1932

Abstract

Vertebrates exhibit a wide range of color patterns, which play critical roles in mediating intra- and interspecific communication. Because of their diversity and visual accessibility, color patterns offer a unique and fascinating window into the processes underlying biological organization. In this review, we focus on describing many of the general principles governing the formation and evolution of color patterns in different vertebrate groups. We characterize the types of patterns, review the molecular and developmental mechanisms by which they originate, and discuss their role in constraining or facilitating evolutionary change. Lastly, we outline outstanding questions in the field and discuss different approaches that can be used to address them. Overall, we provide a unifying conceptual framework among vertebrate systems that may guide research into naturally evolved mechanisms underlying color pattern formation and evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-031423-120918
2023-11-27
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/genet/57/1/annurev-genet-031423-120918.html?itemId=/content/journals/10.1146/annurev-genet-031423-120918&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Barrett RDH, Laurent S, Mallarino R, Pfeifer SP, Xu CCY et al. 2019. Linking a mutation to survival in wild mice. Science 363:6426499–504
    [Google Scholar]
  2. 2.
    Barsh GS. 1996. The genetics of pigmentation: from fancy genes to complex traits. Trends Genet 12:299–305
    [Google Scholar]
  3. 3.
    Brancalion L, Haase B, Wade CM. 2022. Canine coat pigmentation genetics: a review. Anim. Genet. 53:13–34
    [Google Scholar]
  4. 4.
    Caro T, Mallarino R. 2020. Coloration in mammals. Trends Ecol. Evol. 35:4357–66
    [Google Scholar]
  5. 5.
    Caro T, Stoddard MC, Stuart-Fox D. 2017. Animal coloration: production, perception, function and application. Philos. Trans. R. Soc. B 372:172420170047
    [Google Scholar]
  6. 6.
    Ceinos RM, Guillot R, Kelsh RN, Cerdá-Reverter JM, Rotllant J. 2015. Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms. Pigment Cell Melanoma Res 28:2196–209
    [Google Scholar]
  7. 7.
    Cortés R, Navarro S, Agulleiro MJ, Guillot R, García-Herranz V et al. 2014. Evolution of the melanocortin system. Gen. Comp. Endocrinol. 209:3–10
    [Google Scholar]
  8. 8.
    Courtier-Orgogozo V, Arnoult L, Prigent SR, Wiltgen S, Martin A. 2020. Gephebase, a database of genotype–phenotype relationships for natural and domesticated variation in Eukaryotes. Nucleic Acids Res 48:D1D696–703
    [Google Scholar]
  9. 9.
    Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G et al. 2017. The biology of color. Science 357:6350eaan0221
    [Google Scholar]
  10. 10.
    D'Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME 2016. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17:71144
    [Google Scholar]
  11. 11.
    Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. 2022. Meta-analysis of the genetic loci of pigment pattern evolution in vertebrates. bioRxiv 2022.01.01.474697. https://doi.org/10.1101/2022.01.01.474697
    [Crossref]
  12. 12.
    Feigin C, Li S, Moreno J, Mallarino R. 2022. The GRN concept as a guide for evolutionary developmental biology. J. Exp. Zool. B Mol. Dev. Evol. 340:292–104
    [Google Scholar]
  13. 13.
    Feiner N, Brun-Usan M, Andrade P, Pranter R, Park S et al. 2022. A single locus regulates a female-limited color pattern polymorphism in a reptile. Sci Adv 8:10eabm2387
    [Google Scholar]
  14. 14.
    Frohnhöfer HG, Krauss J, Maischein H-M, Nüsslein-Volhard C. 2013. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish. Development 140:142997–3007
    [Google Scholar]
  15. 15.
    Galván I, Solano F. 2016. Bird integumentary melanins: biosynthesis, forms, function and evolution. Int. J. Mol. Sci. 17:4520
    [Google Scholar]
  16. 16.
    Gerwin J, Urban S, Meyer A, Kratochwil CF. 2021. Of bars and stripes: A Malawi cichlid hybrid cross provides insights into genetic modularity and evolution of modifier loci underlying colour pattern diversification. Mol. Ecol. 30:194789–803
    [Google Scholar]
  17. 17.
    Goda M, Fujii R. 1995. Blue chromatophores in two species of callionymid fish. Zool. Sci. 12:6811–13
    [Google Scholar]
  18. 18.
    Goutte S, Hariyani I, Utzinger KD, Bourgeois Y, Boissinot S. 2022. Genomic analyses reveal association of ASIP with a recurrently evolving adaptive color pattern in frogs. Mol. Biol. Evol. 39:11msac235
    [Google Scholar]
  19. 19.
    Grahn RA, Lemesch BM, Millon LV, Matise T, Rogers QR et al. 2005. Localizing the X-linked orange colour phenotype using feline resource families. Anim. Genet. 36:167–70
    [Google Scholar]
  20. 20.
    Guo L, Bloom J, Sykes S, Huang E, Kashif Z et al. 2021. Genetics of white color and iridophoroma in “Lemon Frost” leopard geckos. PLOS Genet 17:6e1009580
    [Google Scholar]
  21. 21.
    Gur D, Bain EJ, Johnson KR, Aman AJ, Pasolli HA et al. 2020. In situ differentiation of iridophore crystallotypes underlies zebrafish stripe patterning. Nat. Commun. 11:16391
    [Google Scholar]
  22. 22.
    Haupaix N, Curantz C, Bailleul R, Beck S, Robic A, Manceau M. 2018. The periodic coloration in birds forms through a prepattern of somite origin. Science 361:6408eaar4777
    [Google Scholar]
  23. 23.
    Hendrick LA, Carter GA, Hilbrands EH, Heubel BP, Schilling TF, Le Pabic P 2019. Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi. EvoDevo 10:18
    [Google Scholar]
  24. 24.
    Hidalgo M, Curantz C, Quenech'Du N, Neguer J, Beck S et al. 2022. A conserved molecular template underlies color pattern diversity in estrildid finches. Sci. Adv. 8:35eabm5800
    [Google Scholar]
  25. 25.
    Hirata M, Nakamura K-I, Kondo S. 2005. Pigment cell distributions in different tissues of the zebrafish, with special reference to the striped pigment pattern. Dev. Dyn. 234:2293–300
    [Google Scholar]
  26. 26.
    Hiroshi N, Noriko O, Ryozo F. 1990. Light-reflecting properties of the iridophores of the neon tetra, Paracheirodon innesi. Comp. Biochem. Physiol. A Physiol. 95:3337–41
    [Google Scholar]
  27. 27.
    Inaba M, Chuong C-M. 2020. Avian pigment pattern formation: developmental control of macro- (across the body) and micro- (within a feather) level of pigment patterns. Front. Cell Dev. Biol. 8:620
    [Google Scholar]
  28. 28.
    Inaba M, Jiang T-X, Liang Y-C, Tsai S, Lai Y-C et al. 2019. Instructive role of melanocytes during pigment pattern formation of the avian skin. PNAS 116:146884–90
    [Google Scholar]
  29. 29.
    Johnson MR, Li S, Guerrero-Juarez CF, Miller P, Brack BJ et al. 2023. Sfrp2 is a multifunctional regulator of rodent coat patterns. bioRxiv 2022.12.12.520043. https://doi.org/10.1101/2022.12.12.520043
  30. 30.
    Jones MR, Mills LS, Alves PC, Callahan CM, Alves JM et al. 2018. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360:63951355–58
    [Google Scholar]
  31. 31.
    Kaelin CB, Barsh GS. 2013. Genetics of pigmentation in dogs and cats. Annu. Rev. Anim. Biosci. 1:125–56
    [Google Scholar]
  32. 32.
    Kaelin CB, McGowan KA, Barsh GS. 2021. Developmental genetics of color pattern establishment in cats. Nat. Commun. 12:15127
    [Google Scholar]
  33. 33.
    Kaelin CB, Xu X, Hong LZ, David VA, McGowan KA et al. 2012. Specifying and sustaining pigmentation patterns in domestic and wild cats. Science 337:61011536–41
    [Google Scholar]
  34. 34.
    Kimura T, Nagao Y, Hashimoto H, Yamamoto-Shiraishi Y-I, Yamamoto S et al. 2014. Leucophores are similar to xanthophores in their specification and differentiation processes in medaka. PNAS 111:207343–48
    [Google Scholar]
  35. 35.
    Kondo S, Miura T. 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:59991616–20
    [Google Scholar]
  36. 36.
    Kondo S, Watanabe M, Miyazawa S. 2021. Studies of Turing pattern formation in zebrafish skin. Philos. Trans. R. Soc. A 379:221320200274
    [Google Scholar]
  37. 37.
    Kratochwil CF. 2019. Molecular mechanisms of convergent color pattern evolution. Zoology 134:66–68
    [Google Scholar]
  38. 38.
    Kratochwil CF, Liang Y, Gerwin J, Franchini P, Meyer A. 2022. Comparative ontogenetic and transcriptomic analyses shed light on color pattern divergence in cichlid fishes. Evol. Dev. 24:5158–70
    [Google Scholar]
  39. 39.
    Kratochwil CF, Liang Y, Gerwin J, Woltering JM, Urban S et al. 2018. Agouti-related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science 362:6413457–60
    [Google Scholar]
  40. 40.
    Kratochwil CF, Meyer A. 2015. Closing the genotype-phenotype gap: emerging technologies for evolutionary genetics in ecological model vertebrate systems. Bioessays 37:2213–26
    [Google Scholar]
  41. 41.
    Lewis JJ, Geltman RC, Pollak PC, Rondem KE, Van Belleghem SM et al. 2019. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. PNAS 116:4824174–83
    [Google Scholar]
  42. 42.
    Lewis JJ, Van Belleghem SM, Papa R, Danko CG, Reed RD. 2020. Many functionally connected loci foster adaptive diversification along a neotropical hybrid zone. Sci. Adv. 6:39eabb8617
    [Google Scholar]
  43. 43.
    Lewis VM, Saunders LM, Larson TA, Bain EJ, Sturiale SL et al. 2019. Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores. PNAS 116:11806–11
    [Google Scholar]
  44. 44.
    Liang Y, Gerwin J, Meyer A, Kratochwil CF. 2020. Developmental and cellular basis of vertical bar color patterns in the East African cichlid fish Haplochromis latifasciatus. Front. Cell Dev. Biol. 8:62
    [Google Scholar]
  45. 45.
    Liang Y, Meyer A, Kratochwil CF. 2020. Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish. Sci. Rep. 10:112329
    [Google Scholar]
  46. 46.
    Ligon RA, McCartney KL. 2016. Biochemical regulation of pigment motility in vertebrate chromatophores: a review of physiological color change mechanisms. Curr. Zool. 62:3237–52
    [Google Scholar]
  47. 47.
    Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE. 2009. On the origin and spread of an adaptive allele in deer mice. Science 325:59441095–98
    [Google Scholar]
  48. 48.
    Linnen CR, Poh Y-P, Peterson BK, Barrett RDH, Larson JG et al. 2013. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science 339:61251312–16
    [Google Scholar]
  49. 49.
    Mallarino R, Henegar C, Mirasierra M, Manceau M, Schradin C et al. 2016. Developmental mechanisms of stripe patterns in rodents. Nature 539:518–23
    [Google Scholar]
  50. 50.
    Mallarino R, Linden TA, Linnen CR, Hoekstra HE. 2016. The role of isoforms in the evolution of cryptic coloration in Peromyscus mice. Mol. Ecol. 26:1245–58
    [Google Scholar]
  51. 51.
    Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HE. 2010. Convergence in pigmentation at multiple levels: mutations, genes and function. Philos. Trans. R. Soc. B 365:15522439–50
    [Google Scholar]
  52. 52.
    Manceau M, Domingues VS, Mallarino R, Hoekstra HE. 2011. The developmental role of Agouti in color pattern evolution. Science 331:60201062–65
    [Google Scholar]
  53. 53.
    Matthews BJ, Vosshall LB. 2020. How to turn an organism into a model organism in 10 ‘easy’ steps. J. Exp. Biol. 223:Suppl. 1jeb218198
    [Google Scholar]
  54. 54.
    Mazo-Vargas A, Langmüller AM, Wilder A, van der Burg KRL, Lewis JJ et al. 2022. Deep cis-regulatory homology of the butterfly wing pattern ground plan. Science 378:6617304–8
    [Google Scholar]
  55. 55.
    McCluskey BM, Liang Y, Lewis VM, Patterson LB, Parichy DM. 2021. Pigment pattern morphospace of Danio fishes: evolutionary diversification and mutational effects. Biol. Open 10:9bio058814
    [Google Scholar]
  56. 56.
    Miyazawa S. 2020. Pattern blending enriches the diversity of animal colorations. Sci Adv 6:49eabb9107
    [Google Scholar]
  57. 57.
    Nachman MW, Hoekstra HE, D'Agostino SL 2003. The genetic basis of adaptive melanism in pocket mice. PNAS 100:95268–73
    [Google Scholar]
  58. 58.
    Nüsslein-Volhard C, Singh AP. 2017. How fish color their skin: a paradigm for development and evolution of adult patterns: Multipotency, plasticity, and cell competition regulate proliferation and spreading of pigment cells in Zebrafish coloration. Bioessays 39:31600231
    [Google Scholar]
  59. 59.
    Orteu A, Jiggins CD 2020. The genomics of coloration provides insights into adaptive evolution. Nat. Rev. Genet. 21:8461–75
    [Google Scholar]
  60. 60.
    Patterson LB, Parichy DM. 2013. Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation. PLOS Genet 9:e1003561
    [Google Scholar]
  61. 61.
    Patterson LB, Parichy DM. 2019. Zebrafish pigment pattern formation: insights into the development and evolution of adult form. Annu. Rev. Genet. 53:505–30
    [Google Scholar]
  62. 62.
    Protas ME, Hersey C, Kochanek D, Zhou Y, Wilkens H et al. 2006. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat. Genet. 38:1107–11
    [Google Scholar]
  63. 63.
    Roberts RB, Moore EC, Kocher TD. 2017. An allelic series at pax7a is associated with colour polymorphism diversity in Lake Malawi cichlid fish. Mol. Ecol. 26:102625–39
    [Google Scholar]
  64. 64.
    Rosenblum EB, Römpler H, Schöneberg T, Hoekstra HE. 2010. Molecular and functional basis of phenotypic convergence in white lizards at White Sands. PNAS 107:52113–17
    [Google Scholar]
  65. 65.
    Salis P, Roux N, Huang D, Marcionetti A, Mouginot P et al. 2021. Thyroid hormones regulate the formation and environmental plasticity of white bars in clownfishes. PNAS 118:23e2101634118
    [Google Scholar]
  66. 66.
    Santos ME, Braasch I, Boileau N, Meyer BS, Sauteur L et al. 2014. The evolution of cichlid fish egg-spots is linked with a cis-regulatory change. Nat. Commun. 5:5149
    [Google Scholar]
  67. 67.
    Santos ME, Lopes JF, Kratochwil CF. 2023. East African cichlid fishes. EvoDevo 14:11
    [Google Scholar]
  68. 68.
    Schartl M, Larue L, Goda M, Bosenberg MW, Hashimoto H, Kelsh RN. 2016. What is a vertebrate pigment cell?. Pigment Cell Melanoma Res 29:18–14
    [Google Scholar]
  69. 69.
    Singh AP, Dinwiddie A, Mahalwar P, Schach U, Linker C et al. 2016. Pigment cell progenitors in zebrafish remain multipotent through metamorphosis. Dev. Cell 38:3316–30
    [Google Scholar]
  70. 70.
    Sköld HN, Aspengren S, Cheney KL, Wallin M. 2016. Fish chromatophores—from molecular motors to animal behavior. Int. Rev. Cell Mol. Biol. 321:171–219
    [Google Scholar]
  71. 71.
    Sköld HN, Aspengren S, Wallin M. 2002. The cytoskeleton in fish melanophore melanosome positioning. Microsc. Res. Tech. 58:6464–69
    [Google Scholar]
  72. 72.
    Streelman JT, Albertson RC, Kocher TD. 2003. Genome mapping of the orange blotch colour pattern in cichlid fishes. Mol. Ecol. 12:92465–71
    [Google Scholar]
  73. 73.
    Teyssier J, Saenko SV, van der Marel D, Milinkovitch MC. 2015. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6:6368
    [Google Scholar]
  74. 74.
    Theron E, Hawkins K, Bermingham E, Ricklefs RE, Mundy NI. 2001. The molecular basis of an avian plumage polymorphism in the wild. Curr. Biol. 11:8550–57
    [Google Scholar]
  75. 75.
    Tobin DJ. 2008. Human hair pigmentation–biological aspects. Int. J. Cosmet. Sci. 30:4233–57
    [Google Scholar]
  76. 76.
    Van Belleghem SM, Papa R, Ortiz-Zuazaga H, Hendrickx F, Jiggins CD et al. 2018. patternize: An R package for quantifying colour pattern variation. Methods Ecol. Evol. 9:2390–98
    [Google Scholar]
  77. 77.
    Volkening A. 2020. Linking genotype, cell behavior, and phenotype: multidisciplinary perspectives with a basis in zebrafish patterns. Curr. Opin. Genet. Dev. 63:78–85
    [Google Scholar]
  78. 78.
    Vrieling H, Duhl DM, Millar SE, Miller KA, Barsh GS. 1994. Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. PNAS 91:5667–71
    [Google Scholar]
  79. 79.
    Weller HI, Van Belleghem SM, Hiller AE, Lord NP. 2022. Flexible color segmentation of biological images with the R package recolorize. bioRxiv 2022.04.03.486906. https://www.biorxiv.org/content/10.1101/2022.04.03.486906v3
  80. 80.
    Yamaguchi M, Yoshimoto E, Kondo S. 2007. Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism. PNAS 104:124790–93
    [Google Scholar]
  81. 81.
    Zhang G, Yallapragada VJ, Shemesh M, Wagner A, Upcher A et al. 2022. Ontogenetic color switching in lizards as a by-product of guanine cell development. bioRxiv 2022.01.12.475993. https://doi.org/10.1101/2022.01.12.475993
    [Crossref]
/content/journals/10.1146/annurev-genet-031423-120918
Loading
/content/journals/10.1146/annurev-genet-031423-120918
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error