1932

Abstract

The repeated evolution of multicellularity across the tree of life has profoundly affected the ecology and evolution of nearly all life on Earth. Many of these origins were in different groups of photosynthetic eukaryotes, or algae. Here, we review the evolution and genetics of multicellularity in several groups of green algae, which include the closest relatives of land plants. These include millimeter-scale, motile spheroids of up to 50,000 cells in the volvocine algae; decimeter-scale seaweeds in the genus (sea lettuce); and very plantlike, meter-scale freshwater algae in the genus (stoneworts). We also describe algae in the genus , which are giant, multinucleate, morphologically complex single cells. In each case, we review the life cycle, phylogeny, and genetics of traits relevant to the evolution of multicellularity, and genetic and genomic resources available for the group in question. Finally, we suggest routes toward developing these groups as model organisms for the evolution of multicellularity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-032321-091533
2021-11-23
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-032321-091533.html?itemId=/content/journals/10.1146/annurev-genet-032321-091533&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aires T, Moalic Y, Serrao EA, Arnaud-Haond S 2015. Hologenome theory supported by cooccurrence networks of species-specific bacterial communities in siphonous algae (Caulerpa). FEMS Microbiol. Ecol. 91:7fiv067
    [Google Scholar]
  2. 2. 
    Aires T, Serrão EA, Kendrick G, Duarte CM, Arnaud-Haond S 2013. Invasion is a community affair: clandestine followers in the bacterial community associated to green algae, Caulerpa racemosa, track the invasion source. PLOS ONE 8:7e68429
    [Google Scholar]
  3. 3. 
    Alexandre A, Santos R 2020. High nitrogen and phosphorous acquisition by belowground parts of Caulerpa prolifera (Chlorophyta) contribute to the species’ rapid spread in Ria Formosa Lagoon, Southern Portugal. J. Phycol. 56:3608–17
    [Google Scholar]
  4. 4. 
    Alsufyani T, Califano G, Deicke M, Grueneberg J, Weiss A et al. 2020. Macroalgal–bacterial interactions: identification and role of thallusin in morphogenesis of the seaweed Ulva (Chlorophyta). J. Exp. Bot. 71:113340–49
    [Google Scholar]
  5. 5. 
    Arimoto A, Nishitsuji K, Higa Y, Arakaki N, Hisata K et al. 2019. A siphonous macroalgal genome suggests convergent functions of homeobox genes in algae and land plants. DNA Res 26:2183–92
    [Google Scholar]
  6. 6. 
    Arimoto A, Nishitsuji K, Narisoko H, Shoguchi E, Satoh N 2019. Differential gene expression in fronds and stolons of the siphonous macroalga, Caulerpa lentillifera. Dev. . Growth Differ. 61:9475–84
    [Google Scholar]
  7. 7. 
    Balar NB, Mantri VA 2020. Insights into life cycle patterns, spore formation, induction of reproduction, biochemical and molecular aspects of sporulation in green algal genus Ulva: implications for commercial cultivation. J. Appl. Phycol. 32:473–84
    [Google Scholar]
  8. 8. 
    Beilby MJ. 2019. Chara braunii genome: a new resource for plant electrophysiology. Biophys. Rev. 11:2235–39
    [Google Scholar]
  9. 9. 
    Beilby MJ, Casanova MT. 2014. The Physiology of Characean Cells Berlin: Springer-Verlag
  10. 10. 
    Belton GS, van Reine WFP, Huisman JM, Draisma SGA, Gurgel CFD. 2014. Resolving phenotypic plasticity and species designation in the morphologically challenging Caulerpa racemosa–peltata complex (Chlorophyta, Caulerpaceae). J. Phycol. 50:132–54
    [Google Scholar]
  11. 11. 
    Benítez M, Hernández-Hernández V, Newman SA, Niklas KJ. 2018. Dynamical patterning modules, biogeneric materials, and the evolution of multicellular plants. Front. Plant Sci. 9:871
    [Google Scholar]
  12. 12. 
    Blomme J, Liu X, Jacobs TB, De Clerck O. 2021. A molecular toolkit for the green seaweed Ulva mutabilis. Plant Physiol 186:1442–54
    [Google Scholar]
  13. 13. 
    Bonneau ER. 1977. Polymorphic behavior of Ulva lactuca (Chlorophyta) in axenic culture. I. Occurrence of Enteromorpha-like plants in haploid clones. J. Phycol. 13:2133–40
    [Google Scholar]
  14. 14. 
    Boot KJM, Libbenga KR, Hille SC, Offringa R, van Duijn B. 2012. Polar auxin transport: an early invention. J. Exp. Bot. 63:114213–18
    [Google Scholar]
  15. 15. 
    Børresen S, Fjeld A. 1977. Mutational instability in Ulva mutabilis and its relation to different stages of the life cycle. Hereditas 85:2215–18
    [Google Scholar]
  16. 16. 
    Bowles AMC, Bechtold U, Paps J. 2020. The origin of land plants is rooted in two bursts of genomic novelty. Curr. Biol. 30:3530–536.e2
    [Google Scholar]
  17. 17. 
    Bowman JL, Briginshaw LN, Florent SN. 2019. Evolution and co-option of developmental regulatory networks in early land plants. Curr. Top Dev. Biol. 131:35–53
    [Google Scholar]
  18. 18. 
    Braun M, Foissner I, Löhring H, Schubert H, Thiel G. 2007. Characean algae: still a valid model system to examine fundamental principles in plants. Prog. Bot. 68:193–220
    [Google Scholar]
  19. 19. 
    Brunet T, King N. 2017. The origin of animal multicellularity and cell differentiation. Dev. Cell 43:124–40
    [Google Scholar]
  20. 20. 
    Brunkard JO, Zambryski PC. 2017. Plasmodesmata enable multicellularity: new insights into their evolution, biogenesis, and functions in development and immunity. Curr. Opin. Plant Biol. 35:76–83
    [Google Scholar]
  21. 21. 
    Bryhni E. 1974. Genetic control of morphogenesis in the multicellular alga Ulva mutabilis: defect in cell wall production. Dev. Biol. 37:2273–79
    [Google Scholar]
  22. 22. 
    Bulleri F, Marzinelli EM, Voerman SE, Gribben PE. 2020. Propagule composition regulates the success of an invasive seaweed across a heterogeneous seascape. J. Ecol. 108:31061–73
    [Google Scholar]
  23. 23. 
    Buschmann H. 2020. Into another dimension: how streptophyte algae gained morphological complexity. J. Exp. Bot. 71:113279–86
    [Google Scholar]
  24. 24. 
    Buschmann H, Zachgo S. 2016. The evolution of cell division: from streptophyte algae to land plants. Trends Plant Sci 21:10872–83
    [Google Scholar]
  25. 25. 
    Chen JCW, Jacobs WP. 1966. Quantitative study of development of the giant coenocyte, Caulerpa prolifera. Am. J. Bot. 53:413–23
    [Google Scholar]
  26. 26. 
    Chen X, Sun Y, Liu H, Liu S, Qin Y, Li P. 2019. Advances in cultivation, wastewater treatment application, bioactive components of Caulerpa lentillifera and their biotechnological applications. PeerJ 7:e6118
    [Google Scholar]
  27. 27. 
    Cheng S, Xian W, Fu Y, Marin B, Keller J et al. 2019. Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179:51057–67.e14
    [Google Scholar]
  28. 28. 
    Chisholm JRM, Dauga C, Ageron E, Grimont PAD, Jaubert JM 1996.. “ Roots” in mixotrophic algae. Nature 381:6581382
    [Google Scholar]
  29. 29. 
    Coleman AW. 2012. A comparative analysis of the Volvocaceae (Chlorophyta). J. Phycol. 48:3491–513
    [Google Scholar]
  30. 30. 
    Coneva V, Chitwood DH. 2015. Plant architecture without multicellularity: quandaries over patterning and the soma-germline divide in siphonous algae. Front. Plant Sci. 6:287
    [Google Scholar]
  31. 31. 
    Craig RJ, Hasan AR, Ness RW, Keightley PD. 2021. Comparative genomics of Chlamydomonas. Plant Cell 33:1016–41
    [Google Scholar]
  32. 32. 
    Croft MT, Warren MJ, Smith AG 2006. Algae need their vitamins. Eukaryot. Cell 5:81175–83
    [Google Scholar]
  33. 33. 
    Darienko T, Friedl T, Pröschold T 2009. Desmochloris mollenhaueri—a new terrestrial ulvophycean alga from south-west African soils. (Molecular phylogeny and systematics of terrestrial Ulvophyceae I.). Algological Stud 129:25–40
    [Google Scholar]
  34. 34. 
    Darienko T, Pröschold T. 2017. Toward a monograph of non-marine Ulvophyceae using an integrative approach. (Molecular phylogeny and systematics of terrestrial Ulvophyceae II.). Phytotaxa 324:11–41
    [Google Scholar]
  35. 35. 
    Dawes CJ, Barilotti DC. 1969. Cytoplasmic organization and rhythmic streaming in growing blades of Caulerpa prolifera. Am. J. Bot. 56:8–15
    [Google Scholar]
  36. 36. 
    Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA et al. 2011. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev. Biol. 357:173–82
    [Google Scholar]
  37. 37. 
    De Clerck O, Kao S-M, Bogaert KA, Blomme J, Foflonker F et al. 2018. Insights into the evolution of multicellularity from the sea lettuce genome. Curr. Biol. 28:182921–33.e5
    [Google Scholar]
  38. 38. 
    de Vries J, Archibald JM. 2018. Plant evolution: landmarks on the path to terrestrial life. New Phytol 217:41428–34
    [Google Scholar]
  39. 39. 
    de Vries J, Curtis BA, Gould SB, Archibald JM. 2018. Embryophyte stress signaling evolved in the algal progenitors of land plants. PNAS 115:E3471–80
    [Google Scholar]
  40. 40. 
    de Vries J, Gould SB. 2018. The monoplastidic bottleneck in algae and plant evolution. J. Cell Sci. 131:jcs203414
    [Google Scholar]
  41. 41. 
    Del Cortona A, Jackson CJ, Bucchini F, Van Bel M, D'hondt S et al. 2020. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. PNAS 117:52551–59
    [Google Scholar]
  42. 42. 
    Delwiche CF, Cooper ED. 2015. The evolutionary origin of a terrestrial flora. Curr. Biol. 25:19R899–910
    [Google Scholar]
  43. 43. 
    Desnitski AG. 1995. A review on the evolution of development in Volvox—morphological and physiological aspects. Eur. J. Protistol. 31:3241–47
    [Google Scholar]
  44. 44. 
    Desnitskiy AG. 2016. Major ontogenetic transitions during Volvox (Chlorophyta) evolution: when and where might they have occurred?. Dev. Genes Evol. 226:349–54
    [Google Scholar]
  45. 45. 
    Domozych DS, Domozych CE. 2014. Multicellularity in green algae: upsizing in a walled complex. Front. Plant Sci. 5:204649
    [Google Scholar]
  46. 46. 
    Domozych DS, Popper ZA, Sørensen I. 2016. Charophytes: evolutionary giants and emerging model organisms. Front. Plant Sci. 7:1470
    [Google Scholar]
  47. 47. 
    Duncan L, Nishii I, Harryman A, Buckley S, Howard A et al. 2007. The VARL gene family and the evolutionary origins of the master cell-type regulatory gene, regA, in Volvox carteri. J. Mol. Evol. 65:11–11
    [Google Scholar]
  48. 48. 
    Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T 2013. The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol. Rev. 37:3462–76
    [Google Scholar]
  49. 49. 
    Featherston J, Arakaki Y, Hanschen ER, Ferris PJ, Michod RE et al. 2017. The 4-celled Tetrabaena socialis nuclear genome reveals the essential components for genetic control of cell number at the origin of multicellularity in the Volvocine lineage. Mol. Biol. Evol. 35:4855–70
    [Google Scholar]
  50. 50. 
    Fjeld A. 1972. Genetic control of cellular differentiation in Ulva mutabilis. Gene effects in early development. Dev. Biol. 28:2326–43
    [Google Scholar]
  51. 51. 
    Fritsch FE. 1948. The Structure and Reproduction of the Algae, Vol. 1 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  52. 52. 
    Fulton AB. 1978. Colonial development in Pandorina morum: II. Colony morphogenesis and formation of the extracellular matrix. Dev. Biol. 64:2236–51
    [Google Scholar]
  53. 53. 
    Gerisch G. 1959. Die Zelldifferenzierung bei Pleodorina californica Shaw und die Organisation der Phytomonadinekolonien. Arch. Protistenkunde 104:292–358
    [Google Scholar]
  54. 54. 
    Ghaderiardakani F, Coates JC, Wichard T. 2017. Bacteria-induced morphogenesis of Ulva intestinalis and Ulva mutabilis (Chlorophyta): a contribution to the lottery theory. FEMS Microbiol. Ecol. 93:8fix094
    [Google Scholar]
  55. 55. 
    Goecke F, Labes A, Wiese J, Imhoff J. 2010. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser. 409:267–99
    [Google Scholar]
  56. 56. 
    Graham LE, Graham JM, Wilcox LW 2009. Algae San Francisco: Benjamin Cummings. , 2nd ed..
  57. 57. 
    Grant MC, Proctor VW. 1972. Chara vulgaris and C. contraria: patterns of reproductive isolation for two cosmopolitan species complexes. Evolution 26:2267–81
    [Google Scholar]
  58. 58. 
    Grochau-Wright ZI, Hanschen ER, Ferris PJ, Hamaji T, Nozaki H et al. 2017. Genetic basis for soma is present in undifferentiated volvocine green algae. J. Evol. Biol. 30:61205–18
    [Google Scholar]
  59. 59. 
    Grosberg RK, Strathmann RR. 1998. One cell, two cell, red cell, blue cell: the persistence of a unicellular stage in multicellular life histories. Trends Ecol. Evol 13:3112–16
    [Google Scholar]
  60. 60. 
    Grosberg RK, Strathmann RR. 2007. The evolution of multicellularity: a minor major transition?. Annu. Rev. Ecol. Evol. Syst. 38:621–54
    [Google Scholar]
  61. 61. 
    Guiry MD. 2012. How many species of algae are there?. J. Phycol. 48:51057–63
    [Google Scholar]
  62. 62. 
    Guiry MD, Guiry GM. 2021. AlgaeBase. Natl. Univ. Irel. Galway, Irel: https://www.algaebase.org
  63. 63. 
    Hackenberg D, Pandey S. 2014. Heterotrimeric G-proteins in green algae. An early innovation in the evolution of the plant lineage. Plant Signal. Behav. 9:4e28457
    [Google Scholar]
  64. 64. 
    Hallmann A. 2006. Morphogenesis in the family Volvocaceae: different tactics for turning an embryo right-side out. Protist 157:4445–61
    [Google Scholar]
  65. 65. 
    Hamaji T, Kawai-Toyooka H, Uchimura H, Suzuki M, Noguchi H et al. 2018. Anisogamy evolved with a reduced sex-determining region in volvocine green algae. Commun. Biol. 1:117
    [Google Scholar]
  66. 66. 
    Hämmerling J. 1953. Nucleo-cytoplasmic relationships in the development of Acetabularia. Int. Rev. Cytol. 2:475–98
    [Google Scholar]
  67. 67. 
    Hanschen ER, Ferris PJ, Michod RE. 2014. Early evolution of the genetic basis for soma in the Volvocaceae. Evolution 68:72014–25
    [Google Scholar]
  68. 68. 
    Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE. 2018. Repeated evolution and reversibility of self-fertilization in the volvocine green algae. Evolution 72:386–98
    [Google Scholar]
  69. 69. 
    Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE. 2018. Multicellularity drives the evolution of sexual traits. Am. Nat. 192:3E93–105
    [Google Scholar]
  70. 70. 
    Hanschen ER, Marriage TN, Ferris PJ, Hamaji T, Toyoda A et al. 2016. The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nat. Commun. 7:11370
    [Google Scholar]
  71. 71. 
    Hanschen ER, Starkenburg SR. 2020. The state of algal genome quality and diversity. Algal Res 50:101968
    [Google Scholar]
  72. 72. 
    Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR. 2012. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur. J. Phycol. 38:3277–94
    [Google Scholar]
  73. 73. 
    He Y, Ma Y, Du Y, Shen S. 2018. Differential gene expression for carotenoid biosynthesis in a green alga Ulva prolifera based on transcriptome analysis. BMC Genom 19:1916
    [Google Scholar]
  74. 74. 
    Herron MD, Desnitskiy AG, Michod RE. 2010. Evolution of developmental programs in Volvox (Chlorophyta). J. Phycol. 46:2316–24
    [Google Scholar]
  75. 75. 
    Herron MD, Hackett JD, Aylward FO, Michod RE. 2009. Triassic origin and early radiation of multicellular volvocine algae. PNAS 106:93254–58
    [Google Scholar]
  76. 76. 
    Herron MD, Michod RE. 2008. Evolution of complexity in the volvocine algae: transitions in individuality through Darwin's eye. Evolution 62:2436–51
    [Google Scholar]
  77. 77. 
    Higo A, Kawashima T, Borg M, Zhao M, López-Vidriero I et al. 2018. Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nat. Commun. 9:15283
    [Google Scholar]
  78. 78. 
    Hoffmeyer TT, Burkhardt P. 2016. Choanoflagellate models—Monosiga brevicollis and Salpingoeca rosetta. Curr. Opin. Genet. Dev. 39:42–47
    [Google Scholar]
  79. 79. 
    Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N et al. 2014. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5:3978
    [Google Scholar]
  80. 80. 
    Hoxmark RC. 1975. Experimental analysis on the life cycle of Ulva mutabilis. Bot. Mar. 18:123–29
    [Google Scholar]
  81. 81. 
    Hoxmark RC, Nordby Ø. 1974. Haploid meiosis as a regular phenomenon in the life cycle of Ulva mutabilis. Hereditas 76:2239–49
    [Google Scholar]
  82. 82. 
    Huskey RJ, Griffin BE. 1979. Genetic control of somatic cell differentiation in Volvox: analysis of somatic regenerator mutants. Dev. Biol. 72:2226–35
    [Google Scholar]
  83. 83. 
    Ichihara K, Yamazaki T, Miyamura S, Hiraoka M, Kawano S. 2019. Asexual thalli originated from sporophytic thalli via apomeiosis in the green seaweed Ulva. Sci. Rep 9:113523
    [Google Scholar]
  84. 84. 
    Jacobs WP. 1970. Development and regeneration of the algal giant coenocyte Caulerpa. Ann. N. Y. Acad. Sci. 175:1732–48
    [Google Scholar]
  85. 85. 
    Jiao C, Sørensen I, Sun X, Sun H, Behar H et al. 2020. The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell 181:51097–111.e12
    [Google Scholar]
  86. 86. 
    Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME et al. 2020. Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities?. FEMS Microbiol. Ecol. 96:11fiaa115
    [Google Scholar]
  87. 87. 
    Joint I, Tait K, Callow ME, Callow JA, Milton D et al. 2002. Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 298:55961207
    [Google Scholar]
  88. 88. 
    Kaplan DR, Hagemann W. 1991. The relationship of cell and organism in vascular plants. BioScience 41:10693–703
    [Google Scholar]
  89. 89. 
    Kessler RW, Weiss A, Kuegler S, Hermes C, Wichard T. 2017. Macroalgal–bacterial interactions: role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Mol Ecol 27:81808–19
    [Google Scholar]
  90. 90. 
    Kirk DL. 1998. Volvox Cambridge, UK: Cambridge Univ. Press
  91. 91. 
    Kirk DL. 2005. A twelve-step program for evolving multicellularity and a division of labor. BioEssays 27:3299–310
    [Google Scholar]
  92. 92. 
    Kirk MM, Ransick A, McRae SE, Kirk DL. 1993. The relationship between cell size and cell fate in Volvox carteri. J. Cell Biol. 123:1191–208
    [Google Scholar]
  93. 93. 
    Kiss JZ, Staehelin LA. 1993. Structural polarity in the Chara rhizoid: a reevaluation. Am. J. Bot. 80:3273–82
    [Google Scholar]
  94. 94. 
    Lai X, Chahtane H, Martin-Arevalillo R, Zubieta C, Parcy F 2020. Contrasted evolutionary trajectories of plant transcription factors. Curr. Opin. Plant Biol. 54:101–7
    [Google Scholar]
  95. 95. 
    Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA et al. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:7780679–85
    [Google Scholar]
  96. 96. 
    Lemieux C, Otis C, Turmel M 2014. Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae. BMC Evol. Biol. 14:1211
    [Google Scholar]
  97. 97. 
    Lerche K, Hallmann A. 2009. Stable nuclear transformation of Gonium pectorale. BMC Biotechnology 9:64
    [Google Scholar]
  98. 98. 
    Lerche K, Hallmann A. 2013. Stable nuclear transformation of Eudorina elegans. BMC Biotechnology 13:511
    [Google Scholar]
  99. 99. 
    Lerche K, Hallmann A. 2014. Stable nuclear transformation of Pandorina morum. BMC Biotechnology 14:65
    [Google Scholar]
  100. 100. 
    Liang Z, Geng Y, Ji C, Du H, Wong CE et al. 2020. Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Adv. Sci 7:1901850
    [Google Scholar]
  101. 101. 
    Marchant HJ. 1977. Colony formation and inversion in the green alga Eudorina elegans. Protoplasma 93:2–3325–39
    [Google Scholar]
  102. 102. 
    Martin-Arevalillo R, Thévenon E, Jégu F, Vinos-Poyo T, Vernoux T et al. 2019. Evolution of the Auxin Response Factors from charophyte ancestors. PLOS Genet 15:9e1008400
    [Google Scholar]
  103. 103. 
    Matsuo Y, Imagawa H, Nishizawa M, Shizuri Y. 2005. Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307:57151598
    [Google Scholar]
  104. 104. 
    Matt G, Umen JG 2016. Volvox: a simple algal model for embryogenesis, morphogenesis and cellular differentiation. Dev. Biol. 419:199–113
    [Google Scholar]
  105. 105. 
    Matt GY, Umen JG 2018. Cell-type transcriptomes of the multicellular green alga Volvox carteri yield insights into the evolutionary origins of germ and somatic differentiation programs. G3 8:2531–50
    [Google Scholar]
  106. 106. 
    Maynard Smith J, Szathmáry E 1995. The Major Transitions in Evolution Oxford, UK: Oxford Univ. Press
  107. 107. 
    McCourt RM, Delwiche CF, Karol KG. 2004. Charophyte algae and land plant origins. Trends Ecol. Evol. 19:12661–66
    [Google Scholar]
  108. 108. 
    McCracken MD, Proctor VW, Hotchkiss AT. 1966. Attempted hybridization between monoecious and dioecious clones of Chara. Am. J. Bot. 53:9937–40
    [Google Scholar]
  109. 109. 
    Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:5848245–50
    [Google Scholar]
  110. 110. 
    Miller SM, Kirk DL. 1999. glsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein. Development 126:4649–58
    [Google Scholar]
  111. 111. 
    Morrissey KL, Çavaş L, Willems A, De Clerck O. 2019. Disentangling the influence of environment, host specificity and thallus differentiation on bacterial communities in siphonous green seaweeds. Front. Microbiol. 10:717
    [Google Scholar]
  112. 112. 
    Nagy LG, Kovács GM, Krizsán K. 2018. Complex multicellularity in fungi: evolutionary convergence, single origin, or both?. Biol. Rev. 93:41778–94
    [Google Scholar]
  113. 113. 
    Niklas KJ. 2014. The evolutionary-developmental origins of multicellularity. Am. J. Bot. 101:16–25
    [Google Scholar]
  114. 114. 
    Niklas KJ, Cobb ED, Crawford DR 2013. The evo-devo of multinucleate cells, tissues, and organisms, and an alternative route to multicellularity. Evol. Dev. 15:6466–74
    [Google Scholar]
  115. 115. 
    Nishii I, Miller SM. 2010. Volvox: simple steps to developmental complexity?. Curr. Opin. Plant Biol. 13:6646–53
    [Google Scholar]
  116. 116. 
    Nishii I, Ogihara S, Kirk DL 2003. A kinesin, InvA, plays an essential role in Volvox morphogenesis. Cell 113:6743–53
    [Google Scholar]
  117. 117. 
    Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D et al. 2018. The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174:2448–64.e24
    [Google Scholar]
  118. 118. 
    Nozaki H, Itoh M. 1994. Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from cladistic analysis based on morphological data. J. Phycol. 30:2353–65
    [Google Scholar]
  119. 119. 
    Oertel W, Wichard T, Weissgerber A 2015. Transformation of Ulva mutabilis (Chlorophyta) by vector plasmids integrating into the genome. J. Phycol. 51:5963–79
    [Google Scholar]
  120. 120. 
    O'Kelly CJ, Wysor B, Bellows WK 2004. Gene sequence diversity and the phylogenetic position of algae assigned to the genera Phaeophila and Ochlochaete (Ulvophyceae, Chlorophyta). J. Phycol. 40:4789–99
    [Google Scholar]
  121. 121. 
    Olson BJSC, Nedelcu AM. 2016. Co-option during the evolution of multicellular and developmental complexity in the volvocine green algae. Curr. Opin. Genet. Dev. 39:107–15
    [Google Scholar]
  122. 122. 
    Ortega-Escalante JA, Jasper R, Miller SM 2019. CRISPR/Cas9 mutagenesis in Volvox carteri. Plant J 97:4661–72
    [Google Scholar]
  123. 123. 
    Pascher A. 1931. Systematische Übersicht über die mit Flagellaten in Zusammenhang stehenden Algenreihen und Versuch einer Einreihung dieser Algenstamme in die Stamme des Pflanzenreiches. Beih. Bot. Centralbl. 48:2317–32
    [Google Scholar]
  124. 124. 
    Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM et al. 2010. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:5988223–26
    [Google Scholar]
  125. 125. 
    Pröschold T, Surek B, Marin B, Melkonian M 2002. Protist origin of the Ulvophyceae (Chlorophyta) revealed by SSU rDNA analyses of marine coccoid green algae. J. Phycol. 38:s130–31
    [Google Scholar]
  126. 126. 
    Ranjan A, Townsley BT, Ichihashi Y, Sinha NR, Chitwood DH. 2015. An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia. PLOS Genet 11:1e1004900
    [Google Scholar]
  127. 127. 
    Raven JA. 2013. Polar auxin transport in relation to long-distance transport of nutrients in the Charales. J. Exp. Bot. 64:11–9
    [Google Scholar]
  128. 128. 
    Richter DJ, King N. 2013. The genomic and cellular foundations of animal origins. Annu. Rev. Genet. 47:509–37
    [Google Scholar]
  129. 129. 
    Rokas A. 2008. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42:235–51
    [Google Scholar]
  130. 130. 
    Roth-Schulze AJ, Pintado J, Zozaya-Valdés E, Cremades J, Ruiz P et al. 2018. Functional biogeography and host specificity of bacterial communities associated with the Marine Green Alga Ulva spp. Mol. Ecol. 27:81952–65
    [Google Scholar]
  131. 131. 
    Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF 2008. A phylogenomic investigation into the origin of metazoa. Mol. Biol. Evol. 25:4664–72
    [Google Scholar]
  132. 132. 
    Salomé PA, Merchant SS. 2019. A series of fortunate events: introducing Chlamydomonas as a reference organism. Plant Cell 31:81682–707
    [Google Scholar]
  133. 133. 
    Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B et al. 2006. Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:5799661–63
    [Google Scholar]
  134. 134. 
    Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC 2013. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. PNAS 110:1791–96
    [Google Scholar]
  135. 135. 
    Škaloud P, Rindi F, Boedeker C, Leliaert F. 2018. Freshwater Flora of Central Europe, Vol. 13: Chlorophyta: Ulvophyceae Cham, Switz.: Springer Spektrum
    [Google Scholar]
  136. 136. 
    Smith CM, Walters LJ. 1999. Fragmentation as a strategy for Caulerpa species: fates of fragments and implications for management of an invasive weed. Mar. Ecol. 20:3–4307–19
    [Google Scholar]
  137. 137. 
    Spoerner M, Wichard T, Bachhuber T, Stratmann J, Oertel W. 2012. Growth and thallus morphogenesis of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J. Phycol. 48:61433–47
    [Google Scholar]
  138. 138. 
    Stark K, Kirk DL, Schmitt R 2001. Two enhancers and one silencer located in the introns of regA control somatic cell differentiation in Volvox carteri. . Genes Dev 15:1449–60
    [Google Scholar]
  139. 139. 
    Stein JR. 1965. On cytoplasmic strands in Gonium pectorale (Volvocales). J. Phycol. 1:11–5
    [Google Scholar]
  140. 140. 
    Steinhagen S, Barco A, Wichard T, Weinberger F. 2018. Conspecificity of the model organism Ulva mutabilis and Ulva compressa (Ulvophyceae, Chlorophyta). J. Phycol. 55:125–36
    [Google Scholar]
  141. 141. 
    Steinhagen S, Weinberger F, Karez R. 2019. Molecular analysis of Ulva compressa (Chlorophyta, Ulvales) reveals its morphological plasticity, distribution and potential invasiveness on German North Sea and Baltic Sea coasts. Eur. J. Phycol. 54:1102–14
    [Google Scholar]
  142. 142. 
    Stratmann J, Paputsoglu G, Oertel W. 1996. Differentiation of Ulva mutabilis (Chlorophyta) gametangia and gamete release are controlled by extracellular inhibitors. J. Phycol. 32:61009–21
    [Google Scholar]
  143. 143. 
    Szövényi P, Waller M, Kirbis A. 2019. Evolution of the plant body plan. Curr. Top. Dev. Biol. 131:1–34
    [Google Scholar]
  144. 144. 
    Tait K, Joint I, Daykin M, Milton DL, Williams P, Cámara M 2005. Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol. 7:2229–40
    [Google Scholar]
  145. 145. 
    Tan IH, Blomster J, Hansen G, Leskinen E, Maggs CA et al. 1999. Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha. Mol. Biol. Evol. 16:81011–18
    [Google Scholar]
  146. 146. 
    Thiadens AJH, Zeuthen E. 1966. Meiosis and sporulation induced in sporophytes of Ulva mutabilis (“slender”) with synchronous mitosis. Planta 72:160–65
    [Google Scholar]
  147. 147. 
    Thomas CA Jr. 1971. The genetic organization of chromosomes. Annu. Rev. Genet. 5:237–56
    [Google Scholar]
  148. 148. 
    True JR, Carroll SB. 2002. Gene co-option in physiological and morphological evolution. Annu. Rev. Cell Dev. Biol. 18:53–80
    [Google Scholar]
  149. 149. 
    Umen JG. 2014. Green algae and the origins of multicellularity in the plant kingdom. Cold Spring Harb. Perspect. Biol. 6:11a016170
    [Google Scholar]
  150. 150. 
    Umen JG, Coelho S. 2019. Algal sex determination and the evolution of anisogamy. Annu. Rev. Microbiol. 73:267–91
    [Google Scholar]
  151. 151. 
    Vroom PS, Smith CM. 2001. The challenge of siphonous green algae. Am. Sci. 89:525–31
    [Google Scholar]
  152. 152. 
    Watanabe S, Kuroda N, Maiwa F. 2001. Phylogenetic status of Helicodictyon planctonicum and Desmochloris halophila gen. et comb. nov. and the definition of the class Ulvophyceae (Chlorophyta). Phycologia 40:5421–34
    [Google Scholar]
  153. 153. 
    Weiss A, Costa R, Wichard T 2017. Morphogenesis of Ulva mutabilis (Chlorophyta) induced by Maribacter species (Bacteroidetes, Flavobacteriaceae). Bot. Mar 60:2197–206
    [Google Scholar]
  154. 154. 
    Wheeler GL, Tait K, Taylor A, Brownlee C, Joint I 2006. Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ 29:4608–18
    [Google Scholar]
  155. 155. 
    Wichard T. 2015. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Front. Plant Sci 6:86
    [Google Scholar]
  156. 156. 
    Wichard T, Charrier B, Mineur F, Bothwell JH, De Clerck O, Coates JC. 2015. The green seaweed Ulva: a model system to study morphogenesis. Front. Plant Sci. 6:72
    [Google Scholar]
  157. 157. 
    Wichard T, Oertel W. 2010. Gametogenesis and gamete release of Ulva mutabilis and Ulva lactuca (Chlorophyta): regulatory effects and chemical characterization of the “swarming inhibitor.”. J. Phycol. 46:2248–59
    [Google Scholar]
  158. 158. 
    Wilhelmsson PKI, Mühlich C, Ullrich KK, Rensing SA. 2017. Comprehensive genome-wide classification reveals that many plant-specific transcription factors evolved in streptophyte algae. Genome Biol. Evol. 9:123384–97
    [Google Scholar]
  159. 159. 
    Woznica A, Cantley AM, Beemelmanns C, Freinkman E, Clardy J, King N 2016. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. PNAS 113:287894–99
    [Google Scholar]
  160. 160. 
    Woznica A, King N. 2018. Lessons from simple marine models on the bacterial regulation of eukaryotic development. Curr. Opin. Microbiol. 43:108–16
    [Google Scholar]
  161. 161. 
    Yamazaki T, Ichihara K, Suzuki R, Oshima K, Miyamura S et al. 2017. Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita. Sci. Rep. 7:111679
    [Google Scholar]
  162. 162. 
    Zhang S, de Boer AH, van Duijn B. 2016. Auxin effects on ion transport in Chara corallina. J. Plant Physiol. 193:37–44
    [Google Scholar]
  163. 163. 
    Zubia M, Draisma SGA, Morrissey KL, Varela-Álvarez E, De Clerck O. 2020. Concise review of the genus Caulerpa J.V. Lamouroux.. J. Appl. Phycol. 32:123–39
    [Google Scholar]
/content/journals/10.1146/annurev-genet-032321-091533
Loading
/content/journals/10.1146/annurev-genet-032321-091533
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error