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): A new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 46:123340–48
    [Google Scholar]
  7. 7.
    Aksentijevich I, Schnappauf O. 2021. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat. Rev. Rheumatol. 17:7405–25
    [Google Scholar]
  8. 8.
    Aksentijevich I, Zhou Q, Giannelou A, Sediva A, Stone D et al. 2014. TRNT1 missense mutations define an autoinflammatory disease characterized by recurrent fever, severe anemia, and b-cell immunodeficiency. Pediatric Rheumatol. Online J. 12:Suppl. 1O21
    [Google Scholar]
  9. 9.
    Alsohime F, Martin-Fernandez M, Temsah M-H, Alabdulhafid M, Le Voyer T et al. 2020. JAK inhibitor therapy in a child with inherited USP18 deficiency. N. Engl. J. Med. 382:3256–65
    [Google Scholar]
  10. 10.
    Aluri J, Bach A, Kaviany S, Paracatu LC, Kitcharoensakkul M et al. 2021. Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function. Blood 137:182450–62
    [Google Scholar]
  11. 11.
    Amarilyo G, Pillar N, Ben-Zvi I, Weissglas-Volkov D, Zalcman J et al. 2018. Analysis of microRNAs in familial Mediterranean fever. PLOS ONE 13:5e0197829
    [Google Scholar]
  12. 12.
    An JW, Pimpale-Chavan P, Stone DL, Bandeira M, Dedeoglu F et al. 2023. Case report: novel variants in RELA associated with familial Behcet's-like disease. Front. Immunol. 14:1127085
    [Google Scholar]
  13. 13.
    Ando S, Maemori M, Sakai H, Ando S, Shiraishi H et al. 2005. Constitutional trisomy 8 mosaicism with myelodysplastic syndrome complicated by intestinal Behcet disease and antithrombin III deficiency. Cancer Genet. Cytogen. 162:2172–75
    [Google Scholar]
  14. 14.
    Badran YR, Dedeoglu F, Castillo JML, Bainter W, Ohsumi TK et al. 2017. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J. Exp. Med. 214:71937–47
    [Google Scholar]
  15. 14a.
    Baghdassarian H, Blackstone SA, Clay OS, Philips R, Matthiasardottir B et al 2023. Variant STAT4 and response to ruxolitinib in an autoinflammatory syndrome. N. Engl. J. Med 388:242241–52
    [Google Scholar]
  16. 15.
    Balci-Peynircioglu B, Akkaya-Ulum YZ, Akbaba TH, Tavukcuoglu Z. 2019. Potential of miRNAs to predict and treat inflammation from the perspective of Familial Mediterranean Fever. Inflamm. Res. 68:11905–13
    [Google Scholar]
  17. 16.
    Banday AR, Stanifer ML, Florez-Vargas O, Onabajo OO, Papenberg BW et al. 2022. Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nat. Genet. 54:81103–16
    [Google Scholar]
  18. 17.
    Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC et al. 2020. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383:272628–38
    [Google Scholar]
  19. 18.
    Bentley RW, Pearson J, Gearry RB, Barclay ML, McKinney C et al. 2010. Association of higher DEFB4 genomic copy number with Crohn's disease. Am. J. Gastroenterol. 105:2354–59
    [Google Scholar]
  20. 19.
    Blau EB. 1985. Familial granulomatous arthritis, iritis, and rash. J. Pediatr. 107:689–93
    [Google Scholar]
  21. 20.
    Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N et al. 2015. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J. Exp. Med. 212:6939–51
    [Google Scholar]
  22. 21.
    Boisson B, Laplantine E, Prando C, Giliani S, Israelsson E et al. 2012. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13:121178–86
    [Google Scholar]
  23. 22.
    Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E et al. 2015. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 125:114196–211
    [Google Scholar]
  24. 23.
    Briggs TA, Paul A, Rice G, Herrick AL. 2019. RNASEH2B related adult-onset interferonopathy. J. Clin. Immunol. 39:6620–22
    [Google Scholar]
  25. 24.
    Brown GJ, Cañete PF, Wang H, Medhavy A, Bones J et al. 2022. TLR7 gain-of-function genetic variation causes human lupus. Nature 605:7909349–56
    [Google Scholar]
  26. 25.
    Cananzi M, Wohler E, Marzollo A, Colavito D, You J et al. 2021. IFIH1 loss-of-function variants contribute to very early-onset inflammatory bowel disease. Hum. Genet. 140:91299–1312
    [Google Scholar]
  27. 26.
    Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B et al. 2014. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46:101140–46
    [Google Scholar]
  28. 27.
    Caseley EA, Lara-Reyna S, Poulter JA, Topping J, Carter C et al. 2022. An atypical autoinflammatory disease due to an LRR domain NLRP3 mutation enhancing binding to NEK7. J. Clin. Immunol. 42:1158–70
    [Google Scholar]
  29. 28.
    Chakraborty PK, Schmitz-Abe K, Kennedy EK, Mamady H, Naas T et al. 2014. Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124:182867–71
    [Google Scholar]
  30. 29.
    Cho K, Yamada M, Agematsu K, Kanegane H, Miyake N et al. 2018. Heterozygous mutations in OAS1 cause infantile-onset pulmonary alveolar proteinosis with hypogammaglobulinemia. Am. J. Hum. Genet. 102:3480–86
    [Google Scholar]
  31. 30.
    Comrie WA, Faruqi AJ, Price S, Zhang Y, Rao VK et al. 2018. RELA haploinsufficiency in CD4 lymphoproliferative disease with autoimmune cytopenias. J. Allergy Clin. Immun. 141:41507–10.e8
    [Google Scholar]
  32. 31.
    Coppola S, Insalaco A, Zara E, Rocco MD, Marafon DP et al. 2022. Mutations at the C-terminus of CDC42 cause distinct hematopoietic and autoinflammatory disorders. J. Allergy Clin. Immun. 150:1223–28
    [Google Scholar]
  33. 32.
    Crow YJ, Chase DS, Schmidt JL, Szynkiewicz M, Forte GMA et al. 2015. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 167:2296–312
    [Google Scholar]
  34. 33.
    Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A et al. 2006. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat. Genet. 38:8917–20
    [Google Scholar]
  35. 34.
    Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R et al. 2006. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat. Genet. 38:8910–16
    [Google Scholar]
  36. 35.
    Crow YJ, Livingston JH. 2008. Aicardi-Goutières syndrome: an important Mendelian mimic of congenital infection. Dev. Med. Child Neurol. 50:6410–16
    [Google Scholar]
  37. 36.
    Crow YJ, Manel N. 2015. Aicardi-Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15:7429–40
    [Google Scholar]
  38. 37.
    Crow YJ, Stetson DB. 2022. The type I interferonopathies: 10 years on. Nat. Rev. Immunol. 22:8471–83
    [Google Scholar]
  39. 38.
    Cuchet-Lourenço D, Eletto D, Wu C, Plagnol V, Papapietro O et al. 2018. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361:6404810–13
    [Google Scholar]
  40. 39.
    Damgaard RB, Walker JA, Marco-Casanova P, Morgan NV, Titheradge HL et al. 2016. The deubiq-uitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166:51215–30.e20
    [Google Scholar]
  41. 40.
    de Inocencio J, Mensa-Vilaro A, Tejada-Palacios P, Enriquez-Merayo E, González-Roca E et al. 2015. Somatic NOD2 mosaicism in Blau syndrome. J. Allergy Clin. Immun. 136:2484–87.e2
    [Google Scholar]
  42. 41.
    de Jesus AA, Brehm A, VanTries R, Pillet P, Parentelli A-S et al. 2019. Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4. J. Allergy Clin. Immun. 143:51939–43.e8
    [Google Scholar]
  43. 42.
    de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A et al. 2019. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Invest. 130:41669–82
    [Google Scholar]
  44. 43.
    Del Bel KL, Ragotte RJ, Saferali A, Lee S, Vercauteren SM et al. 2017. JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J. Allergy Clin. Immun. 139:62016–20.e5
    [Google Scholar]
  45. 44.
    Döffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J et al. 2001. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 27:3277–85
    [Google Scholar]
  46. 45.
    Drenth JP, Cuisset L, Grateau G, Vasseur C, van de Velde-Visser SD et al. 1999. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat. Genet. 22:2178–81
    [Google Scholar]
  47. 46.
    Drutman SB, Haerynck F, Zhong FL, Hum D, Hernandez NJ et al. 2019. Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis. PNAS 116:3819055–63
    [Google Scholar]
  48. 47.
    Duncan CJA, Thompson BJ, Chen R, Rice GI, Gothe F et al. 2019. Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in STAT2. Sci. Immunol. 4:42eaav7501
    [Google Scholar]
  49. 48.
    Elkan PN, Pierce SB, Segel R, Walsh T, Barash J et al. 2014. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N. Engl. J. Med. 370:10921–31
    [Google Scholar]
  50. 49.
    Fairhurst A-M, Hwang S-H, Wang A, Tian X-H, Boudreaux C et al. 2008. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur. J. Immunol. 38:71971–78
    [Google Scholar]
  51. 50.
    Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N et al. 2021. Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. eLife 10:e67569
    [Google Scholar]
  52. 51.
    Fr. FMF Consort., Bernot A, Clepet C, Dasilva C, Devaud C et al. 1997. A candidate gene for familial Mediterranean fever. Nat. Genet. 17:25–31
    [Google Scholar]
  53. 52.
    Franco-Jarava C, Wang H, Martin-Nalda A, Alvarez SD, García-Prat M et al. 2018. TNFAIP3 haploinsufficiency is the cause of autoinflammatory manifestations in a patient with a deletion of 13 Mb on chromosome 6. Clin Immunol. 191:44–51
    [Google Scholar]
  54. 53.
    Fujimura T, Yukawa N, Nakashima R, Imura Y, Kawabata D et al. 2010. Periodic fever and erythema nodosum associated with MDS with trisomy 8: report of two cases and review of the literature. Mod. Rheumatol. 20:4413–19
    [Google Scholar]
  55. 54.
    Grandemange S, Sanchez E, Louis-Plence P, Mau-Them FT, Bessis D et al. 2017. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann. Rheum. Dis. 76:71191–98
    [Google Scholar]
  56. 55.
    Gruber CN, Calis JJA, Buta S, Evrony G, Martin JC et al. 2020. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity 53:3672–84.e11
    [Google Scholar]
  57. 56.
    Gruber CN, Martin-Fernandez M, Ailal F, Qiu X, Taft J et al. 2020. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J. Exp. Med. 217:5e20192319
    [Google Scholar]
  58. 57.
    Guiducci C, Gong M, Cepika A-M, Xu Z, Tripodo C et al. 2013. RNA recognition by human TLR8 can lead to autoimmune inflammation. J. Exp. Med. 210:132903–19
    [Google Scholar]
  59. 58.
    Hadjadj J, Castro CN, Tusseau M, Stolzenberg M-C, Mazerolles F et al. 2020. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat. Commun. 11:15341
    [Google Scholar]
  60. 59.
    Harapas CR, Robinson KS, Lay K, Wong J, Traspas RM et al. 2022. DPP9 deficiency: an inflammasomopathy that can be rescued by lowering NLRP1/IL-1 signaling. Sci. Immunol. 7:75eabi4611
    [Google Scholar]
  61. 60.
    Hoffman HM, Broderick L. 2017. It just takes one: somatic mosaicism in autoinflammatory disease. Arthritis Rheumatol. 69:2253–56
    [Google Scholar]
  62. 61.
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. 2001. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29:3301–5
    [Google Scholar]
  63. 62.
    Hollingsworth LR, Sharif H, Griswold AR, Fontana P, Mintseris J et al. 2021. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation. Nature 592:7856778–83
    [Google Scholar]
  64. 63.
    Hollox EJ, Huffmeier U, Zeeuwen PLJM, Palla R, Lascorz J et al. 2008. Psoriasis is associated with increased β-defensin genomic copy number. Nat. Genet. 40:23–25
    [Google Scholar]
  65. 64.
    Holzinger D, Fassl SK, de Jager W, Lohse P, Röhrig UF et al. 2015. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J. Allergy Clin. Immun. 136:51337–45
    [Google Scholar]
  66. 65.
    Hortu HO, Karaca E, Sozeri B, Gulez N, Makay B et al. 2019. Evaluation of the effects of miRNAs in familial Mediterranean fever. Clin. Rheumatol. 38:3635–43
    [Google Scholar]
  67. 66.
    Huffman JE, Butler-Laporte G, Khan A, Pairo-Castineira E, Drivas TG et al. 2022. Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19. Nat. Genet. 54:2125–27
    [Google Scholar]
  68. 67.
    Int. FMF Consort 1997. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807
    [Google Scholar]
  69. 68.
    Isidor B, Ebstein F, Hurst A, Vincent M, Bader I et al. 2022. Stankiewicz-Isidor syndrome: expanding the clinical and molecular phenotype. Genet. Med. 24:1179–91
    [Google Scholar]
  70. 69.
    Iwai K. 2021. LUBAC-mediated linear ubiquitination: a crucial regulator of immune signaling. Proc. Jpn. Acad. Ser. B 97:3120–33
    [Google Scholar]
  71. 70.
    Jee H, Huang Z, Baxter S, Huang Y, Taylor ML et al. 2022. Comprehensive analysis of ADA2 genetic variants and estimation of carrier frequency driven by a function-based approach. J. Allergy Clin. Immun. 149:1379–87
    [Google Scholar]
  72. 71.
    Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S et al. 2014. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124:125516–20
    [Google Scholar]
  73. 72.
    Kanazawa N, Hemmi H, Kinjo N, Ohnishi H, Hamazaki J et al. 2021. Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency. Nat. Commun. 12:16819
    [Google Scholar]
  74. 73.
    Kanderova V, Svobodova T, Borna S, Fejtkova M, Martinu V et al. 2022. Early-onset pulmonary and cutaneous vasculitis driven by constitutively active SRC-family kinase HCK. J. Allergy Clin. Immun. 149:41464–72.e3
    [Google Scholar]
  75. 74.
    Khalil R, Kenny C, Hill RS, Mochida GH, Nasir R et al. 2018. PSMD12 haploinsufficiency in a neurodevelopmental disorder with autistic features. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177:8736–45
    [Google Scholar]
  76. 75.
    Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K. 2014. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J. Exp. Med. 211:122385–96
    [Google Scholar]
  77. 76.
    König N, Fiehn C, Wolf C, Schuster M, Costa EC et al. 2017. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76:2468–72
    [Google Scholar]
  78. 77.
    Kontzias A, Zarabi SK, Calabrese C, Wang Y, Judis L et al. 2019. Somatic mosaicism in adult-onset TNF receptor-associated periodic syndrome (TRAPS). Mol. Genet. Genom. Med. 7:8e791
    [Google Scholar]
  79. 78.
    Kozycki CT, Kodati S, Huryn L, Wang H, Warner BM et al. 2022. Gain-of-function mutations in ALPK1 cause an NF-κB-mediated autoinflammatory disease: functional assessment, clinical phenotyping and disease course of patients with ROSAH syndrome. Ann. Rheum. Dis. 81:101453–64
    [Google Scholar]
  80. 79.
    Kubo A, Sasaki T, Suzuki H, Shiohama A, Aoki S et al. 2019. Clonal expansion of second-hit cells with somatic recombinations or C>T transitions form porokeratosis in MVD or MVK mutant heterozygotes. J. Invest. Dermatol. 139:122458–66.e9
    [Google Scholar]
  81. 80.
    Kuhns DB, Fink DL, Choi U, Sweeney C, Lau K et al. 2016. Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 128:172135–43
    [Google Scholar]
  82. 81.
    Kümpfel T, Hohlfeld R. 2009. TNFRSF1A, TRAPS and multiple sclerosis. Nat. Rev. Neurol. 5:10528–29
    [Google Scholar]
  83. 82.
    Küry S, Besnard T, Ebstein F, Khan TN, Gambin T et al. 2017. De novo disruption of the proteasome regulatory subunit PSMD12 causes a syndromic neurodevelopmental disorder. Am. J. Hum. Genet. 100:2352–63
    [Google Scholar]
  84. 83.
    Lalaoui N, Boyden SE, Oda H, Wood GM, Stone DL et al. 2020. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577:7788103–8
    [Google Scholar]
  85. 84.
    Lam MT, Coppola S, Krumbach OHF, Prencipe G, Insalaco A et al. 2019. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J. Exp. Med. 216:122778–99
    [Google Scholar]
  86. 85.
    Latsoudis H, Mashreghi M, Grün JR, Chang H, Stuhlmüller B et al. 2017. Differential expression of miR-4520a associated with pyrin mutations in familial Mediterranean fever (FMF). J. Cell. Physiol. 232:61326–36
    [Google Scholar]
  87. 86.
    Lausberg E, Gießelmann S, Dewulf JP, Wiame E, Holz A et al. 2021. C2orf69 mutations disrupt mitochondrial function and cause a multisystem human disorder with recurring autoinflammation. J. Clin. Invest. 131:12e143078
    [Google Scholar]
  88. 87.
    Lee PY, Aksentijevich I, Zhou Q. 2022. Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2). Semin. Immunopathol. 44:3269–80
    [Google Scholar]
  89. 88.
    Lee PY, Platt CD, Weeks S, Grace RF, Maher G et al. 2020. Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. J. Allergy Clin. Immun. 146:51194–200.e1
    [Google Scholar]
  90. 89.
    Lee Y, Wessel AW, Xu J, Reinke JG, Lee E et al. 2022. Genetically programmed alternative splicing of NEMO mediates an autoinflammatory disease phenotype. J. Clin. Invest. 132:6e128808
    [Google Scholar]
  91. 90.
    Lepelley A, Mina ED, Nieuwenhove EV, Waumans L, Fraitag S et al. 2021. Enhanced cGAS-STING–dependent interferon signaling associated with mutations in ATAD3A. J. Exp. Med. 218:10e20201560
    [Google Scholar]
  92. 91.
    Li G-M, Han X, Wu Y, Wang W, Tang H-X et al. 2023. A cohort study on deficiency of ADA2 from China. J. Clin. Immunol. 43:835–45
    [Google Scholar]
  93. 92.
    Li M, Li L, Asemota S, Kakhniashvili D, Narayanan R et al. 2022. Reciprocal interplay between OTULIN-LUBAC determines genotoxic and inflammatory NF-κB signal responses. PNAS 119:33e2123097119
    [Google Scholar]
  94. 93.
    Li Y, Führer M, Bahrami E, Socha P, Klaudel-Dreszler M et al. 2019. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. PNAS 116:3970–75
    [Google Scholar]
  95. 94.
    Lin B, Berard R, Al Rasheed A, Aladba B, Kranzusch PJ et al. 2020. A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI). J. Allergy Clin. Immun. 146:51204–8.e6
    [Google Scholar]
  96. 95.
    Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE et al. 2014. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371:6507–18
    [Google Scholar]
  97. 96.
    Louvrier C, Assrawi E, El Khouri E, Melki I, Copin B et al. 2020. NLRP3-associated autoinflammatory diseases: phenotypic and molecular characteristics of germline versus somatic mutations. J. Allergy Clin. Immun. 145:41254–61
    [Google Scholar]
  98. 97.
    Magg T, Okano T, Koenig LM, Boehmer DFR, Schwartz SL et al. 2021. Heterozygous OAS1 gain-of-function variants cause an autoinflammatory immunodeficiency. Sci. Immunol. 6:60eabf9564
    [Google Scholar]
  99. 98.
    Manthiram K, Preite S, Dedeoglu F, Demir S, Ozen S et al. 2020. Common genetic susceptibility loci link PFAPA syndrome, Behçet's disease, and recurrent aphthous stomatitis. PNAS 117:2514405–11
    [Google Scholar]
  100. 99.
    Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. 2017. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat. Immunol. 18:832–42
    [Google Scholar]
  101. 100.
    Mantovani S, Daga S, Fallerini C, Baldassarri M, Benetti E et al. 2022. Rare variants in Toll-like receptor 7 results in functional impairment and downregulation of cytokine-mediated signaling in COVID-19 patients. Genes Immun. 23:151–56
    [Google Scholar]
  102. 101.
    Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei X-Y et al. 2011. Interleukin-36–receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365:7620–28
    [Google Scholar]
  103. 102.
    Martinelli S, Krumbach OHF, Pantaleoni F, Coppola S, Amin E et al. 2018. Functional dysregulation of CDC42 causes diverse developmental phenotypes. Am. J. Hum Genet. 102:2309–20
    [Google Scholar]
  104. 103.
    Martinon F, Burns K, Tschopp J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell. 10:2417–26
    [Google Scholar]
  105. 104.
    Marzano AV, Trevisan V, Gattorno M, Ceccherini I, Simone CD, Crosti C. 2013. Pyogenic arthritis, pyoderma gangrenosum, acne, and hidradenitis suppurativa (PAPASH): a new autoinflammatory syndrome associated with a novel mutation of the PSTPIP1 gene. JAMA Dermatol. 149:6762–64
    [Google Scholar]
  106. 105.
    Masters SL, Simon A, Aksentijevich I, Kastner DL. 2009. Horror Autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27:621–68
    [Google Scholar]
  107. 106.
    McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW et al. 1999. Germline mutations in the extracellular domains of the 55 kDa TNF Receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:1133–44
    [Google Scholar]
  108. 107.
    Medzhitov R, Janeway C Jr. 2000. Innate immunity. N. Engl. J. Med. 343:338–44
    [Google Scholar]
  109. 108.
    Melki I, Rose Y, Uggenti C, Eyck LV, Frémond M-L et al. 2017. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. J. Allergy Clin. Immun. 140:2543–52.e5
    [Google Scholar]
  110. 109.
    Mensa-Vilaro A, Cham WT, Tang SP, Lim SC, González-Roca E et al. 2016. Brief report: first identification of intrafamilial recurrence of Blau syndrome due to gonosomal NOD2 mosaicism. Arthritis Rheumatol. 68:41039–44
    [Google Scholar]
  111. 110.
    Meuwissen MEC, Schot R, Buta S, Oudesluijs G, Tinschert S et al. 2016. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213:71163–74
    [Google Scholar]
  112. 111.
    Migita K, Asano T, Sato S, Koga T, Fujita Y, Kawakami A. 2018. Familial Mediterranean fever: overview of pathogenesis, clinical features and management. Immunol. Med. 41:255–61
    [Google Scholar]
  113. 112.
    Munoz MA, Jurczyluk J, Simon A, Hissaria P, Arts RJW et al. 2019. Defective protein prenylation in a spectrum of patients with mevalonate kinase deficiency. Front. Immunol. 10:1900
    [Google Scholar]
  114. 113.
    Nakagawa K, Gonzalez-Roca E, Souto A, Kawai T, Umebayashi H et al. 2013. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Ann. Rheum. Dis. 74:3603–10
    [Google Scholar]
  115. 114.
    Naud M-E, Tosca L, Martinovic J, Saada J, Métay C et al. 2017. Prenatal diagnosis of a 2.5 Mb de novo 17q24.1q24.2 deletion encompassing KPNA2 and PSMD12 genes in a fetus with craniofacial dysmorphism, equinovarus feet, and syndactyly. Case Rep. Genet. 2017:7803136
    [Google Scholar]
  116. 115.
    Nilsson J, Schoser B, Laforet P, Kalev O, Lindberg C et al. 2013. Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1. Ann. Neurol. 74:6914–19
    [Google Scholar]
  117. 116.
    Nishitani-Isa M, Mukai K, Honda Y, Nihira H, Tanaka T et al. 2022. Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. J. Exp. Med. 219:6e20211889
    [Google Scholar]
  118. 117.
    O'Connell RM, Rao DS, Baltimore D. 2012. microRNA regulation of inflammatory responses. Annu. Rev. Immunol. 30:295–312
    [Google Scholar]
  119. 118.
    Oda H, Beck DB, Kuehn HS, Moura NS, Hoffmann P et al. 2019. Second case of HOIP deficiency expands clinical features and defines inflammatory transcriptome regulated by LUBAC. Front. Immunol. 10:479
    [Google Scholar]
  120. 119.
    Oka S, Ono K, Nohgawa M. 2020. The acquisition of trisomy 8 associated with Behçet's-like disease in myelodysplastic syndrome. Leukemia Res. Rep. 13:100196
    [Google Scholar]
  121. 120.
    Ombrello AK, Qin J, Hoffmann PM, Kumar P, Stone D et al. 2019. Treatment strategies for deficiency of adenosine deaminase 2. N. Engl. J. Med. 380:161582–84
    [Google Scholar]
  122. 121.
    Ombrello MJ, Remmers EF, Sun G, Freeman AF, Datta S et al. 2012. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366:4330–38
    [Google Scholar]
  123. 122.
    Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH et al. 2011. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89:3432–37
    [Google Scholar]
  124. 123.
    Palumbo P, Palumbo O, Muro ED, Leone MP, Castellana S et al. 2019. Expanding the clinical and molecular spectrum of PSMD12-related neurodevelopmental syndrome: an additional patient and review. Arch. Clin. Med. Case Rep. 03:250–60
    [Google Scholar]
  125. 124.
    Peltzer N, Darding M, Montinaro A, Draber P, Draberova H et al. 2018. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557:7703112–17
    [Google Scholar]
  126. 125.
    Peng J, Wang Y, Han X, Zhang C, Chen X et al. 2023. Clinical implications of a new DDX58 pathogenic variant that causes lupus nephritis due to RIG-I hyperactivation. J. Am. Soc. Nephrol. 34:2258–72
    [Google Scholar]
  127. 126.
    Pfajfer L, Mair NK, Jiménez-Heredia R, Genel F, Gulez N et al. 2018. Mutations affecting the actin regulator WD repeat–containing protein 1 lead to aberrant lymphoid immunity. J. Allergy Clin. Immun. 142:51589–604.e11
    [Google Scholar]
  128. 127.
    Poli MC, Ebstein F, Nicholas SK, de Guzman MM, Forbes LR et al. 2018. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome. Am. J. Hum. Genet. 102:61126–42
    [Google Scholar]
  129. 128.
    Powers RK, Culp-Hill R, Ludwig MP, Smith KP, Waugh KA et al. 2019. Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors. Nat. Commun. 10:14766
    [Google Scholar]
  130. 129.
    Prasov L, Bohnsack BL, El Husny AS, Tsoi LC, Guan B et al. 2022. DDX58(RIG-I)-related disease is associated with tissue-specific interferon pathway activation. J. Med. Genet. 59:3294–304
    [Google Scholar]
  131. 130.
    Raneros AB, Bernet CR, Flórez AB, Suarez-Alvarez B. 2021. An epigenetic insight into NLRP3 inflammasome activation in inflammation-related processes. Biomedicines 9:111614
    [Google Scholar]
  132. 131.
    Reddy S, Jia S, Geoffrey R, Lorier R, Suchi M et al. 2009. An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N. Engl. J. Med. 360:232438–44
    [Google Scholar]
  133. 132.
    Reula AJTi, Cochino A-V, Martins AL, Angosto-Bazarra D, Ortiz de Landazuri I et al. 2022. Characterization of novel pathogenic variants leading to caspase-8 cleavage-resistant RIPK1-induced autoinflammatory syndrome. J. Clin. Immunol. 42:71421–32
    [Google Scholar]
  134. 133.
    Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW et al. 2009. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41:7829–32
    [Google Scholar]
  135. 134.
    Rice GI, Forte GMA, Szynkiewicz M, Chase DS, Aeby A et al. 2013. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 12:121159–69
    [Google Scholar]
  136. 135.
    Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E et al. 2014. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46:101135–39
    [Google Scholar]
  137. 136.
    Saito M, Nishikomori R, Fujisawa A, Kambe N, Hizume MN et al. 2006. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. J. Allergy Clin. Immun. 117:2S18
    [Google Scholar]
  138. 137.
    Sarrabay G, Méchin D, Salhi A, Boursier G, Rittore C et al. 2019. PSMB10, the last immunoproteasome gene missing for PRAAS. J. Allergy Clin. Immun. 145:31015–17.e6
    [Google Scholar]
  139. 138.
    Savic S, Caseley EA, McDermott MF. 2020. Moving towards a systems-based classification of innate immune-mediated diseases. Nat. Rev. Rheumatol. 16:4222–37
    [Google Scholar]
  140. 139.
    Scheffel J, Mahnke NA, Hofman ZLM, de Maat S, Wu J et al. 2020. Cold-induced urticarial autoinflammatory syndrome related to factor XII activation. Nat. Commun. 11:179
    [Google Scholar]
  141. 140.
    Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I. 2019. The pyrin inflammasome in health and disease. Front. Immunol. 10:1745
    [Google Scholar]
  142. 141.
    Schnappauf O, Zhou Q, Moura NS, Ombrello AK, Michael DG et al. 2020. Deficiency of adenosine deaminase 2 (DADA2): hidden variants, reduced penetrance, and unusual inheritance. J. Clin. Immunol. 40:6917–26
    [Google Scholar]
  143. 142.
    Sikora KA, Bennett JR, Vyncke L, Deng Z, Tsai WL et al. 2018. Germline gain-of-function myeloid differentiation primary response gene–88 (MYD88) mutation in a child with severe arthritis. J. Allergy Clin. Immunol. 141:51943–47.e9
    [Google Scholar]
  144. 143.
    Slade A, Kattini R, Campbell C, Holcik M. 2020. Diseases associated with defects in tRNA CCA addition. Int. J. Mol. Sci. 21:113780
    [Google Scholar]
  145. 144.
    Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK. 2012. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 31:193833–44
    [Google Scholar]
  146. 145.
    Souyris M, Cenac C, Azar P, Daviaud D, Canivet A et al. 2018. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3:19eaap8855
    [Google Scholar]
  147. 146.
    Spaan AN, Neehus A-L, Laplantine E, Staels F, Ogishi M et al. 2022. Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin. Science 376:6599eabm6380
    [Google Scholar]
  148. 147.
    Standing ASI, Malinova D, Hong Y, Record J, Moulding D et al. 2017. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J. Exp. Med. 214:159–71
    [Google Scholar]
  149. 148.
    Steiner A, Reygaerts T, Pontillo A, Ceccherini I, Moecking J et al. 2022. Recessive NLRC4-autoinflammatory disease reveals an ulcerative colitis locus. J. Clin. Immunol. 42:2325–35
    [Google Scholar]
  150. 149.
    Stojanov S, McDermott MF. 2005. The tumour necrosis factor receptor-associated periodic syndrome: current concepts. Expert Rev. Mol. Med. 7:221–18
    [Google Scholar]
  151. 150.
    Sullivan KD, Lewis HC, Hill AA, Pandey A, Jackson LP et al. 2016. Trisomy 21 consistently activates the interferon response. eLife 5:e16220
    [Google Scholar]
  152. 151.
    Sun G, Qiu L, Yu L, An Y, Ding Y et al. 2022. Loss of function mutation in ELF4 causes autoinflammatory and immunodeficiency disease in human. J. Clin. Immunol. 42:4798–810
    [Google Scholar]
  153. 152.
    Taft J, Markson M, Legarda D, Patel R, Chan M et al. 2021. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. Cell 184:174447–63.e20
    [Google Scholar]
  154. 153.
    Takeichi T, Lee JYW, Okuno Y, Miyasaka Y, Murase Y et al. 2022. Autoinflammatory keratinization disease with hepatitis and autism reveals roles for JAK1 kinase hyperactivity in autoinflammation. Front. Immunol. 12:737747
    [Google Scholar]
  155. 154.
    Takenouchi T, Kosaki R, Niizuma T, Hata K, Kosaki K. 2015. Macrothrombocytopenia and developmental delay with a de novo CDC42 mutation: Yet another locus for thrombocytopenia and developmental delay. Am. J. Med. Genet. A 167:112822–25
    [Google Scholar]
  156. 155.
    Takeuchi M, Kastner DL, Remmers EF. 2015. The immunogenetics of Behçet's disease: a comprehensive review. J. Autoimmun. 64:137–48
    [Google Scholar]
  157. 156.
    Tao P, Sun J, Wu Z, Wang S, Wang J et al. 2020. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577:7788109–14
    [Google Scholar]
  158. 157.
    Turunen JA, Wedenoja J, Repo P, Järvinen R-S, Jäntti JE et al. 2018. Keratoendotheliitis fugax hereditaria: a novel cryopyrin-associated periodic syndrome caused by a mutation in the nucleotide-binding domain, leucine-rich repeat family, pyrin domain-containing 3 (NLRP3) gene. Am. J. Ophthalmol. 188:41–50
    [Google Scholar]
  159. 158.
    Tyler PM, Bucklin ML, Zhao M, Maher TJ, Rice AJ et al. 2021. Human autoinflammatory disease reveals ELF4 as a transcriptional regulator of inflammation. Nat. Immunol. 22:91118–26
    [Google Scholar]
  160. 159.
    Uggenti C, Lepelley A, Depp M, Badrock AP, Rodero MP et al. 2020. cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat. Genet. 52:121364–72
    [Google Scholar]
  161. 160.
    Vahidnezhad H, Youssefian L, Saeidian AH, Ziaee V, Mahmoudi H et al. 2021. Homozygous MEFV gene variant and pyrin-associated autoinflammation with neutrophilic dermatosis. JAMA Dermatol. 157:121466–71
    [Google Scholar]
  162. 161.
    van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T et al. 2020. Presence of genetic variants among young men with severe COVID-19. JAMA 324:7663–73
    [Google Scholar]
  163. 162.
    van der Meer JWM, Radl J, Meyer CJLM, Vossen JM, Nieuwkoop JA et al. 1984. Hyperimmunoglobulinaemia D and periodic fever: a new syndrome. Lancet 323:83861087–90
    [Google Scholar]
  164. 163.
    van Loo G, Bertrand MJM. 2022. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 15:1–15
    [Google Scholar]
  165. 164.
    Wada T, Toma T, Matsuda Y, Yachie A, Itami S et al. 2017. Microarray analysis of circulating microRNAs in familial Mediterranean fever. Mod. Rheumatol. 27:61040–46
    [Google Scholar]
  166. 165.
    Wang J, Ye Q, Zheng W, Yu X, Luo F et al. 2022. Low-ratio somatic NLRC4 mutation causes late-onset autoinflammatory disease. Ann. Rheum. Dis. 81:81173–78
    [Google Scholar]
  167. 166.
    Wang K, Kim C, Bradfield J, Guo Y, Toskala E et al. 2013. Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement. Genome Med. 5:767
    [Google Scholar]
  168. 167.
    Wang L, Aschenbrenner D, Zeng Z, Cao X, Mayr D et al. 2021. Gain-of-function variants in SYK cause immune dysregulation and systemic inflammation in humans and mice. Nat. Genet. 53:4500–510
    [Google Scholar]
  169. 168.
    Wang Y, Wang J, Zheng W, Zhang J, Wang J et al. 2023. Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design. Immunity 56:71485–501.e7
    [Google Scholar]
  170. 169.
    Waugh KA, Minter R, Baxter J, Chi C, Tuttle KD et al. 2022. Interferon receptor gene dosage determines diverse hallmarks of Down syndrome. bioRxiv 2022.02.03.478982. https://doi.org/10.1101/2022.02.03.478982
    [Crossref]
  171. 170.
    Wei M, Wang L, Wu T, Xi J, Han Y et al. 2016. NLRP3 Activation was regulated by DNA methylation modification during Mycobacterium tuberculosis infection. Biomed. Res. Int. 2016:4323281
    [Google Scholar]
  172. 171.
    Williams LB, Javed A, Sabri A, Morgan DJ, Huff CD et al. 2019. ALPK1 missense pathogenic variant in five families leads to ROSAH syndrome, an ocular multisystem autosomal dominant disorder. Genet. Med. 21:92103–15
    [Google Scholar]
  173. 172.
    Wong HH, Seet SH, Maier M, Gurel A, Traspas RM et al. 2021. Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. Am. J. Hum. Genet. 108:71301–17
    [Google Scholar]
  174. 173.
    Xu D, Zou C, Yuan J. 2021. Genetic regulation of RIPK1 and necroptosis. Annu. Rev. Genet. 55:235–63
    [Google Scholar]
  175. 174.
    Yan K, Zhang J, Lee PY, Tao P, Wang J et al. 2022. Haploinsufficiency of PSMD12 causes proteasome dysfunction and subclinical autoinflammation. Arthritis Rheumatol 74:61083–90
    [Google Scholar]
  176. 175.
    Yu M-P, Xu X-S, Zhou Q, Deuitch N, Lu M-P. 2020. Haploinsufficiency of A20 (HA20): updates on the genetics, phenotype, pathogenesis and treatment. World J. Pediatr. 16:6575–84
    [Google Scholar]
  177. 176.
    Yuan J, Amin P, Ofengeim D. 2019. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20:119–33
    [Google Scholar]
  178. 177.
    Zhang J, Jin T, Aksentijevich I, Zhou Q 2021. RIPK1-associated inborn errors of innate immunity. Front. Immunol. 12:676946
    [Google Scholar]
  179. 178.
    Zhang Q, Bastard P, COVID Hum. Gen. Effort, Cobat A, Casanova J-L 2022. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 603:7902587–98
    [Google Scholar]
  180. 179.
    Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD et al. 2015. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517:753289–93
    [Google Scholar]
  181. 180.
    Zhang X, Dowling JP, Zhang J. 2019. RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development. Cell Death Dis. 10:3245
    [Google Scholar]
  182. 181.
    Zheng W, Fan X, Yang Z, Shangguan Y, Jin T et al. 2022. Strong inflammatory signatures in the neutrophils of PAMI syndrome. Front. Immunol. 13:926087
    [Google Scholar]
  183. 182.
    Zhong FL, Mamaï O, Sborgi L, Boussofara L, Hopkins R et al. 2016. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167:1187–202.e17
    [Google Scholar]
  184. 183.
    Zhong FL, Robinson K, Teo DET, Tan K-Y, Lim C et al. 2018. Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. J. Biol. Chem. 293:4918864–78
    [Google Scholar]
  185. 184.
    Zhong L, Wang J, Wang W, Wang L, Quan M et al. 2020. Juvenile onset splenomegaly and oculopathy due to germline mutation in ALPK1. J. Clin. Immunol. 40:2350–58
    [Google Scholar]
  186. 185.
    Zhou P, She Y, Dong N, Li P, He H et al. 2018. Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature 561:7721122–26
    [Google Scholar]
  187. 186.
    Zhou Q, Aksentijevich I, Wood GM, Walts AD, Hoffmann P et al. 2015. Brief report: cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 Mutation. Arthritis Rheumatol. 67:92482–86
    [Google Scholar]
  188. 187.
    Zhou Q, Lee G-S, Brady J, Datta S, Katan M et al. 2012. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am. J. Hum. Genet. 91:4713–20
    [Google Scholar]
  189. 188.
    Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH et al. 2016. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48:167–73
    [Google Scholar]
  190. 189.
    Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C et al. 2014. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 370:10911–20
    [Google Scholar]
  191. 190.
    Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D et al. 2016. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. PNAS 113:3610127–32
    [Google Scholar]
/content/journals/10.1146/annurev-genet-030123-084224
Loading
/content/journals/10.1146/annurev-genet-030123-084224
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error