1932

Abstract

For more than a decade, it has been known that mammalian cells use shelterin to protect chromosome ends. Much progress has been made on the mechanism by which shelterin prevents telomeres from inadvertently activating DNA damage signaling and double-strand break (DSB) repair pathways. Shelterin averts activation of three DNA damage response enzymes [the ataxia-telangiectasia-mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases and poly(ADP-ribose) polymerase 1 (PARP1)], blocks three DSB repair pathways [classical nonhomologous end joining (c-NHEJ), alternative (alt)-NHEJ, and homology-directed repair (HDR)], and prevents hyper-resection at telomeres. For several of these functions, mechanistic insights have emerged. In addition, much has been learned about how shelterin maintains the telomeric 3′ overhang, forms and protects the t-loop structure, and promotes replication through telomeres. These studies revealed that shelterin is compartmentalized, with individual subunits dedicated to distinct aspects of the end-protection problem. This review focuses on the current knowledge of shelterin-mediated telomere protection, highlights differences between human and mouse shelterin, and discusses some of the questions that remain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-032918-021921
2018-11-23
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-032918-021921.html?itemId=/content/journals/10.1146/annurev-genet-032918-021921&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Arat NO, Griffith JD 2012. Human Rap1 interacts directly with telomeric DNA and regulates TRF2 localization at the telomere. J. Biol. Chem. 287:41583–94
    [Google Scholar]
  2. 2.  Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S et al. 2017. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature 549:548–52
    [Google Scholar]
  3. 3.  Attwooll CL, Akpinar M, Petrini JH 2009. The Mre11 complex and the response to dysfunctional telomeres. Mol. Cell. Biol. 29:5540–51
    [Google Scholar]
  4. 4.  Bae NS, Baumann P 2007. A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol. Cell 26:323–34
    [Google Scholar]
  5. 5.  Bailey SM, Cornforth MN, Kurimasa A, Chen DJ, Goodwin EH 2001. Strand-specific postreplicative processing of mammalian telomeres. Science 293:2462–65
    [Google Scholar]
  6. 6.  Baker AM, Fu Q, Hayward W, Lindsay SM, Fletcher TM 2009. The Myb/SANT domain of the telomere-binding protein TRF2 alters chromatin structure. Nucleic Acids Res 37:5019–31
    [Google Scholar]
  7. 7.  Baker AM, Fu Q, Hayward W, Victoria S, Pedroso IM et al. 2011. The telomere binding protein TRF2 induces chromatin compaction. PLOS ONE 6:e19124
    [Google Scholar]
  8. 8.  Bandaria JN, Qin P, Berk V, Chu S, Yildiz A 2016. Shelterin protects chromosome ends by compacting telomeric chromatin. Cell 164:735–46
    [Google Scholar]
  9. 9.  Baumann P, Cech TR 2001. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292:1171–75
    [Google Scholar]
  10. 10.  Benarroch-Popivker D, Pisano S, Mendez-Bermudez A, Lototska L, Kaur P et al. 2016. TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol. Cell 61:274–86
    [Google Scholar]
  11. 11.  Bianchi A, Smith S, Chong L, Elias P, de Lange T 1997. TRF1 is a dimer and bends telomeric DNA. EMBO J 16:1785–94
    [Google Scholar]
  12. 12.  Bianchi A, Stansel RM, Fairall L, Griffith JD, Rhodes D, de Lange T 1999. TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO J 18:5735–44
    [Google Scholar]
  13. 13.  Bizard AH, Hickson ID 2014. The dissolution of double Holliday junctions. Cold Spring Harb. Perspect. Biol. 6:a016477
    [Google Scholar]
  14. 14.  Boersma V, Moatti N, Segura-Bayona S, Peuscher MH, van der Torre J et al. 2015. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature 521:537–40
    [Google Scholar]
  15. 15.  Callegari AJ, Kelly TJ 2007. Shedding light on the DNA damage checkpoint. Cell Cycle 6:660–66
    [Google Scholar]
  16. 16.  Cech TR 2004. Beginning to understand the end of the chromosome. Cell 116:273–79
    [Google Scholar]
  17. 17.  Celli GB, de Lange T 2005. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7:712–18
    [Google Scholar]
  18. 18.  Celli GB, Lazzerini Denchi E, de Lange T 2006. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 8:885–90
    [Google Scholar]
  19. 19.  Cesare AJ, Hayashi MT, Crabbe L, Karlseder J 2013. The telomere deprotection response is functionally distinct from the genomic DNA damage response. Mol. Cell 51:141–55
    [Google Scholar]
  20. 20.  Cesare AJ, Karlseder J 2012. A three-state model of telomere control over human proliferative boundaries. Curr. Opin. Cell Biol. 24:731–38
    [Google Scholar]
  21. 21.  Cesare AJ, Reddel RR 2010. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 11:319–30
    [Google Scholar]
  22. 22.  Chen C, Gu P, Wu J, Chen X, Niu S et al. 2017. Structural insights into POT1-TPP1 interaction and POT1 C-terminal mutations in human cancer. Nat. Commun. 8:14929
    [Google Scholar]
  23. 23.  Chen LY, Redon S, Lingner J 2012. The human CST complex is a terminator of telomerase activity. Nature 488:540–44
    [Google Scholar]
  24. 24.  Chen Y, Rai R, Zhou ZR, Kanoh J, Ribeyre C et al. 2011. A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nat. Struct. Mol. Biol. 18:213–21
    [Google Scholar]
  25. 25.  Chen Y, Yang Y, van Overbeek M, Donigian JR, Baciu P et al. 2008. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science 319:1092–96
    [Google Scholar]
  26. 26.  Chiruvella KK, Liang Z, Wilson TE 2013. Repair of double-strand breaks by end joining. Cold Spring Harb. Perspect. Biol. 5:a012757
    [Google Scholar]
  27. 27.  Churikov D, Price CM 2008. Pot1 and cell cycle progression cooperate in telomere length regulation. Nat. Struct. Mol. Biol. 15:79–84
    [Google Scholar]
  28. 28.  Cimprich KA, Cortez D 2008. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9:616–27
    [Google Scholar]
  29. 29.  Cooper JP, Nimmo ER, Allshire RC, Cech TR 1997. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385:744–47
    [Google Scholar]
  30. 30.  Dai X, Huang C, Bhusari A, Sampathi S, Schubert K, Chai W 2010. Molecular steps of G-overhang generation at human telomeres and its function in chromosome end protection. EMBO J 29:2788–801
    [Google Scholar]
  31. 31.  de Lange T 2004. T-loops and the origin of telomeres. Nat. Rev. Mol. Cell Biol. 5:323–29
    [Google Scholar]
  32. 32.  de Lange T 2005. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–10
    [Google Scholar]
  33. 33.  Denchi EL, de Lange T 2007. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448:1068–71
    [Google Scholar]
  34. 34.  Deng Y, Guo X, Ferguson DO, Chang S 2009. Multiple roles for MRE11 at uncapped telomeres. Nature 460:914–18
    [Google Scholar]
  35. 35.  Dimitrova N, Chen YC, Spector DL, de Lange T 2008. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456:524–28
    [Google Scholar]
  36. 36.  Dimitrova N, de Lange T 2009. Cell cycle dependent role of MRN at dysfunctional telomeres: ATM signaling-dependent induction of NHEJ in G1 and resection-mediated inhibition of NHEJ in G2. Mol. Cell. Biol. 29:5552–63
    [Google Scholar]
  37. 37.  Diotti R, Kalan S, Matveyenko A, Loayza D 2014. DNA-directed polymerase subunits play a vital role in human telomeric overhang processing. Mol. Cancer Res. 13:402–10
    [Google Scholar]
  38. 38.  Diotti R, Loayza D 2011. Shelterin complex and associated factors at human telomeres. Nucleus 2:119–35
    [Google Scholar]
  39. 39.  Doksani Y, de Lange T 2014. The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb. Perspect. Biol. 6:a016576
    [Google Scholar]
  40. 40.  Doksani Y, de Lange T 2016. Telomere-internal double-strand breaks are repaired by homologous recombination and PARP1/Lig3-dependent end-joining. Cell Rep 17:1646–56
    [Google Scholar]
  41. 41.  Doksani Y, Wu JY, de Lange T, Zhuang X 2013. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155:345–56
    [Google Scholar]
  42. 42.  Donigian JR, de Lange T 2007. The role of the poly(ADP-ribose) polymerase tankyrase1 in telomere length control by the TRF1 component of the shelterin complex. J. Biol. Chem. 282:22662–67
    [Google Scholar]
  43. 43.  Dynek JN, Smith S 2004. Resolution of sister telomere association is required for progression through mitosis. Science 304:97–100
    [Google Scholar]
  44. 44.  Erdel F, Kratz K, Willcox S, Griffith JD, Greene EC, de Lange T 2017. Telomere recognition and assembly mechanism of mammalian shelterin. Cell Rep 18:41–53
    [Google Scholar]
  45. 45.  Fairall L, Chapman L, Moss H, de Lange T, Rhodes D 2001. Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2. Mol. Cell 8:351–61
    [Google Scholar]
  46. 46.  Flynn RL, Centore RC, O'Sullivan RJ, Rai R, Tse A et al. 2011. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471:532–36
    [Google Scholar]
  47. 47.  Fouche N, Cesare AJ, Willcox S, Ozgur S, Compton SA, Griffith JD 2006. The basic domain of TRF2 directs binding to DNA junctions irrespective of the presence of TTAGGG repeats. J. Biol. Chem. 281:37486–95
    [Google Scholar]
  48. 48.  Freibaum BD, Counter CM 2008. The protein hSnm1B is stabilized when bound to the telomere-binding protein TRF2. J. Biol. Chem. 283:23671–76
    [Google Scholar]
  49. 49.  Frescas D, de Lange T 2014. Binding of TPP1 to TIN2 is required for POT1a,b-mediated telomere protection. J. Biol. Chem. 289:24180–87
    [Google Scholar]
  50. 50.  Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A et al. 2011. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146:931–41
    [Google Scholar]
  51. 51.  Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D et al. 2012. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14:355–65
    [Google Scholar]
  52. 52.  Galati A, Magdinier F, Colasanti V, Bauwens S, Pinte S et al. 2012. TRF2 controls telomeric nucleosome organization in a cell cycle phase-dependent manner. PLOS ONE 7:e34386
    [Google Scholar]
  53. 53.  Galati A, Micheli E, Alicata C, Ingegnere T, Cicconi A et al. 2015. TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization. Nucleic Acids Res 43:5824–37
    [Google Scholar]
  54. 54.  Galati A, Rossetti L, Pisano S, Chapman L, Rhodes D et al. 2006. The human telomeric protein TRF1 specifically recognizes nucleosomal binding sites and alters nucleosome structure. J. Mol. Biol. 360:377–85
    [Google Scholar]
  55. 55.  Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V 2007. RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol. 14:208–14
    [Google Scholar]
  56. 56.  Gaullier G, Miron S, Pisano S, Buisson R, Le Bihan YV et al. 2016. A higher-order entity formed by the flexible assembly of RAP1 with TRF2. Nucleic Acids Res 44:1962–76
    [Google Scholar]
  57. 57.  Gong Y, de Lange T 2010. A Shld1-controlled POT1a provides support for repression of ATR signaling at telomeres through RPA exclusion. Mol. Cell 40:377–87
    [Google Scholar]
  58. 58.  Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A et al. 1999. Mammalian telomeres end in a large duplex loop. Cell 97:503–14
    [Google Scholar]
  59. 59.  Hanaoka S, Nagadoi A, Nishimura Y 2005. Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities. Protein Sci 14:119–30
    [Google Scholar]
  60. 60.  Hanaoka S, Nagadoi A, Yoshimura S, Aimoto S, Li B et al. 2001. NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains. J. Mol. Biol. 312:167–75
    [Google Scholar]
  61. 61.  Hockemeyer D, Collins K 2015. Control of telomerase action at human telomeres. Nat. Struct. Mol. Biol. 22:848–52
    [Google Scholar]
  62. 62.  Hockemeyer D, Daniels JP, Takai H, de Lange T 2006. Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell 126:63–77
    [Google Scholar]
  63. 63.  Hockemeyer D, Palm W, Else T, Daniels JP, Takai KK et al. 2007. Telomere protection by mammalian POT1 requires interaction with TPP1. Nat. Struct. Mol. Biol. 14:754–61
    [Google Scholar]
  64. 64.  Hockemeyer D, Palm W, Wang RC, Couto SS, de Lange T 2008. Engineered telomere degradation models dyskeratosis congenita. Genes Dev 22:1773–85
    [Google Scholar]
  65. 65.  Horvath MP, Schweiker VL, Bevilacqua JM, Ruggles JA, Schultz SC 1998. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95:963–74
    [Google Scholar]
  66. 66.  Hu C, Rai R, Huang C, Broton C, Long J et al. 2017. Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex. Cell Res 27:1485–502
    [Google Scholar]
  67. 67.  Huang C, Dai X, Chai W 2012. Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res 22:1681–95
    [Google Scholar]
  68. 68.  Huber MD, Lee DC, Maizels N 2002. G4 DNA unwinding by BLM and Sgs1p: substrate specificity and substrate-specific inhibition. Nucleic Acids Res 30:3954–61
    [Google Scholar]
  69. 69.  Janoušková E, Nečasová I, Pavloušková J, Zimmermann M, Hluchý M et al. 2015. Human Rap1 modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res 43:2691–700
    [Google Scholar]
  70. 70.  Kabir S, Hockemeyer D, de Lange T 2014. TALEN gene knockouts reveal no requirement for the conserved human shelterin protein Rap1 in telomere protection and length regulation. Cell Rep 9:1273–80
    [Google Scholar]
  71. 71.  Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB et al. 2004. The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLOS Biol 2:E240
    [Google Scholar]
  72. 72.  Kibe T, Osawa GA, Keegan CE, de Lange T 2010. Telomere protection by TPP1 is mediated by POT1a and POT1b. Mol. Cell. Biol. 30:1059–66
    [Google Scholar]
  73. 73.  Kibe T, Zimmermann M, de Lange T 2016. TPP1 blocks an ATR-mediated resection mechanism at telomeres. Mol. Cell 61:236–46
    [Google Scholar]
  74. 74.  Kim H, Li F, He Q, Deng T, Xu J et al. 2017. Systematic analysis of human telomeric dysfunction using inducible telosome/shelterin CRISPR/Cas9 knockout cells. Cell Discov 3:17034
    [Google Scholar]
  75. 75.  Konig P, Giraldo R, Chapman L, Rhodes D 1996. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85:125–36
    [Google Scholar]
  76. 76.  Konishi A, de Lange T 2008. Cell cycle control of telomere protection and NHEJ revealed by a ts mutation in the DNA-binding domain of TRF2. Genes Dev 22:1221–30
    [Google Scholar]
  77. 77.  Konishi A, Izumi T, Shimizu S 2016. TRF2 protein interacts with core histones to stabilize chromosome ends. J. Biol. Chem. 291:20798–810
    [Google Scholar]
  78. 77a.  Kratz K, de Lange T 2018. Protection of telomeres 1 proteins POT1a and POT1b can repress ATR signaling by RPA exclusion, but binding to CST limits ATR repression by POT1b. J. Biol. Chem. 293:14384–92
    [Google Scholar]
  79. 78.  Lam YC, Akhter S, Gu P, Ye J, Poulet A et al. 2010. SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair. EMBO J 29:2230–41
    [Google Scholar]
  80. 79.  Lei M, Podell ER, Cech TR 2004. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 11:1223–29
    [Google Scholar]
  81. 80.  Lenain C, Bauwens S, Amiard S, Brunori M, Giraud-Panis MJ, Gilson E 2006. The Apollo 5′ exonuclease functions together with TRF2 to protect telomeres from DNA repair. Curr. Biol. 16:1303–10
    [Google Scholar]
  82. 81.  Li B, Oestreich S, de Lange T 2000. Identification of human Rap1: implications for telomere evolution. Cell 101:471–83
    [Google Scholar]
  83. 82.  Lipps HJ, Gruissem W, Prescott DM 1982. Higher order DNA structure in macronuclear chromatin of the hypotrichous ciliate Oxytricha nova. PNAS 79:2495–99
    [Google Scholar]
  84. 83.  Liu D, O'Connor MS, Qin J, Songyang Z 2004. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 279:51338–42
    [Google Scholar]
  85. 84.  Loayza D, Parsons H, Donigian J, Hoke K, de Lange T 2004. DNA binding features of human POT1: a nonamer 5′-TAGGGTTAG-3′ minimal binding site, sequence specificity, and internal binding to multimeric sites. J. Biol. Chem. 279:13241–48
    [Google Scholar]
  86. 85.  Lottersberger F, Bothmer A, Robbiani DF, Nussenzweig MC, de Lange T 2013. Role of 53BP1 oligomerization in regulating double-strand break repair. PNAS 110:2146–51
    [Google Scholar]
  87. 86.  Lottersberger F, Karssemeijer RA, Dimitrova N, de Lange T 2015. 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell 163:880–93
    [Google Scholar]
  88. 87.  Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J et al. 2012. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLOS Genet 8:1–16
    [Google Scholar]
  89. 88.  Lue NF 2010. Plasticity of telomere maintenance mechanisms in yeast. Trends Biochem. Sci. 35:8–17
    [Google Scholar]
  90. 89.  Maciejowski J, de Lange T 2017. Telomeres in cancer: tumour suppression and genome instability. Nat. Rev. Mol. Cell Biol. 18:175–86
    [Google Scholar]
  91. 90.  Margalef P, Kotsantis P, Borel V, Bellelli R, Panier S, Boulton SJ 2018. Stabilization of reversed replication forks by telomerase drives telomere catastrophe. Cell 172:439–453.e14
    [Google Scholar]
  92. 91.  Martínez P, Blasco MA 2011. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat. Rev. Cancer 11:161–76
    [Google Scholar]
  93. 92.  Martínez P, Thanasoula M, Muñoz P, Liao C, Tejera A et al. 2009. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 23:2060–75
    [Google Scholar]
  94. 93.  Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A 2015. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518:254–57
    [Google Scholar]
  95. 94.  McClintock B 1939. The behavior in successive nuclear divisions of a chromosome broken at meiosis. PNAS 25:405–16
    [Google Scholar]
  96. 95.  McClintock B 1941. The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–82
    [Google Scholar]
  97. 96.  Mimitou EP, Symington LS 2011. DNA end resection–unraveling the tail. DNA Repair 10:344–48
    [Google Scholar]
  98. 97.  Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y et al. 2018. 53BP1–RIF1–shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature 560:11216
    [Google Scholar]
  99. 98.  Necasová I, Janoušková E, Klumpler T, Hofr C 2017. Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it. Nucleic Acids Res 45:12170–80
    [Google Scholar]
  100. 99.  Nishikawa T, Okamura H, Nagadoi A, Konig P, Rhodes D, Nishimura Y 2001. Solution structure of a telomeric DNA complex of human TRF1. Structure 9:1237–51
    [Google Scholar]
  101. 100.  Nora GJ, Buncher NA, Opresko PL 2010. Telomeric protein TRF2 protects Holliday junctions with telomeric arms from displacement by the Werner syndrome helicase. Nucleic Acids Res 38:3984–98
    [Google Scholar]
  102. 101.  Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR, Denchi EL 2013. A two-step mechanism for TRF2-mediated chromosome-end protection. Nature 494:502–5
    [Google Scholar]
  103. 102.  Palm W, Hockemeyer D, Kibe T, de Lange T 2009. Functional dissection of human and mouse POT1 proteins. Mol. Cell. Biol. 29:471–82
    [Google Scholar]
  104. 103.  Panier S, Boulton SJ 2014. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 15:7–18
    [Google Scholar]
  105. 104.  Pinzaru AM, Hom RA, Beal A, Phillips AF, Ni E et al. 2016. Telomere replication stress induced by POT1 inactivation accelerates tumorigenesis. Cell Rep 15:2170–84
    [Google Scholar]
  106. 105.  Poulet A, Buisson R, Faivre-Moskalenko C, Koelblen M, Amiard S et al. 2009. TRF2 promotes, remodels and protects telomeric Holliday junctions. EMBO J 28:641–51
    [Google Scholar]
  107. 106.  Price CM, Boltz KA, Chaiken MF, Stewart JA, Beilstein MA, Shippen DE 2010. Evolution of CST function in telomere maintenance. Cell Cycle 9:3157–65
    [Google Scholar]
  108. 107.  Rai R, Chen Y, Lei M, Chang S 2016. TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat. Commun. 7:10881
    [Google Scholar]
  109. 108.  Rai R, Zheng H, He H, Luo Y, Multani A et al. 2010. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J 29:2598–610
    [Google Scholar]
  110. 109.  Ray S, Bandaria JN, Qureshi MH, Yildiz A, Balci H 2014. G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding. PNAS 111:2990–95
    [Google Scholar]
  111. 110.  Rice C, Shastrula PK, Kossenkov AV, Hills R, Baird DM et al. 2017. Structural and functional analysis of the human POT1-TPP1 telomeric complex. Nat. Commun. 8:14928
    [Google Scholar]
  112. 111.  Saint-Leger A, Koelblen M, Civitelli L, Bah A, Djerbi N et al. 2014. The basic N-terminal domain of TRF2 limits recombination endonuclease action at human telomeres. Cell Cycle 13:2469–74
    [Google Scholar]
  113. 112.  Sarek G, Vannier JB, Panier S, Petrini JH, Boulton SJ 2015. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol. Cell 57:622–35
    [Google Scholar]
  114. 113.  Sarkar J, Wan B, Yin J, Vallabhaneni H, Horvath K et al. 2015. SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. Nucleic Acids Res 43:5912–23
    [Google Scholar]
  115. 114.  Sarthy J, Bae NS, Scrafford J, Baumann P 2009. Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J 28:3390–99
    [Google Scholar]
  116. 115.  Schmutz I, Timashev L, Xie W, Patel DJ, de Lange T 2017. TRF2 binds branched DNA to safeguard telomere integrity. Nat. Struct. Mol. Biol. 24:734–42
    [Google Scholar]
  117. 116.  Sfeir A, de Lange T 2012. Removal of shelterin reveals the telomere end-protection problem. Science 336:593–97
    [Google Scholar]
  118. 117.  Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T 2010. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327:1657–61
    [Google Scholar]
  119. 118.  Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J et al. 2009. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103
    [Google Scholar]
  120. 119.  Sfeir A, Symington LS 2015. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway. Trends Biochem. Sci. 40:701–14
    [Google Scholar]
  121. 120.  Sfeir AJ, Chai W, Shay JW, Wright WE 2005. Telomere-end processing the terminal nucleotides of human chromosomes. Mol. Cell 18:131–38
    [Google Scholar]
  122. 121.  Smith S, de Lange T 2000. Tankyrase promotes telomere elongation in human cells. Curr. Biol. 10:1299–302
    [Google Scholar]
  123. 122.  Smith S, Giriat I, Schmitt A, de Lange T 1998. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282:1484–87
    [Google Scholar]
  124. 123.  Stansel RM, de Lange T, Griffith JD 2001. T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20:5532–40
    [Google Scholar]
  125. 124.  Stracker TH, Petrini JH 2011. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12:90–103
    [Google Scholar]
  126. 125.  Suguwara N, Wang X, Haber J 2003. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12:209–19
    [Google Scholar]
  127. 126.  Sun H, Karow JK, Hickson ID, Maizels NP 1998. The Bloom's syndrome helicase unwinds G4 DNA. J. Biol. Chem. 273:27587–92
    [Google Scholar]
  128. 127.  Takai H, Jenkinson E, Kabir S, Babul-Hirji R, Najm-Tehrani N et al. 2016. A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus. Genes Dev 30:812–26
    [Google Scholar]
  129. 128.  Takai KK, Hooper S, Blackwood S, Gandhi R, de Lange T 2010. In vivo stoichiometry of shelterin components. J. Biol. Chem. 285:1457–67
    [Google Scholar]
  130. 129.  Takai KK, Kibe T, Donigian JR, Frescas D, de Lange T 2011. Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol. Cell 44:647–59
    [Google Scholar]
  131. 130.  Tang J, Cho NW, Cui G, Manion EM, Shanbhag NM et al. 2013. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat. Struct. Mol. Biol. 20:317–25
    [Google Scholar]
  132. 131.  Tejera AM, Stagno d'Alcontres M, Thanasoula M, Marion RM, Martinez P et al. 2010. TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev. Cell 18:775–89
    [Google Scholar]
  133. 132.  Timashev LA, Babcock H, Zhuang X, de Lange T 2017. The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes Dev 31:578–89
    [Google Scholar]
  134. 133.  van Overbeek M, de Lange T 2006. Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr. Biol. 16:1295–302
    [Google Scholar]
  135. 134.  Vancevska A, Douglass KM, Pfeiffer V, Manley S, Lingner J 2017. The telomeric DNA damage response occurs in the absence of chromatin decompaction. Genes Dev 31:567–77
    [Google Scholar]
  136. 135.  Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ 2012. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149:795–806
    [Google Scholar]
  137. 136.  Vannier JB, Sandhu S, Petalcorin MI, Wu X, Nabi Z et al. 2013. RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 342:239–42
    [Google Scholar]
  138. 137.  Wan M, Qin J, Songyang Z, Liu D 2009. OB fold-containing protein 1 (OBFC1), a human homolog of yeast Stn1, associates with TPP1 and is implicated in telomere length regulation. J. Biol. Chem. 284:26725–31
    [Google Scholar]
  139. 138.  Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P et al. 2007. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445:506–10
    [Google Scholar]
  140. 139.  Wang F, Stewart JA, Kasbek C, Zhao Y, Wright WE, Price CM 2012. Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep 2:1096–103
    [Google Scholar]
  141. 140.  Wang RC, Smogorzewska A, de Lange T 2004. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119:355–68
    [Google Scholar]
  142. 141.  Wang Y, Ghosh G, Hendrickson EA 2009. Ku86 represses lethal telomere deletion events in human somatic cells. PNAS 106:12430–35
    [Google Scholar]
  143. 142.  Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y et al. 2006. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126:49–62
    [Google Scholar]
  144. 143.  Wu P, Takai H, de Lange T 2012. Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150:39–52
    [Google Scholar]
  145. 144.  Wu P, de Lange T 2008. No overt nucleosome eviction at deprotected telomeres. Mol. Cell. Biol. 28:5724–35
    [Google Scholar]
  146. 145.  Wu P, van Overbeek M, Rooney S, de Lange T 2010. Apollo contributes to G overhang maintenance and protects leading-end telomeres. Mol. Cell 39:1–12
    [Google Scholar]
  147. 146.  Wyatt HD, West SC 2014. Holliday junction resolvases. Cold Spring Harb. Perspect. Biol. 6:a023192
    [Google Scholar]
  148. 147.  Xue J, Chen H, Wu J, Takeuchi M, Inoue H et al. 2017. Structure of the fission yeast S. pombe telomeric Tpz1-Poz1-Rap1 complex. Cell Res 27:1503–20
    [Google Scholar]
  149. 148.  Ye JZ, Donigian JR, Van Overbeek M, Loayza D, Luo Y et al. 2004. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J. Biol. Chem. 279:47264–71
    [Google Scholar]
  150. 149.  Zhu XD, Niedernhofer L, Kuster B, Mann M, Hoeijmakers JH, de Lange T 2003. ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol. Cell 12:1489–98
    [Google Scholar]
  151. 150.  Zimmermann M, de Lange T 2014. 53BP1: pro choice in DNA repair. Trends Cell Biol 24:108–17
    [Google Scholar]
  152. 151.  Zimmermann M, Kibe T, Kabir S, de Lange T 2014. TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes Dev 28:2477–91
    [Google Scholar]
  153. 152.  Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T 2013. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339:700–4
    [Google Scholar]
/content/journals/10.1146/annurev-genet-032918-021921
Loading
/content/journals/10.1146/annurev-genet-032918-021921
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error