1932

Abstract

Despite accumulating evidence implicating noncoding variants in human diseases, unraveling their functionality remains a significant challenge. Systematic annotations of the regulatory landscape and the growth of sequence variant data sets have fueled the development of tools and methods to identify causal noncoding variants and evaluate their regulatory effects. Here, we review the latest advances in the field and discuss potential future research avenues to gain a more in-depth understanding of noncoding regulatory variants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-030723-120717
2023-11-27
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/genet/57/1/annurev-genet-030723-120717.html?itemId=/content/journals/10.1146/annurev-genet-030723-120717&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    1000 Genomes Proj. Consort., Auton A, Brooks LD, Durbin RM, Garrison EP et al. 2015. A global reference for human genetic variation. Nature 526:757168–74
    [Google Scholar]
  2. 2.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A et al. 2010. A method and server for predicting damaging missense mutations. Nat. Methods 7:4248–49
    [Google Scholar]
  3. 3.
    Agarwal V, Shendure J. 2020. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks. Cell Rep. 31:7107663
    [Google Scholar]
  4. 4.
    Alipanahi B, Delong A, Weirauch MT, Frey BJ. 2015. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33:8831–38
    [Google Scholar]
  5. 5.
    Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J et al. 2014. An atlas of active enhancers across human cell types and tissues. Nature 507:7493455–61
    [Google Scholar]
  6. 6.
    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:7785149–57
    [Google Scholar]
  7. 7.
    Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A. 2013. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339:61231074–77
    [Google Scholar]
  8. 8.
    Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A et al. 2021. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18:101196–203
    [Google Scholar]
  9. 9.
    Avsec Ž, Weilert M, Shrikumar A, Krueger S, Alexandari A et al. 2021. Base-resolution models of transcription-factor binding reveal soft motif syntax. Nat. Genet. 53:3354–66
    [Google Scholar]
  10. 10.
    Bell O, Tiwari VK, Thomä NH, Schübeler D. 2011. Determinants and dynamics of genome accessibility. Nat. Rev. Genet. 12:8554–64
    [Google Scholar]
  11. 11.
    Bishop CM. 2006. Pattern Recognition and Machine Learning New York: Springer
    [Google Scholar]
  12. 12.
    Bocher O, Génin E. 2020. Rare variant association testing in the non-coding genome. Hum. Genet. 139:111345–62
    [Google Scholar]
  13. 13.
    Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH et al. 2008. High-resolution mapping and characterization of open chromatin across the genome. Cell 132:2311–22
    [Google Scholar]
  14. 14.
    Bravo González-Blas C, Quan X-J, Duran-Romaña R, Taskiran II, Koldere D et al. 2020. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Mol. Syst. Biol. 16:5e9438
    [Google Scholar]
  15. 15.
    Breheny P, Huang J. 2009. Penalized methods for bi-level variable selection. Stat. Interface 2:3369–80
    [Google Scholar]
  16. 16.
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10:121213–18
    [Google Scholar]
  17. 17.
    Campbell CT, Kim G. 2007. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:152380–92
    [Google Scholar]
  18. 18.
    Cano-Gamez E, Trynka G. 2020. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet. 11:424
    [Google Scholar]
  19. 19.
    Caron B, Luo Y, Rausell A. 2019. NCBoost classifies pathogenic non-coding variants in Mendelian diseases through supervised learning on purifying selection signals in humans. Genome Biol. 20:132
    [Google Scholar]
  20. 20.
    Carroll D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188:4773–82
    [Google Scholar]
  21. 21.
    Chen KM, Wong AK, Troyanskaya OG, Zhou J. 2022. A sequence-based global map of regulatory activity for deciphering human genetics. Nat. Genet. 54:7940–49
    [Google Scholar]
  22. 22.
    Chen SP, Wang HH. 2019. An engineered Cas-Transposon system for programmable and site-directed DNA transpositions. CRISPR J. 2:6376–94
    [Google Scholar]
  23. 23.
    Chen W, Larrabee BR, Ovsyannikova IG, Kennedy RB, Haralambieva IH et al. 2015. Fine mapping causal variants with an approximate Bayesian method using marginal test statistics. Genetics 200:3719–36
    [Google Scholar]
  24. 24.
    Cho S, Kim H, Oh S, Kim K, Park T. 2009. Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis. BMC Proc. 3:Suppl. 7S25
    [Google Scholar]
  25. 25.
    Cochran JN, Geier EG, Bonham LW, Newberry JS, Amaral MD et al. 2020. Non-coding and loss-of-function coding variants in TET2 are associated with multiple neurodegenerative diseases. Am. J. Hum. Genet. 106:5632–45
    [Google Scholar]
  26. 26.
    Connally NJ, Nazeen S, Lee D, Shi H, Stamatoyannopoulos J et al. 2022. The missing link between genetic association and regulatory function. eLife 11:e74970
    [Google Scholar]
  27. 27.
    Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. 2014. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat. Genet. 46:121311–20
    [Google Scholar]
  28. 28.
    Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. 2010. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLOS Comput. Biol. 6:12e1001025
    [Google Scholar]
  29. 29.
    Derkach A, Lawless JF, Sun L. 2014. Pooled association tests for rare genetic variants: a review and some new results. Stat. Sci. 29:2302–21
    [Google Scholar]
  30. 30.
    di Iulio J, Bartha I, Wong EHM, Yu H-C, Lavrenko V et al. 2018. The human noncoding genome defined by genetic diversity. Nat. Genet. 50:3333–37
    [Google Scholar]
  31. 31.
    Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:62131258096
    [Google Scholar]
  32. 32.
    ENCODE Proj. Consort 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:741457–74
    [Google Scholar]
  33. 33.
    Epinat J-C, Arnould S, Chames P, Rochaix P, Desfontaines D et al. 2003. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31:112952–62
    [Google Scholar]
  34. 34.
    Ernst J, Kellis M. 2012. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9:3215–16
    [Google Scholar]
  35. 35.
    Ernst J, Kellis M. 2017. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12:122478–92
    [Google Scholar]
  36. 36.
    Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C et al. 2021. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med. 384:3205–15
    [Google Scholar]
  37. 37.
    Frangoul H, Altshuler D, Cappellini MD, Chen Y-S, Domm J et al. 2021. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384:3252–60
    [Google Scholar]
  38. 38.
    Fudenberg G, Kelley DR, Pollard KS. 2020. Predicting 3D genome folding from DNA sequence with Akita. Nat. Methods 17:111111–17
    [Google Scholar]
  39. 39.
    Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT et al. 2019. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51:121664–69
    [Google Scholar]
  40. 40.
    Gallagher MD, Chen-Plotkin AS. 2018. The post-GWAS era: from association to function. Am. J. Hum. Genet. 102:5717–30
    [Google Scholar]
  41. 41.
    Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. 2007. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17:6877–85
    [Google Scholar]
  42. 42.
    Gong J, Mei S, Liu C, Xiang Y, Ye Y et al. 2018. PancanQTL: systematic identification of cis-eQTLs and trans-eQTLs in 33 cancer types. Nucleic Acids Res. 46:D1D971–76
    [Google Scholar]
  43. 43.
    Hardison RC, Taylor J. 2012. Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet. 13:7469–83
    [Google Scholar]
  44. 44.
    Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I. 2018. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat. Commun. 9:1619
    [Google Scholar]
  45. 45.
    He Z, Xu B, Buxbaum J, Ionita-Laza I. 2019. A genome-wide scan statistic framework for whole-genome sequence data analysis. Nat. Commun. 10:13018
    [Google Scholar]
  46. 46.
    Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39:3311–18
    [Google Scholar]
  47. 47.
    Hess GT, Tycko J, Yao D, Bassik MC. 2017. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol. Cell 68:126–43
    [Google Scholar]
  48. 48.
    Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ. 2008. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLOS Genet. 4:7e1000130
    [Google Scholar]
  49. 49.
    Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E. 2014. Identifying causal variants at loci with multiple signals of association. Genetics 198:2497–508
    [Google Scholar]
  50. 50.
    Hormozdiari F, van de Bunt M, Segrè AV, Li X, Joo JWJ et al. 2016. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99:61245–60
    [Google Scholar]
  51. 51.
    Huang Y-F, Gulko B, Siepel A. 2017. Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data. Nat. Genet. 49:4618–24
    [Google Scholar]
  52. 52.
    Inoue F, Kircher M, Martin B, Cooper GM, Witten DM et al. 2017. A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Res. 27:138–52
    [Google Scholar]
  53. 53.
    Ionita-Laza I, McCallum K, Xu B, Buxbaum JD. 2016. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat. Genet. 48:2214–20
    [Google Scholar]
  54. 54.
    Johnson DS, Mortazavi A, Myers RM, Wold B. 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science 316:58301497–502
    [Google Scholar]
  55. 55.
    Joung JK, Sander JD. 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14:149–55
    [Google Scholar]
  56. 56.
    Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J et al. 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:7809434–43
    [Google Scholar]
  57. 57.
    Kelley DR, Reshef YA, Bileschi M, Belanger D, McLean CY, Snoek J. 2018. Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Res. 28:5739–50
    [Google Scholar]
  58. 58.
    Kelley DR, Snoek J, Rinn JL. 2016. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26:7990–99
    [Google Scholar]
  59. 59.
    Kim T, Wei P. 2016. Incorporating ENCODE information into association analysis of whole genome sequencing data. BMC Proc. 10:Suppl. 79
    [Google Scholar]
  60. 60.
    Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM et al. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature 465:7295182–87
    [Google Scholar]
  61. 61.
    Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J 2014. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46:3310–15
    [Google Scholar]
  62. 62.
    Klein JC, Agarwal V, Inoue F, Keith A, Martin B et al. 2020. A systematic evaluation of the design and context dependencies of massively parallel reporter assays. Nat. Methods 17:111083–91
    [Google Scholar]
  63. 63.
    Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH. 2019. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 571:7764219–25
    [Google Scholar]
  64. 64.
    Komor AC, Badran AH, Liu DR. 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:1–220–36
    [Google Scholar]
  65. 65.
    Kouno T, Moody J, Kwon AT-J, Shibayama Y, Kato S et al. 2019. C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. Nat. Commun. 10:1360
    [Google Scholar]
  66. 66.
    Kouzarides T. 2007. Chromatin modifications and their function. Cell 128:4693–705
    [Google Scholar]
  67. 67.
    Kurdistani SK, Grunstein M. 2003. In vivo protein–protein and protein–DNA crosslinking for genomewide binding microarray. Methods 31:190–95
    [Google Scholar]
  68. 68.
    Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR et al. 2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39:141–46
    [Google Scholar]
  69. 69.
    Ladouceur M, Dastani Z, Aulchenko YS, Greenwood CMT, Richards JB. 2012. The empirical power of rare variant association methods: results from Sanger sequencing in 1,998 individuals. PLOS Genet. 8:2e1002496
    [Google Scholar]
  70. 70.
    Lanchantin J, Qi Y. 2020. Graph convolutional networks for epigenetic state prediction using both sequence and 3D genome data. Bioinformatics 36:Suppl. 2i659–67
    [Google Scholar]
  71. 71.
    Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B et al. 2020. ClinVar: improvements to accessing data. Nucleic Acids Res. 48:D1D835–44
    [Google Scholar]
  72. 72.
    Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL et al. 2015. A method to predict the impact of regulatory variants from DNA sequence. Nat. Genet. 47:8955–61
    [Google Scholar]
  73. 73.
    Lee D, Yang J, Kim S. 2022. Learning the histone codes with large genomic windows and three-dimensional chromatin interactions using transformer. Nat. Commun. 13:16678
    [Google Scholar]
  74. 74.
    Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S et al. 2014. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312:181880–87
    [Google Scholar]
  75. 75.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:7616285–91
    [Google Scholar]
  76. 76.
    Li G, Martínez-Bonet M, Wu D, Yang Y, Cui J et al. 2018. High-throughput identification of noncoding functional SNPs via type IIS enzyme restriction. Nat. Genet. 50:81180–88
    [Google Scholar]
  77. 77.
    Liu X, Noll DM, Lieb JD, Clarke ND. 2005. DIP-chip: rapid and accurate determination of DNA-binding specificity. Genome Res. 15:3421–27
    [Google Scholar]
  78. 78.
    Liu Y, Liang Y, Cicek AE, Li Z, Li J et al. 2018. A statistical framework for mapping risk genes from de novo mutations in whole-genome-sequencing studies. Am. J. Hum. Genet. 102:61031–47
    [Google Scholar]
  79. 79.
    Li Z, Li X, Liu Y, Shen J, Chen H et al. 2019. Dynamic scan procedure for detecting rare-variant association regions in whole-genome sequencing studies. Am. J. Hum. Genet. 104:5802–14
    [Google Scholar]
  80. 80.
    Longo SK, Guo MG, Ji AL, Khavari PA. 2021. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22:10627–44
    [Google Scholar]
  81. 81.
    Loos RJF. 2020. 15 years of genome-wide association studies and no signs of slowing down. Nat. Commun. 11:15900
    [Google Scholar]
  82. 82.
    Lu T, Ang CE, Zhuang X. 2022. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell 185:234448–64.e17
    [Google Scholar]
  83. 83.
    Maerkl SJ, Quake SR. 2007. A systems approach to measuring the binding energy landscapes of transcription factors. Science 315:5809233–37
    [Google Scholar]
  84. 84.
    Mangan RJ, Alsina FC, Mosti F, Sotelo-Fonseca JE, Snellings DA et al. 2022. Adaptive sequence divergence forged new neurodevelopmental enhancers in humans. Cell 185:244587–603.e23
    [Google Scholar]
  85. 85.
    McKellar DW, Mantri M, Hinchman MM, Parker JSL, Sethupathy P et al. 2022. Spatial mapping of the total transcriptome by in situ polyadenylation. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01517-6
    [Google Scholar]
  86. 86.
    Meng X, Brodsky MH, Wolfe SA. 2005. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat. Biotechnol. 23:8988–94
    [Google Scholar]
  87. 87.
    Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X. 2016. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. PNAS 113:3911046–51
    [Google Scholar]
  88. 88.
    Molla KA, Yang Y. 2019. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol. 37:101121–42
    [Google Scholar]
  89. 89.
    Morrison AC, Huang Z, Yu B, Metcalf G, Liu X et al. 2017. Practical approaches for whole-genome sequence analysis of heart- and blood-related traits. Am. J. Hum. Genet. 100:2205–15
    [Google Scholar]
  90. 90.
    Mostafavi H, Spence JP, Naqvi S, Pritchard JK. 2022. Limited overlap of eQTLs and GWAS hits due to systematic differences in discovery. bioRxiv 2022.05.07.491045. https://doi.org/10.1101/2022.05.07.491045
  91. 91.
    Moyon L, Berthelot C, Louis A, Nguyen NTT, Roest Crollius H. 2022. Classification of non-coding variants with high pathogenic impact. PLOS Genet. 18:4e1010191
    [Google Scholar]
  92. 92.
    Muerdter F, Boryń ŁM, Arnold CD. 2015. STARR-seq—principles and applications. Genomics 106:3145–50
    [Google Scholar]
  93. 93.
    Nair S, Kim DS, Perricone J, Kundaje A. 2019. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts. Bioinformatics 35:14i108–16
    [Google Scholar]
  94. 94.
    Nasser J, Bergman DT, Fulco CP, Guckelberger P, Doughty BR et al. 2021. Genome-wide enhancer maps link risk variants to disease genes. Nature 593:7858238–43
    [Google Scholar]
  95. 95.
    Nathan A, Asgari S, Ishigaki K, Valencia C, Amariuta T et al. 2022. Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature 606:7912120–28
    [Google Scholar]
  96. 96.
    Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B et al. 2011. Testing for an unusual distribution of rare variants. PLOS Genet. 7:3e1001322
    [Google Scholar]
  97. 97.
    Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M et al. 2019. Brain cell type–specific enhancer–promoter interactome maps and disease-risk association. Science 366:64691134–39
    [Google Scholar]
  98. 98.
    Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10:10669–80
    [Google Scholar]
  99. 99.
    Paul S, Vadgama P, Ray AK. 2009. Surface plasmon resonance imaging for biosensing. IET Nanobiotechnol. 3:371–80
    [Google Scholar]
  100. 100.
    Persyn E, Karakachoff M, Le Scouarnec S, Le Clézio C, Campion D et al. 2017. DoEstRare: a statistical test to identify local enrichments in rare genomic variants associated with disease. PLOS ONE 12:7e0179364
    [Google Scholar]
  101. 101.
    Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. 2010. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20:1110–21
    [Google Scholar]
  102. 102.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:51173–83
    [Google Scholar]
  103. 103.
    Rao S, Yao Y, Bauer DE. 2021. Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation. Genome Med. 13:141
    [Google Scholar]
  104. 104.
    Rees HA, Liu DR. 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19:12770–88
    [Google Scholar]
  105. 105.
    Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. 2019. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47:D1D886–94
    [Google Scholar]
  106. 106.
    Rheinbay E, Nielsen MM, Abascal F, Wala JA, Shapira O et al. 2020. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578:7793102–11
    [Google Scholar]
  107. 107.
    Ritchie GRS, Dunham I, Zeggini E, Flicek P. 2014. Functional annotation of noncoding sequence variants. Nat. Methods 11:3294–96
    [Google Scholar]
  108. 108.
    Roulet E, Busso S, Camargo AA, Simpson AJG, Mermod N, Bucher P. 2002. High-throughput SELEX–SAGE method for quantitative modeling of transcription-factor binding sites. Nat. Biotechnol. 20:8831–35
    [Google Scholar]
  109. 109.
    Sarnowski C, Satizabal CL, DeCarli C, Pitsillides AN, Cupples LA et al. 2018. Whole genome sequence analyses of brain imaging measures in the Framingham Study. Neurology 90:3e188–96
    [Google Scholar]
  110. 110.
    Schaid DJ, Chen W, Larson NB. 2018. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19:8491–504
    [Google Scholar]
  111. 111.
    Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD et al. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328:59811036–40
    [Google Scholar]
  112. 112.
    Schoenfelder S, Fraser P. 2019. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20:8437–55
    [Google Scholar]
  113. 113.
    Schones DE, Cui K, Cuddapah S, Roh T-Y, Barski A et al. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132:5887–98
    [Google Scholar]
  114. 114.
    Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L et al. 2001. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29:1308–11
    [Google Scholar]
  115. 115.
    Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN et al. 2015. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 31:101536–43
    [Google Scholar]
  116. 116.
    Shlyueva D, Stampfel G, Stark A. 2014. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15:4272–86
    [Google Scholar]
  117. 117.
    Shumaker-Parry JS, Aebersold R, Campbell CT. 2004. Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal. Chem. 76:72071–82
    [Google Scholar]
  118. 118.
    Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M et al. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:81034–50
    [Google Scholar]
  119. 119.
    Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. 2012. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40:W1W452–57
    [Google Scholar]
  120. 120.
    Smedley D, Schubach M, Jacobsen JOB, Köhler S, Zemojtel T et al. 2016. A whole-genome analysis framework for effective identification of pathogenic regulatory variants in Mendelian disease. Am. J. Hum. Genet. 99:3595–606
    [Google Scholar]
  121. 121.
    Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. 2014. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 133:11–9
    [Google Scholar]
  122. 122.
    Stormo GD, Zhao Y. 2010. Determining the specificity of protein–DNA interactions. Nat. Rev. Genet. 11:11751–60
    [Google Scholar]
  123. 123.
    Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS et al. 2019. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365:644848–53
    [Google Scholar]
  124. 124.
    Sung YJ, Korthauer KD, Swartz MD, Engelman CD. 2014. Methods for collapsing multiple rare variants in whole-genome sequence data. Genet. Epidemiol. 38:Suppl. 1S13–20
    [Google Scholar]
  125. 125.
    Tewhey R, Kotliar D, Park DS, Liu B, Winnicki S et al. 2016. Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell 165:61519–29
    [Google Scholar]
  126. 126.
    Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT et al. 2012. The accessible chromatin landscape of the human genome. Nature 489:741475–82
    [Google Scholar]
  127. 127.
    Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 58:1267–88
    [Google Scholar]
  128. 128.
    Tippens ND, Liang J, Leung AK-Y, Wierbowski SD, Ozer A et al. 2020. Transcription imparts architecture, function and logic to enhancer units. Nat. Genet. 52:101067–75
    [Google Scholar]
  129. 129.
    Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A. 2011. Determinants of nucleosome organization in primary human cells. Nature 474:7352516–20
    [Google Scholar]
  130. 130.
    van de Bunt M, Cortes A, IGAS Consort., Brown MA, Morris AP, McCarthy MI 2015. Evaluating the performance of fine-mapping strategies at common variant GWAS loci. PLOS Genet. 11:9e1005535
    [Google Scholar]
  131. 131.
    van der Wijst MGP, Brugge H, de Vries DH, Deelen P, Swertz MA et al. 2018. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50:4493–97
    [Google Scholar]
  132. 132.
    Vecchio-Pagán B, Blackman SM, Lee M, Atalar M, Pellicore MJ et al. 2016. Deep resequencing of CFTR in 762 F508del homozygotes reveals clusters of non-coding variants associated with cystic fibrosis disease traits. Hum. Genome Var. 3:16038
    [Google Scholar]
  133. 133.
    Weissbrod O, Hormozdiari F, Benner C, Cui R, Ulirsch J et al. 2020. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52:121355–63
    [Google Scholar]
  134. 134.
    Werling DM, Brand H, An J-Y, Stone MR, Zhu L et al. 2018. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat. Genet. 50:5727–36
    [Google Scholar]
  135. 135.
    Wilson KD, Wu JC. 2015. Induced pluripotent stem cells. JAMA 313:161613–14
    [Google Scholar]
  136. 136.
    Wissink EM, Vihervaara A, Tippens ND, Lis JT. 2019. Nascent RNA analyses: tracking transcription and its regulation. Nat. Rev. Genet. 20:12705–23
    [Google Scholar]
  137. 137.
    Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89:182–93
    [Google Scholar]
  138. 138.
    Yao L, Liang J, Ozer A, Leung AK-Y, Lis JT, Yu H. 2022. A comparison of experimental assays and analytical methods for genome-wide identification of active enhancers. Nat. Biotechnol. 40:71056–65
    [Google Scholar]
  139. 139.
    Yazar S, Alquicira-Hernandez J, Wing K, Senabouth A, Gordon MG et al. 2022. Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science 376:6589eabf3041
    [Google Scholar]
  140. 140.
    Yeh CD, Richardson CD, Corn JE. 2019. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 21:121468–78
    [Google Scholar]
  141. 141.
    Yuan G-C, Liu Y-J, Dion MF, Slack MD, Wu LF et al. 2005. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:5734626–30
    [Google Scholar]
  142. 142.
    Zhang S, Cooper-Knock J, Weimer AK, Shi M, Moll T et al. 2022. Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron 110:6992–1008.e11
    [Google Scholar]
  143. 143.
    Zhang Z, Feng F, Liu J. 2022. Characterizing collaborative transcription regulation with a graph-based deep learning approach. PLOS Comput. Biol. 18:6e1010162
    [Google Scholar]
  144. 144.
    Zhang Z, Park CY, Theesfeld CL, Troyanskaya OG. 2021. An automated framework for efficiently designing deep convolutional neural networks in genomics. Nat. Mach. Intell. 3:5392–400
    [Google Scholar]
  145. 145.
    Zhao D, Li J, Li S, Xin X, Hu M et al. 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39:135–40
    [Google Scholar]
  146. 146.
    Zhao S, Hong CKY, Myers CA, Granas DM, White MA et al. 2023. A single-cell massively parallel reporter assay detects cell-type-specific gene regulation. Nat. Genet. 55:2346–54
    [Google Scholar]
  147. 147.
    Zhou J. 2022. Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale. Nat. Genet. 54:5725–34
    [Google Scholar]
  148. 148.
    Zhou J, Theesfeld CL, Yao K, Chen KM, Wong AK, Troyanskaya OG. 2018. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50:81171–79
    [Google Scholar]
  149. 149.
    Zhou J, Troyanskaya OG. 2015. Predicting effects of noncoding variants with deep learning–based sequence model. Nat. Methods 12:10931–34
    [Google Scholar]
/content/journals/10.1146/annurev-genet-030723-120717
Loading
/content/journals/10.1146/annurev-genet-030723-120717
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error