1932

Abstract

The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-061323-044915
2023-11-27
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/genet/57/1/annurev-genet-061323-044915.html?itemId=/content/journals/10.1146/annurev-genet-061323-044915&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aanen D, Beekman M, Kokko H. 2016. Weird sex: the underappreciated diversity of sexual reproduction. Philos. Trans. R. Soc. B 371:170620160262
    [Google Scholar]
  2. 2.
    Abramo K, Valton AL, Venev SV, Ozadam H, Fox AN, Dekker J. 2019. A chromosome folding intermediate at the condensin-to-cohesin transition during telophase. Nat. Cell Biol. 21:111393–402
    [Google Scholar]
  3. 3.
    Adams EE, He Q, McKee BD. 2020. How noncrossover homologs are conjoined and segregated in Drosophila male meiosis I: Stable but reversible homolog linkers require a novel Separase target protein. PLOS Genet. 16:10e1008997
    [Google Scholar]
  4. 4.
    Ahmed EA, Rosemann M, Scherthan H. 2018. NHEJ contributes to the fast repair of radiation-induced DNA double-strand breaks at late prophase I telomeres. Health Phys. 115:1102–7
    [Google Scholar]
  5. 5.
    Ahuja JS, Harvey CS, Wheeler DL, Lichten M. 2021. Repeated strand invasion and extensive branch migration are hallmarks of meiotic recombination. Mol. Cell 81:204258–70
    [Google Scholar]
  6. 6.
    Ahuja JS, Sandhu R, Mainpal R, Lawson C, Henley H et al. 2017. Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science 355:6323408–11
    [Google Scholar]
  7. 7.
    Albini SM, Jones GH. 1987. Synaptonemal complex spreading in Allium cepa and A. fistulosum. I. The initiation and sequence of pairing. Chromosoma 95:324–38
    [Google Scholar]
  8. 8.
    Allers T, Lichten M. 2001. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:147–57
    [Google Scholar]
  9. 9.
    Alleva B, Brick K, Pratto F, Huang M, Camerini-Otero RD. 2021. Cataloging human PRDM9 allelic variation using long-read sequencing reveals PRDM9 population specificity and two distinct groupings of related alleles. Front. Cell Dev. Biol. 9:675286
    [Google Scholar]
  10. 10.
    Almanzar DE, Gordon SG, Rog O 2021. Meiotic sister chromatid exchanges are rare in C. elegans. Curr. Biol. 31:71499–507
    [Google Scholar]
  11. 11.
    Altmannova V, Firlej M, Müller F, Janning P, Rauleder R et al. 2023. Biochemical characterization of Mer3 helicase interactions and the protection of meiotic recombination intermediates. Nucleic Acids Res. 51:94363–84
    [Google Scholar]
  12. 12.
    Arbel-Eden A, Simchen G. 2019. Elevated mutagenicity in meiosis and its mechanism. Bioessays 41:4e1800235
    [Google Scholar]
  13. 13.
    Arnould C, Rocher V, Finoux AL, Clouaire T, Li K et al. 2021. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590:7847660–65
    [Google Scholar]
  14. 14.
    Arora K, Corbett KD. 2019. The conserved XPF:ERCC1-like Zip2:Spo16 complex controls meiotic crossover formation through structure-specific DNA binding. Nucleic Acids Res. 47:52365–76
    [Google Scholar]
  15. 15.
    Axelsson E, Webster MT, Ratnakumar A, Ponting CP, Lindblad-Toh K. 2012. Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome. Genome Res. 22:151–63
    [Google Scholar]
  16. 16.
    Bell JC, Kowalczykowski SC. 2016. RecA: regulation and mechanism of a molecular search engine. Trends Biochem. Sci. 41:6491–507
    [Google Scholar]
  17. 17.
    Bell LR, Byers B. 1983. Homologous association of chromosomal DNA during yeast meiosis. Cold Spring Harb. Symp. Quant. Biol. 47:Part 2829–40
    [Google Scholar]
  18. 18.
    Bernstein H, Bernstein C. 2017. Sexual communication in Archaea, the precursor to eukaryotic meiosis. Biocommunication of Archaea G Witzany 103–17. Cham, Switz.: Springer
    [Google Scholar]
  19. 19.
    Bhagwat NR, Owens SN, Ito M, Boinapalli JV, Poa P et al. 2021. SUMO is a pervasive regulator of meiosis. eLife 10:e57720
    [Google Scholar]
  20. 20.
    Bhattacharyya T, Walker M, Powers NR, Brunton C, Fine AD et al. 2019. Prdm9 and meiotic cohesin proteins cooperatively promote DNA double-strand break formation in mammalian spermatocytes. Curr. Biol. 29:1002–18.e7
    [Google Scholar]
  21. 21.
    Bisig CG, Guiraldelli MF, Kouznetsova A, Scherthan H, Höög C et al. 2012. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes. PLOS Genet. 8:6e1002701
    [Google Scholar]
  22. 22.
    Blat Y, Protacio RU, Hunter N, Kleckner N. 2002. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111:6791–802
    [Google Scholar]
  23. 23.
    Bojko M. 1983. Human meiosis VIII. Chromosome pairing and formation of the synaptonemal complex in oocytes. Carlsberg Res. Commun. 48:457–83
    [Google Scholar]
  24. 24.
    Borde V, Goldman AS, Lichten M. 2000. Direct coupling between meiotic DNA replication and recombination initiation. Science 290:5492806–9
    [Google Scholar]
  25. 25.
    Börner GV, Kleckner N, Hunter N. 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:129–45
    [Google Scholar]
  26. 26.
    Borts RH, Lichten M, Hearn M, Davidow LS, Haber JE. 1984. Physical monitoring of meiotic recombination in Saccharomyces cerevisiae. Cold Spring Harb. Symp. Quant. Biol. 49:67–76
    [Google Scholar]
  27. 27.
    Boulton A, Myers RS, Redfield RJ. 1997. The hotspot conversion paradox and the evolution of meiotic recombination. PNAS 94:158058–63
    [Google Scholar]
  28. 28.
    Bozdag GO, Ono J, Denton JA, Karakoc E, Hunter N et al. 2021. Breaking a species barrier by enabling hybrid recombination. Curr. Biol. 31:4R180–81
    [Google Scholar]
  29. 29.
    Brick K, Pratto F, Camerini-Otero RD. 2020. After the break: DSB end processing in mouse meiosis. Genes Dev. 34:11–12731–32
    [Google Scholar]
  30. 30.
    Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV. 2012. Genetic recombination is directed away from functional genomic elements in mice. Nature 485:7400642–45
    [Google Scholar]
  31. 31.
    Brinkmeier J, Coelho S, de Massy B, Bourbon HM. 2022. Evolution and diversity of the TopoVI and TopoVI-like subunits with extensive divergence of the TOPOVIBL subunit. Mol. Biol. Evol. 39:11msac227
    [Google Scholar]
  32. 32.
    Brown MS, Bishop DK. 2014. DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb. Perspect. Biol. 7:1a016659
    [Google Scholar]
  33. 33.
    Brown MS, Grubb J, Zhang A, Rust MJ, Bishop DK. 2015. Small Rad51 and Dmc1 complexes often co-occupy both ends of a meiotic DNA double strand break. PLOS Genet 11:12e1005653
    [Google Scholar]
  34. 34.
    Buhler C, Borde V, Lichten M. 2007. Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLOS Biol 5:12e324
    [Google Scholar]
  35. 35.
    Byers B, Goetsch L. 1975. Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae. PNAS 72:5056–60
    [Google Scholar]
  36. 36.
    Bzymek M, Thayer NH, Oh SD, Kleckner N, Hunter N. 2010. Double Holliday junctions are intermediates of DNA break repair. Nature 464:7290937–41
    [Google Scholar]
  37. 37.
    Cahoon CK, Hawley RS. 2013. Flies get a head start on meiosis. PLOS Genet. 9:12e1004051
    [Google Scholar]
  38. 38.
    Cahoon CK, Helm JM, Libuda DE. 2019. Synaptonemal complex central region proteins promote localization of pro-crossover factors to recombination events during Caenorhabditis elegans meiosis. Genetics 213:2395–409
    [Google Scholar]
  39. 39.
    Cannavo E, Sanchez A, Anand R, Ranjha L, Hugener J et al. 2020. Regulation of the MLH1–MLH3 endonuclease in meiosis. Nature 586:7830618–22
    [Google Scholar]
  40. 40.
    Capilla-Pérez L, Durand S, Hurel A, Lian Q, Chambon A et al. 2021. The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis. PNAS 118:12e2023613118
    [Google Scholar]
  41. 41.
    Carlton PM, Farruggio AP, Dernburg AF. 2006. A link between meiotic prophase progression and crossover control. . PLOS Genet 2:2e12
    [Google Scholar]
  42. 42.
    Carpenter ATC. 1975. Electron microscopy of meiosis in Drosophila melanogaster females: II: The recombination nodule—a recombination-associated structure at pachytene?. PNAS 72:3186–89
    [Google Scholar]
  43. 43.
    Cejka P, Symington LS. 2021. DNA end resection: mechanism and control. Annu. Rev. Genet. 55:285–307
    [Google Scholar]
  44. 44.
    Chacón MR, Delivani P, Tolić IM. 2016. Meiotic nuclear oscillations are necessary to avoid excessive chromosome associations. Cell Rep. 17:61632–45
    [Google Scholar]
  45. 45.
    Challa K, Lee M-S, Shinohara M, Kim KP, Shinohara A. 2016. Rad61/Wpl1 (Wapl), a cohesin regulator, controls chromosome compaction during meiosis. Nucleic Acids Res. 44:73190–203
    [Google Scholar]
  46. 46.
    Chan Y-L, Zhang A, Weissman BP, Bishop DK. 2019. RPA resolves conflicting activities of accessory proteins during reconstitution of Dmc1-mediated meiotic recombination. Nucleic Acids Res. 47:2747–61
    [Google Scholar]
  47. 47.
    Chelysheva L, Vezon D, Chambon A, Gendrot G, Pereira L et al. 2012. The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLOS Genet 8:7e1002799
    [Google Scholar]
  48. 48.
    Chen H, He C, Wang C, Wang X, Ruan F et al. 2021. RAD51 supports DMC1 by inhibiting the SMC5/6 complex during meiosis. Plant Cell 33:82869–82
    [Google Scholar]
  49. 49.
    Chen SY, Tsubouchi T, Rockmill B, Sandler JS, Richards DR et al. 2008. Global analysis of the meiotic crossover landscape. Dev. Cell 15:3401–15
    [Google Scholar]
  50. 50.
    Chen X, Suhandynata RT, Sandhu R, Rockmill B, Mohibullah N et al. 2015. Phosphorylation of the synaptonemal complex protein Zip1 regulates the crossover/noncrossover decision during yeast meiosis. PLOS Biol 13:12e1002329
    [Google Scholar]
  51. 51.
    Chen Y, Lyu R, Rong B, Zheng Y, Lin Z et al. 2020. Refined spatial temporal epigenomic profiling reveals intrinsic connection between PRDM9-mediated H3K4me3 and the fate of double-stranded breaks. Cell Res. 30:3256–68
    [Google Scholar]
  52. 52.
    Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM et al. 2006. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20:152067–81
    [Google Scholar]
  53. 53.
    Cho NW, Dilley RL, Lampson MA, Greenberg RA. 2014. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159:1108–21
    [Google Scholar]
  54. 54.
    Chu L, Liang Z, Mukhina MV, Fisher JK, Hutchinson JW, Kleckner NE. 2020. One-dimensional spatial patterning along mitotic chromosomes: a mechanical basis for macroscopic morphogenesis. PNAS 117:4326749–55
    [Google Scholar]
  55. 55.
    Chu L, Liang Z, Mukhina MV, Fisher JK, Vincenten N et al. 2020. The 3D topography of mitotic chromosomes. Mol. Cell 79:6902–16
    [Google Scholar]
  56. 56.
    Chu L, Zhang Z, Mukhina M, Zickler D, Kleckner N. 2022. Sister chromatids separate during anaphase in a three-stage program as directed by interaxis bridges. PNAS 119:10e2123363119
    [Google Scholar]
  57. 57.
    Chuang C-N, Cheng Y-H, Wang T-F. 2012. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res. 40:2211416–27
    [Google Scholar]
  58. 58.
    Claeys Bouuaert C, Pu S, Wang J, Oger C, Daccache D et al. 2021. DNA-driven condensation assembles the meiotic DNA break machinery. Nature 592:7852144–49
    [Google Scholar]
  59. 59.
    Claeys Bouuaert C, Tischfield SE, Pu S, Mimitou EP, Arias-Palomo E et al. 2021. Structural and functional characterization of the Spo11 core complex. Nat. Struct. Mol. Biol. 28:192–102
    [Google Scholar]
  60. 60.
    Cloud V, Chan YL, Grubb J, Budke B, Bishop DK. 2012. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337:60991222–25
    [Google Scholar]
  61. 61.
    Codina-Pascual M, Campillo M, Kraus J, Speicher MR, Egozcue J et al. 2006. Crossover frequency and synaptonemal complex length: their variability and effects on human male meiosis. Mol. Hum. Reprod. 12:2123–33
    [Google Scholar]
  62. 62.
    Cole F, Baudat F, Grey C, Keeney S, de Massy B, Jasin M. 2014. Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics. Nat. Genet. 46:101072–80
    [Google Scholar]
  63. 63.
    Cole F, Kauppi L, Lange J, Roig I, Wang R et al. 2012. Homeostatic control of recombination is implemented progressively in mouse meiosis. Nat. Cell Biol. 14:4424–30
    [Google Scholar]
  64. 64.
    Cole F, Keeney S, Jasin M. 2012. Preaching about the converted: how meiotic gene conversion influences genomic diversity. Ann. N. Y. Acad. Sci. 1267:95–102
    [Google Scholar]
  65. 65.
    Colombo PC, Jones GH. 1997. Chiasma interference is blind to centromeres. Heredity 79:214–27
    [Google Scholar]
  66. 66.
    Conrad MN, Lee C-Y, Chao G, Shinohara M, Kosaka H et al. 2008. Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 133:71175–87
    [Google Scholar]
  67. 67.
    Crismani W, Girard C, Froger N, Pradillo M, Santos JL et al. 2012. FANCM limits meiotic crossovers. Science 336:1588–90
    [Google Scholar]
  68. 68.
    Crismani W, Girard C, Lloyd A. 2021. Crossover interference: Just ZYP it. PNAS 118:17e2103433118
    [Google Scholar]
  69. 69.
    Croft JA, Jones GH. 1989. Meiosis in Mesostoma ehrenbergii ehrenbergii. IV. Recombination nodules in spermatocytes and a test of the correspondence of late recombination nodules and chiasmata. Genetics 121:2255–62
    [Google Scholar]
  70. 70.
    Crown KN, Miller DE, Sekelsky J, Hawley RS. 2018. Local inversion heterozygosity alters recombination throughout the genome. Curr. Biol. 28:182984–90
    [Google Scholar]
  71. 71.
    Cutter DiPiazza AR, Taneja N, Dhakshnamoorthy J, Wheeler D, Holla S, Grewal SIS. 2021. Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation. PNAS 118:22e2100699118
    [Google Scholar]
  72. 72.
    Dai J, Sanchez A, Adam C, Ranjha L, Reginato G et al. 2021. Molecular basis of the dual role of the Mlh1-Mlh3 endonuclease in MMR and in meiotic crossover formation. PNAS 118:23e2022704118
    [Google Scholar]
  73. 73.
    Damm E, Odenthal-Hesse L. 2023. Orchestrating recombination initiation in mice and men. Curr. Top. Dev. Biol. 151:27–42
    [Google Scholar]
  74. 74.
    Darlington CD. 1937. Recent Advances in Cytology Philadelphia: P. Blakiston's Son & Co. Inc., 2nd ed..
  75. 75.
    Davies B, Gupta Hinch A, Cebrian-Serrano A, Alghadban S, Becker PW et al. 2021. Altering the binding properties of PRDM9 partially restores fertility across the species boundary. Mol. Biol. Evol. 38:125555–62
    [Google Scholar]
  76. 76.
    Davies B, Hatton E, Altemose N, Hussin JG, Pratto F et al. 2016. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. Nature 530:7589171–76
    [Google Scholar]
  77. 77.
    Dawe RK, Sedat JW, Agard DA, Cande WZ. 1994. Meiotic chromosome pairing in maize is associated with a novel chromatin organization. Cell 76:5901–12
    [Google Scholar]
  78. 78.
    de Boer E, Dietrich AJ, Höög C, Stam P, Heyting C. 2007. Meiotic interference among MLH1 foci requires neither an intact axial element structure nor full synapsis. J. Cell Sci. 120:Part 5731–36
    [Google Scholar]
  79. 79.
    de Boer E, Jasin M, Keeney S. 2015. Local and sex-specific biases in crossover versus noncrossover outcomes at meiotic recombination hot spots in mice. Genes Dev 29:161721–33
    [Google Scholar]
  80. 80.
    de Boer E, Stam P, Dietrich AJ, Pastink A, Heyting C. 2006. Two levels of interference in mouse meiotic recombination. PNAS 103:259607–12
    [Google Scholar]
  81. 81.
    de la Fuente R, Parra MT, Viera A, Calvente A, Gómez R et al. 2007. Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: the role of SYCP3 protein. PLOS Genet 3:11e198
    [Google Scholar]
  82. 82.
    De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J et al. 2012. BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism. Mol. Cell 46:143–53
    [Google Scholar]
  83. 83.
    De Muyt A, Pyatnitskaya A, Andréani J, Ranjha L, Ramus C et al. 2018. A meiotic XPF–ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes Dev 32:3–4283–96
    [Google Scholar]
  84. 84.
    De Muyt A, Zhang L, Piolot T, Kleckner N, Espagne E, Zickler D. 2014. E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis. Genes Dev 28:101111–23
    [Google Scholar]
  85. 85.
    Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM. 1998. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:3387–98
    [Google Scholar]
  86. 86.
    Desjardins SD, Simmonds J, Guterman I, Kanyuka K, Burridge AJ et al. 2022. FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis. Nat. Commun. 13:13644
    [Google Scholar]
  87. 87.
    Ding D-Q, Haraguchi T, Hiraoka Y. 2013. The role of chromosomal retention of noncoding RNA in meiosis. Chromosome Res 21:6–7665–72
    [Google Scholar]
  88. 88.
    Ding D-Q, Yamamoto A, Haraguchi T, Hiraoka Y. 2004. Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev. Cell 6:3329–41
    [Google Scholar]
  89. 89.
    Drouaud J, Khademian H, Giraut L, Zanni V, Bellalou S et al. 2013. Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLOS Genet 9:11e1003922
    [Google Scholar]
  90. 90.
    Drouaud J, Mercier R, Chelysheva L, Bérard A, Falque M et al. 2007. Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PLOS Genet 3:6e106
    [Google Scholar]
  91. 91.
    Dubois E, De Muyt A, Soyer JL, Budin K, Legras M et al. 2019. Building bridges to move recombination complexes. PNAS 116:2512400–9
    [Google Scholar]
  92. 92.
    Durand S, Lian Q, Jing J, Ernst M, Grelon M et al. 2022. Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage. Nat. Commun. 13:15999
    [Google Scholar]
  93. 93.
    Duroc Y, Kumar R, Ranjha L, Adam C, Guérois R et al. 2017. Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion. eLife 6:e21900
    [Google Scholar]
  94. 94.
    Dutreux F, Dutta A, Peltier E, Bibi-Triki S, Friedrich A et al. 2023. Lessons from the meiotic recombination landscape of the ZMM deficient budding yeast Lachancea waltii. PLOS Genet. 19:1e1010592
    [Google Scholar]
  95. 95.
    Egel R. 1978. Synaptonemal complex and crossing-over: structural support or interference?. Heredity 41:2233–37
    [Google Scholar]
  96. 96.
    Egel-Mitani M, Olson LW, Egel R. 1982. Meiosis in Aspergillus nidulans: another example for lacking synaptonemal complexes in the absence of crossover interference. Hereditas 97:2179–87
    [Google Scholar]
  97. 97.
    Eyster C, Chuong HH, Lee CY, Pezza RJ, Dawson D. 2019. The pericentromeric heterochromatin of homologous chromosomes remains associated after centromere pairing dissolves in mouse spermatocyte meiosis. Chromosoma 128:3355–67
    [Google Scholar]
  98. 98.
    Fellmeth JE, McKim KS. 2022. A brief history of Drosophila (female) meiosis. Genes 13:5775
    [Google Scholar]
  99. 99.
    Fernandes JB, Séguéla-Arnaud M, Larchevêque C, Lloyd AH, Mercier R. 2018. Unleashing meiotic crossovers in hybrid plants. PNAS 115:102431–36
    [Google Scholar]
  100. 100.
    Ferreira MTM, Glombik M, Perničková K, Duchoslav M, Scholten O et al. 2021. Direct evidence for crossover and chromatid interference in meiosis of two plant hybrids (Lolium multiflorum × Festuca pratensis and Alliumcepa × A. roylei). J. Exp. Bot. 72:2254–67
    [Google Scholar]
  101. 101.
    Firlej M, Weir JR. 2023. Unwinding during stressful times: mechanisms of helicases in meiotic recombination. Curr. Top. Dev. Biol. 151:191–215
    [Google Scholar]
  102. 102.
    Forejt J, Jansa P, Parvanov E. 2021. Hybrid sterility genes in mice (Mus musculus): a peculiar case of PRDM9 incompatibility. Trends Genet. 37:121095–108
    [Google Scholar]
  103. 103.
    Fozard JA, Morgan C, Howard M. 2023. Coarsening dynamics can explain meiotic crossover patterning in both the presence and absence of the synaptonemal complex. eLife 12:e79408
    [Google Scholar]
  104. 104.
    France MG, Enderle J, Röhrig S, Puchta H, Franklin FCH, Higgins JD. 2021. ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis. PNAS 118:14e2021671118
    [Google Scholar]
  105. 105.
    Fraune J, Brochier-Armanet C, Alsheimer M, Volff JN, Schücker K, Benavente R. 2016. Evolutionary history of the mammalian synaptonemal complex. Chromosoma 125:3355–60
    [Google Scholar]
  106. 106.
    Fujitani Y, Kawai J, Kobayashi I. 2010. Random-walk mechanism in the genetic recombination. Adv. Exp. Med. Biol. 680:275–82
    [Google Scholar]
  107. 107.
    Fujiwara Y, Horisawa-Takada Y, Inoue E, Tani N, Shibuya H et al. 2020. Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase. PLOS Genet. 16:9e1009048
    [Google Scholar]
  108. 108.
    Fung JC, Rockmill B, Odell M, Roeder GS. 2004. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116:6795–802
    [Google Scholar]
  109. 109.
    Gao J, Colaiácovo MP. 2018. Zipping and unzipping: protein modifications regulating synaptonemal complex dynamics. Trends Genet. 34:3232–45
    [Google Scholar]
  110. 110.
    Garcia V, Gray S, Allison RM, Cooper TJ, Neale MJ. 2015. Tel1ATM-mediated interference suppresses clustered meiotic double-strand-break formation. Nature 520:7545114–18
    [Google Scholar]
  111. 111.
    Gelei J. 1921. Weitere Studien über die Oogenese des Dendrocoelum lacteum. II. Die Längskonjugation der Chromosomen. Arch. F. Zellforsch. 16:88–169
    [Google Scholar]
  112. 112.
    Gergelits V, Parvanov E, Simecek P, Forejt J. 2021. Chromosome-wide characterization of meiotic noncrossovers (gene conversions) in mouse hybrids. Genetics 217:11–14
    [Google Scholar]
  113. 113.
    Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N et al. 2018. A pathway for mitotic chromosome formation. Science 359:6376eaao6135
    [Google Scholar]
  114. 114.
    Girard C, Budin K, Boisnard S, Zhang L, Debuchy R et al. 2021. RNAi-related Dicer and Argonaute proteins play critical roles for meiocyte formation, chromosome-axes lengths and crossover patterning in the fungus Sordaria macrospora. Front. Cell Dev. Biol. 9:684108
    [Google Scholar]
  115. 115.
    Girard C, Zwicker D, Mercier R. 2023. The regulation of meiotic crossover distribution: a coarse solution to a century-old mystery?. Biochem. Soc. Trans. 5:BST20221329
    [Google Scholar]
  116. 116.
    Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mézard C. 2011. Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLOS Genet 7:11e1002354
    [Google Scholar]
  117. 117.
    Goldfarb T, Lichten M. 2010. Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis. PLOS Biol 8:10e1000520
    [Google Scholar]
  118. 118.
    Goldman ASH, Lichten M. 1996. The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144:143–55
    [Google Scholar]
  119. 119.
    Goldman ASH, Lichten M. 2000. Restriction of ectopic recombination by interhomolog interactions during Saccharomyces cerevisiae meiosis. PNAS 97:179537–42
    [Google Scholar]
  120. 120.
    Gorbsky GJ. 2015. The spindle checkpoint and chromosome segregation in meiosis. FEBS J. 282:132471–87
    [Google Scholar]
  121. 121.
    Gordon SG, Kursel LE, Xu K, Rog O 2021. Synaptonemal complex dimerization regulates chromosome alignment and crossover patterning in meiosis. PLOS Genet 17:3e1009205
    [Google Scholar]
  122. 122.
    Gray S, Santiago ER, Chappie JS, Cohen PE. 2020. Cyclin N-terminal domain-containing-1 coordinates meiotic crossover formation with cell-cycle progression in a cyclin-independent manner. Cell Rep. 32:1107858
    [Google Scholar]
  123. 123.
    Grey C, Baudat F, de Massy B. 2018. PRDM9, a driver of the genetic map. PLOS Genet. 14:8e1007479
    [Google Scholar]
  124. 124.
    Grey C, de Massy B. 2021. Chromosome organization in early meiotic prophase. Front. Cell Dev. Biol. 9:688878
    [Google Scholar]
  125. 125.
    Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N. 2010. PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. PNAS 107:62467–72
    [Google Scholar]
  126. 126.
    Gruhn JR, Al-Asmar N, Fasnacht R, Maylor-Hagen H, Peinado V et al. 2016. Correlations between synaptic initiation and meiotic recombination: a study of humans and mice. Am. J. Hum. Genet. 98:1102–15
    [Google Scholar]
  127. 127.
    Gruhn JR, Hoffmann ER. 2022. Errors of the egg: the establishment and progression of human aneuploidy research in the maternal germline. Annu. Rev. Genet. 56:369–90
    [Google Scholar]
  128. 128.
    Gruhn JR, Rubio C, Broman KW, Hunt PA, Hassold T. 2013. Cytological studies of human meiosis: Sex-specific differences in recombination originate at, or prior to, establishment of double-strand breaks. PLOS ONE 8:12e85075
    [Google Scholar]
  129. 129.
    Gu Y, Desai A, Corbett KD. 2022. Evolutionary dynamics and molecular mechanisms of HORMA domain protein signaling. Annu. Rev. Biochem. 91:541–69
    [Google Scholar]
  130. 130.
    Guillon H, Baudat F, Grey C, Liskay RM, de Massy B. 2005. Crossover and noncrossover pathways in mouse meiosis. Mol. Cell 20:4563–73
    [Google Scholar]
  131. 131.
    Guo H, Stamper EL, Sato-Carlton A, Shimazoe MA, Li X et al. 2022. Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity. eLife 11:e77956
    [Google Scholar]
  132. 132.
    Gyuricza MR, Manheimer KB, Apte V, Krishnan B, Joyce EF et al. 2016. Dynamic and stable cohesins regulate synaptonemal complex assembly and chromosome segregation. Curr. Biol. 26:131688–98
    [Google Scholar]
  133. 133.
    Hartmann M, Kohl KP, Sekelsky J, Hatkevich T. 2019. Meiotic MCM proteins promote and inhibit crossovers during meiotic recombination. Genetics 212:2461–68
    [Google Scholar]
  134. 134.
    Hassold T, Hunt P. 2001. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2:4280–91
    [Google Scholar]
  135. 135.
    Hassold T, Maylor-Hagen H, Wood A, Gruhn J, Hoffmann E et al. 2021. Failure to recombine is a common feature of human oogenesis. Am. J. Hum. Genet. 108:116–24
    [Google Scholar]
  136. 136.
    Hatkevich T, Miller DE, Turcotte CA, Miller MC, Sekelsky J. 2021. A pathway for error-free non-homologous end joining of resected meiotic double-strand breaks. Nucleic Acids Res. 49:2879–90
    [Google Scholar]
  137. 137.
    Haversat J, Woglar A, Klatt K, Akerib CC, Roberts V et al. 2022. Robust designation of meiotic crossover sites by CDK-2 through phosphorylation of the MutSγ complex. PNAS 119:21e2117865119
    [Google Scholar]
  138. 138.
    He W, Rao HBDP, Tang S, Bhagwat N, Kulkarni DS et al. 2020. Regulated proteolysis of MutSγ controls meiotic crossing over. Mol. Cell 78:1168–83
    [Google Scholar]
  139. 139.
    He W, Verhees GF, Bhagwat N, Yang Y, Kulkarni DS et al. 2021. SUMO fosters assembly and functionality of the MutSγ complex to facilitate meiotic crossing over. Dev. Cell 56:142073–88
    [Google Scholar]
  140. 140.
    Heldrich J, Milano CR, Markowitz TE, Ur SN, Vale-Silva LA et al. 2022. Two pathways drive meiotic chromosome axis assembly in Saccharomyces cerevisiae. Nucleic Acids Res. 50:84545–56
    [Google Scholar]
  141. 141.
    Henderson IR, Bomblies K. 2021. Evolution and plasticity of genome-wide meiotic recombination rates. Annu. Rev. Genet. 55:23–43
    [Google Scholar]
  142. 142.
    Higgins JD, Osman K, Desjardins SD, Henderson IR, Edwards KJ, Franklin FCH. 2022. Unravelling mechanisms that govern meiotic crossover formation in wheat. Biochem. Soc. Trans. 50:41179–86
    [Google Scholar]
  143. 143.
    Higgins JD, Osman K, Jones GH, Franklin FC. 2014. Factors underlying restricted crossover localization in barley meiosis. Annu. Rev. Genet. 48:29–47
    [Google Scholar]
  144. 144.
    Higgins JD, Vignard J, Mercier R, Pugh AG, Franklin FC, Jones GH. 2008. AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis. . Plant J. 55:128–39
    [Google Scholar]
  145. 145.
    Hinch AG, Becker PW, Li T, Moralli D, Zhang G et al. 2020. The configuration of RPA, RAD51, and DMC1 binding in meiosis reveals the nature of critical recombination intermediates. Mol. Cell 79:4689–701
    [Google Scholar]
  146. 146.
    Hiraoka Y, Dernburg AF. 2009. The SUN rises on meiotic chromosome dynamics. Dev. Cell 17:5598–605
    [Google Scholar]
  147. 147.
    Hollingsworth NM, Gaglione R. 2019. The meiotic-specific Mek1 kinase in budding yeast regulates interhomolog recombination and coordinates meiotic progression with double-strand break repair. Curr. Genet. 65:3631–41
    [Google Scholar]
  148. 148.
    Holm PB, Rasmussen SW. 1980. Chromosome pairing, recombination nodules and chiasma formation in diploid Bombyx males. Carlsberg Res. Commun. 45:6483–548
    [Google Scholar]
  149. 149.
    Hong S, Joo JH, Yun H, Kleckner N, Kim KP. 2019. Recruitment of Rec8, Pds5 and Rad61/Wapl to meiotic homolog pairing, recombination, axis formation and S-phase. Nucleic Acids Res. 47:2211691–708
    [Google Scholar]
  150. 150.
    Hong S, Sung Y, Yu M, Lee M, Kleckner N, Kim KP. 2013. The logic and mechanism of homologous recombination partner choice. Mol. Cell 51:4440–53
    [Google Scholar]
  151. 151.
    Hooker GW, Roeder GS. 2006. A role for SUMO in meiotic chromosome synapsis. Curr. Biol. 16:121238–43
    [Google Scholar]
  152. 152.
    Huang J, Wang C, Wang H, Lu P, Zheng B et al. 2019. Meiocyte-specific and AtSPO11-1–dependent small RNAs and their association with meiotic gene expression and recombination. Plant Cell 31:2444–64
    [Google Scholar]
  153. 153.
    Hughes SE, Gilliland WD, Cotitta JL, Takeo S, Collins KA, Hawley RS. 2009. Heterochromatic threads connect oscillating chromosomes during prometaphase I in Drosophila oocytes. PLOS Genet 5:1e1000348
    [Google Scholar]
  154. 154.
    Hultén MA. 2011. On the origin of crossover interference: a chromosome oscillatory movement (COM) model. Mol. Cytogenet. 8:4–10
    [Google Scholar]
  155. 155.
    Hunter N. 2015. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7:12a016618
    [Google Scholar]
  156. 156.
    Hunter N, Kleckner N. 2001. The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106:159–70
    [Google Scholar]
  157. 157.
    Hurlock ME, Čavka I, Kursel LE, Haversat J, Wooten M et al. 2020. Identification of novel synaptonemal complex components in C. elegans. J. Cell Biol. 219:5e201910043
    [Google Scholar]
  158. 158.
    Hurst LD, Nurse P. 1991. A note on the evolution of meiosis. J. Theor. Biol. 150:4561–63
    [Google Scholar]
  159. 159.
    Ishiguro K, Kim J, Fujiyama-Nakamura S, Kato S, Watanabe Y. 2011. A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep 12:3267–75
    [Google Scholar]
  160. 160.
    Ito M, Shinohara A. 2023. Chromosome architecture and homologous recombination in meiosis. Front. Cell Dev. Biol. 10:1097446
    [Google Scholar]
  161. 161.
    Ivanov V, Mizuuchi K. 2010. Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. PNAS 107:188071–78
    [Google Scholar]
  162. 162.
    Jahns MT, Vezon D, Chambon A, Pereira L, Falque M et al. 2014. Crossover localisation is regulated by the neddylation posttranslational regulatory pathway. PLOS Biol 12:8e1001930
    [Google Scholar]
  163. 163.
    Jing J, Mercier R. 2022. Meiosis: deciphering the dialog between recombination and the synaptonemal complex. Curr. Biol. 32:21R1235–37
    [Google Scholar]
  164. 164.
    Johnson D, Crawford M, Cooper T, Claeys Bouuaert C, Keeney S et al. 2021. Concerted cutting by Spo11 illuminates meiotic DNA break mechanics. Nature 594:7864572–76
    [Google Scholar]
  165. 165.
    Johnson RD, Jasin M. 2001. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29:Part 2196–201
    [Google Scholar]
  166. 166.
    Jones GH, Franklin FC. 2006. Meiotic crossing-over: obligation and interference. Cell 126:2246–48
    [Google Scholar]
  167. 167.
    Joyce EF, Apostolopoulos N, Beliveau BJ, Wu CT. 2013. Germline progenitors escape the widespread phenomenon of homolog pairing during Drosophila development. PLOS Genet 9:12e1004013
    [Google Scholar]
  168. 168.
    Joyce EF, McKim KS. 2011. Meiotic checkpoints and the interchromosomal effect on crossing over in Drosophila females. Fly 5:2134–40
    [Google Scholar]
  169. 169.
    Kabakci Z, Reichle HE, Lemke B, Rousova D, Gupta S et al. 2022. Homologous chromosomes are stably conjoined for Drosophila male meiosis I by SUM, a multimerized protein assembly with modules for DNA-binding and for separase-mediated dissociation co-opted from cohesin. PLOS Genet 18:12e1010547
    [Google Scholar]
  170. 170.
    Kar FM, Hochwagen A. 2021. Phospho-regulation of meiotic prophase. Front. Cell Dev. Biol. 9:667073
    [Google Scholar]
  171. 171.
    Kariyazono R, Oda A, Yamada T, Ohta K. 2019. Conserved HORMA domain-containing protein Hop1 stabilizes interaction between proteins of meiotic DNA break hotspots and chromosome axis. Nucleic Acids Res. 47:1910166–80
    [Google Scholar]
  172. 172.
    Kauppi L, Jasin M, Keeney S. 2012. The tricky path to recombining X and Y chromosomes in meiosis. Ann. N. Y. Acad. Sci. 1267:18–23
    [Google Scholar]
  173. 173.
    Kaur H, De Muyt A, Lichten M. 2015. Top3-Rmi1 DNA single-strand decatenase is integral to the formation and resolution of meiotic recombination intermediates. Mol. Cell 57:4583–94
    [Google Scholar]
  174. 174.
    Keeney S, Giroux CN, Kleckner N. 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:3375–84
    [Google Scholar]
  175. 175.
    Keeney S, Kleckner N. 1996. Communication between homologous chromosomes: Genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes Cells 1:5475–89
    [Google Scholar]
  176. 176.
    Keeney S, Lange J, Mohibullah N. 2014. Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu. Rev. Genet. 48:187–214
    [Google Scholar]
  177. 177.
    Kelly KO, Dernburg AF, Stanfield GM, Villeneuve AM. 2000. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics 156:2617–30
    [Google Scholar]
  178. 178.
    Keyl HG. 1975. Lampbrush chromosomes in spermatocytes of Chironomus. Chromosoma 51:75–91
    [Google Scholar]
  179. 179.
    Keymakh M, Dau J, Hu J, Ferlez B, Lisby M, Crickard JB. 2022. Rdh54 stabilizes Rad51 at displacement loop intermediates to regulate genetic exchange between chromosomes. PLOS Genet 18:9e1010412
    [Google Scholar]
  180. 180.
    Kim KP, Mirkin EV. 2018. So similar yet so different: the two ends of a double strand break. Mutat. Res. 809:70–80
    [Google Scholar]
  181. 181.
    Kim KP, Weiner BM, Zhang L, Jordan A, Dekker J, Kleckner N. 2010. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143:6924–37
    [Google Scholar]
  182. 182.
    King JS, Mortimer RK. 1990. A polymerization model of chiasma interference and corresponding computer simulation. Genetics 126:41127–38
    [Google Scholar]
  183. 183.
    Kleckner N. 1996. Meiosis: How could it work?. PNAS 93:168167–74
    [Google Scholar]
  184. 184.
    Kleckner N. 2006. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115:3175–94
    [Google Scholar]
  185. 185.
    Kleckner N, Storlazzi A, Zickler D. 2003. Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet. 19:11623–28
    [Google Scholar]
  186. 186.
    Kleckner N, Zickler D, Jones GH, Dekker J, Padmore R et al. 2004. A mechanical basis for chromosome function. PNAS 101:3412592–97
    [Google Scholar]
  187. 187.
    Klutstein M, Cooper JP. 2014. The chromosomal courtship dance—homolog pairing in early meiosis. Curr. Opin. Cell Biol. 26:123–31
    [Google Scholar]
  188. 188.
    Knoll A, Higgins JD, Seeliger K, Reha SJ, Dangel NJ et al. 2012. The Fanconi anemia ortholog FANCM ensures ordered homologous recombination in both somatic and meiotic cells in Arabidopsis. Plant Cell 24:1448–64
    [Google Scholar]
  189. 189.
    Köhler S, Wojcik M, Xu K, Dernburg AF. 2017. Superresolution microscopy reveals the three-dimensional organization of meiotic chromosome axes in intact Caenorhabditis elegans tissue. PNAS 114:24E4734–43
    [Google Scholar]
  190. 190.
    Kopecký D, Lukaszewski AJ, Dolezel J. 2008. Meiotic behaviour of individual chromosomes of Festuca pratensis in tetraploid Lolium multiflorum. Chromosome Res. 16:7987–98
    [Google Scholar]
  191. 191.
    Koszul R, Kim KP, Prentiss M, Kleckner N, Kameoka S. 2008. Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133:71188–201
    [Google Scholar]
  192. 192.
    Koszul R, Kleckner N. 2009. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections?. Cell Biol 19:12716–24
    [Google Scholar]
  193. 193.
    Koszul R, Meselson M, Van Doninck K, Vandenhaute J, Zickler D. 2012. The centenary of Janssens's chiasmatype theory. Genetics 191:2309–17
    [Google Scholar]
  194. 194.
    Kulkarni DS, Owens SN, Honda M, Ito M, Yang Y et al. 2020. PCNA activates the MutLγ endonuclease to promote meiotic crossing over. Nature 586:7830623–27
    [Google Scholar]
  195. 195.
    Kuo P, Da Ines O, Lambing C. 2021. Rewiring meiosis for crop improvement. Front. Plant Sci. 12:708948
    [Google Scholar]
  196. 196.
    Kurdzo EL, Obeso D, Chuong H, Dawson DS. 2017. Meiotic centromere coupling and pairing function by two separate mechanisms in Saccharomyces cerevisiae. Genetics 205:2657–71
    [Google Scholar]
  197. 197.
    Lai CL, Chen C, Ou SC, Prentiss M, Pettitt BM. 2020. Interactions between identical DNA double helices. Phys. Rev. E 101:032414
    [Google Scholar]
  198. 198.
    Lake CM, Hawley RS. 2021. Synaptonemal complex. Curr. Biol. 31:5R225–27
    [Google Scholar]
  199. 199.
    Lam I, Keeney S. 2014. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb. Perspect. Biol. 7:1a016634
    [Google Scholar]
  200. 200.
    Lam I, Keeney S. 2015. Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast. Science 350:6263932–37
    [Google Scholar]
  201. 201.
    Lambing C, Kuo P, Kim J, Osman K, Whitbread AL et al. 2022. Differentiated function and localisation of SPO11-1 and PRD3 on the chromosome axis during meiotic DSB formation in Arabidopsis thaliana. PLOS Genet 18:7e1010298
    [Google Scholar]
  202. 202.
    Lan W-H, Lin S-Y, Kao C-Y, Chang W-H, Yeh H-Y et al. 2020. Rad51 facilitates filament assembly of meiosis-specific Dmc1 recombinase. PNAS 117:2111257–64
    [Google Scholar]
  203. 203.
    Lande R, Stahl FW. 1993. Chiasma interference and the distribution of exchanges in Drosophila melanogaster. Cold Spring Harb. Symp. Quant. Biol. 58:543–52
    [Google Scholar]
  204. 204.
    Lange J, Yamada S, Tischfield SE, Pan J, Kim S et al. 2016. The landscape of mouse meiotic double-strand break formation, processing, and repair. Cell 167:3695–708
    [Google Scholar]
  205. 205.
    Lao JP, Cloud V, Huang CC, Grubb J, Thacker D et al. 2013. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLOS Genet. 9:12e1003978
    [Google Scholar]
  206. 206.
    Lao JP, Oh SD, Shinohara M, Shinohara A, Hunter N. 2008. Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol. Cell 29:4517–24
    [Google Scholar]
  207. 207.
    Láscarez-Lagunas LI, Nadarajan S, Martinez-Garcia M, Quinn JN, Todisco E et al. 2022. ATM/ATR kinases link the synaptonemal complex and DNA double-strand break repair pathway choice. Curr. Biol. 32:214719–26
    [Google Scholar]
  208. 208.
    Lee CY, Bisig CG, Conrad MN, Ditamo Y, Previato de Almeida L et al. 2020. Telomere-led meiotic chromosome movements: recent update in structure and function. Nucleus 11:9111–16
    [Google Scholar]
  209. 209.
    Lee MS, Higashide MT, Choi H, Li K, Hong S et al. 2021. The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation. Nucleic Acids Res. 49:137537–53
    [Google Scholar]
  210. 210.
    Lemmens BB, Johnson NM, Tijsterman M. 2013. COM-1 promotes homologous recombination during Caenorhabditis elegans meiosis by antagonizing Ku-mediated non-homologous end joining. PLOS Genet. 9:2e1003276
    [Google Scholar]
  211. 211.
    Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR. 2016. Evolutionary mysteries in meiosis. Philos. Trans. R. Soc. B 371:170620160001
    [Google Scholar]
  212. 212.
    Lhuissier FG, Offenberg HH, Wittich PE, Vischer NO, Heyting C. 2007. The mismatch repair protein MLH1 marks a subset of strongly interfering crossovers in tomato. Plant Cell 19:3862–76
    [Google Scholar]
  213. 213.
    Liang Z, Zickler D, Prentiss M, Chang FS, Witz G et al. 2015. Chromosomes progress to metaphase in multiple discrete steps via global compaction/expansion cycles. Cell 161:51124–37
    [Google Scholar]
  214. 214.
    Libuda DE, Uzawa S, Meyer BJ, Villeneuve AM. 2013. Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature 502:7473703–6
    [Google Scholar]
  215. 215.
    Lichten M, Borts RH, Haber JE. 1987. Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. Genetics 115:2233–46
    [Google Scholar]
  216. 216.
    Lichten M, Goldman AS. 1995. Meiotic recombination hotspots. Annu. Rev. Genet. 29:423–44
    [Google Scholar]
  217. 217.
    Lin F-M, Lai Y-J, Shen H-J, Cheng Y-H, Wang T-F. 2010. Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis. EMBO J. 29:3586–96
    [Google Scholar]
  218. 218.
    Link J, Jantsch V. 2019. Meiotic chromosomes in motion: a perspective from Mus musculus and Caenorhabditis elegans. Chromosoma 128:3317–30
    [Google Scholar]
  219. 219.
    Liu H, Gordon SG, Rog O 2021. Heterologous synapsis in C. elegans is regulated by meiotic double-strand breaks and crossovers. Chromosoma 130:4237–50
    [Google Scholar]
  220. 220.
    Lloyd A, Morgan C, Franklin FCH, Bomblies K. 2018. Plasticity of meiotic recombination rates in response to temperature in Arabidopsis. Genetics 208:41409–20
    [Google Scholar]
  221. 221.
    Loidl J. 2021. Tetrahymena meiosis: simple yet ingenious. PLOS Genet. 17:7e1009627
    [Google Scholar]
  222. 222.
    Loidl J, Scherthan H. 2004. Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila. J. Cell Sci. 117:Part 245791–801
    [Google Scholar]
  223. 223.
    Lukaszewicz A, Lange J, Keeney S, Jasin M. 2018. Control of meiotic double-strand-break formation by ATM: local and global views. . Cell Cycle 17:101155–72
    [Google Scholar]
  224. 224.
    Lukaszewicz A, Lange J, Keeney S, Jasin M. 2021. De novo deletions and duplications at recombination hotspots in mouse germlines. Cell 184:245970–84
    [Google Scholar]
  225. 225.
    Maguire MP, Reiss RW. 1996. The coupling of crossing over and synapsis in maize inversions. Genetica 98:263–72
    [Google Scholar]
  226. 226.
    Manhart CM, Alani E. 2016. Roles for mismatch repair family proteins in promoting meiotic crossing over. DNA Repair 38:84–93
    [Google Scholar]
  227. 227.
    Marko JF, Siggia ED. 1997. Polymer models of meiotic and mitotic chromosomes. Mol. Biol. Cell 8:112217–31
    [Google Scholar]
  228. 228.
    Marsolier-Kergoat MC, Khan MM, Schott J, Zhu X, Llorente B. 2018. Mechanistic view and genetic control of DNA recombination during meiosis. Mol. Cell 70:19–20
    [Google Scholar]
  229. 229.
    Martinez-Garcia M, Schubert V, Osman K, Darbyshire A, Sanchez-Moran E, Franklin FCH. 2018. TOPII and chromosome movement help remove interlocks between entangled chromosomes during meiosis. J. Cell Biol. 217:124070–79
    [Google Scholar]
  230. 230.
    Martini E, Borde V, Legendre M, Audic S, Regnault B et al. 2011. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways. PLOS Genet 7:9e1002305
    [Google Scholar]
  231. 231.
    Martini E, Diaz RL, Hunter N, Keeney S. 2006. Crossover homeostasis in yeast meiosis. Cell 126:2285–95
    [Google Scholar]
  232. 232.
    Mazur AK, Gladyshev E. 2023. C-DNA may facilitate homologous DNA pairing. Trends Genet 39:7575–85
    [Google Scholar]
  233. 233.
    McDonald MJ, Rice DP, Desai MM. 2016. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 531:7593233–36
    [Google Scholar]
  234. 234.
    Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. 2015. The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66:297–327
    [Google Scholar]
  235. 235.
    Mhaskar AN, Koornneef L, Zelensky AN, Houtsmuller AB, Baarends WM. 2021. High resolution view on the regulation of recombinase accumulation in mammalian meiosis. . Front. Cell Dev. Biol. 9:672191
    [Google Scholar]
  236. 236.
    Mirny L, Slutsky M, Wunderlich Z, Tafvizi A, Leith J, Kosmrlj A. 2009. How a protein searches for its site on DNA: the mechanism of facilitated diffusion. J. Phys. A Math. Theor. 42:434013
    [Google Scholar]
  237. 237.
    Mitchison TJ. 2020. Beyond Langmuir: surface-bound macromolecule condensates. Mol. Biol. Cell 31:232502–8
    [Google Scholar]
  238. 238.
    Miyoshi T, Ito M, Kugou K, Yamada S, Furuichi M et al. 2012. A central coupler for recombination initiation linking chromosome architecture to S phase checkpoint. Mol. Cell 47:5722–33
    [Google Scholar]
  239. 239.
    Mizuuchi K, Vecchiarelli AG. 2018. Mechanistic insights of the Min oscillator via cell-free reconstitution and imaging. Phys. Biol. 15:3031001
    [Google Scholar]
  240. 240.
    Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B. 2002. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J. Cell Sci. 115:1611–22
    [Google Scholar]
  241. 241.
    Moens PB, Marcon E, Shore JS, Kochakpour N, Spyropoulos B. 2007. Initiation and resolution of interhomolog connections: crossover and non-crossover sites along mouse synaptonemal complexes. J. Cell Sci. 120:61017–27
    [Google Scholar]
  242. 242.
    Moens PB, Pearlman RE. 1988. Chromatin organization at meiosis. Bioessays 9:151–53
    [Google Scholar]
  243. 243.
    Mora-Bermúdez F, Gerlich D, Ellenberg J. 2007. Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nat. Cell Biol. 9:7822–31
    [Google Scholar]
  244. 244.
    Morgan C, Fozard JA, Hartley M, Henderson IR, Bomblies K, Howard M. 2021. Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis. Nat. Commun. 12:14674
    [Google Scholar]
  245. 245.
    Morgan C, Nayak A, Hosoya N, Smith GR, Lambing C. 2023. Meiotic chromosome organization and its role in recombination and cancer. Curr. Top. Dev. Biol. 151:91–126
    [Google Scholar]
  246. 246.
    Morgan C, White MA, Franklin FCH, Zickler D, Kleckner N, Bomblies K. 2021. Evolution of crossover interference enables stable autopolyploidy by ensuring pairwise partner connections in Arabidopsis arenosa. Curr. Biol. 31:214713–26
    [Google Scholar]
  247. 247.
    Morgan CH, Zhang H, Bomblies K. 2017. Are the effects of elevated temperature on meiotic recombination and thermotolerance linked via the axis and synaptonemal complex?. Philos. Trans. R. Soc. B 372:173620160470
    [Google Scholar]
  248. 248.
    Mu X, Murakami H, Mohibullah N, Keeney S. 2020. Chromosome-autonomous feedback down-regulates meiotic DNA break competence upon synaptonemal complex formation. Genes Dev 34:23–241605–18
    [Google Scholar]
  249. 249.
    Muller HJ. 1916. The mechanism of crossing-over. I–IV Am. Nat. 50:193–434
    [Google Scholar]
  250. 250.
    Murakami H, Keeney S. 2008. Regulating the formation of DNA double-strand breaks in meiosis. Genes Dev 22:3286–92
    [Google Scholar]
  251. 251.
    Murakami H, Keeney S. 2014. DDK links replication and recombination in meiosis. Cell Cycle 13:233621–22
    [Google Scholar]
  252. 252.
    Murakami H, Mu X, Keeney S. 2021. How do small chromosomes know they are small? Maximizing meiotic break formation on the shortest yeast chromosomes. Curr. Genet. 67:3431–37
    [Google Scholar]
  253. 253.
    Neale MJ, Pan J, Keeney S. 2005. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:70531053–57
    [Google Scholar]
  254. 254.
    Nebel BR, Coulon EM. 1962. The fine structure of chromosomes in pigeon spermatocytes. Chromosoma 13:272–91
    [Google Scholar]
  255. 255.
    Nguyen H, Labella S, Silva N, Jantsch V, Zetka M. 2018.. C. elegans ZHP-4 is required at multiple distinct steps in the formation of crossovers and their transition to segregation competent chiasmata. PLOS Genet. 14:10e1007776
    [Google Scholar]
  256. 256.
    Ninan CA. 1958. Studies on the cytology and phylogeny of the Pteridophytes. VI. Observations on the Ophioglossaceae. Cytologia 23:291–316
    [Google Scholar]
  257. 257.
    Nora EP, Dekker J, Heard E. 2013. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?. Bioessays 35:9818–28
    [Google Scholar]
  258. 258.
    Novak I, Wang H, Revenkova E, Jessberger R, Scherthan H, Höög C. 2008. Cohesin Smc1β determines meiotic chromatin axis loop organization. J. Cell Biol. 180:183–90
    [Google Scholar]
  259. 259.
    Nozaki T, Chang F, Weiner B, Kleckner N. 2021. High temporal resolution 3D live-cell imaging of budding yeast meiosis defines discontinuous actin/telomere-mediated chromosome motion, correlated nuclear envelope deformation and actin filament dynamics. Front. Cell Dev. Biol. 9:687132
    [Google Scholar]
  260. 260.
    Oh SD, Lao JP, Hwang PYH, Taylor AF, Smith GR, Hunter N. 2007. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130:2259–72
    [Google Scholar]
  261. 261.
    Oh SD, Lao JP, Taylor AF, Smith GR, Hunter N. 2008. RecQ helicase, Sgs1, and XPF family endonuclease, Mus81-Mms4, resolve aberrant joint molecules during meiotic recombination. Mol. Cell 31:3324–36
    [Google Scholar]
  262. 262.
    Ohta K, Wu TC, Lichten M, Shibata T. 1999. Competitive inactivation of a double-strand DNA break site involves parallel suppression of meiosis-induced changes in chromatin configuration. Nucleic Acids Res. 27:102175–80
    [Google Scholar]
  263. 263.
    Oliver-Bonet M, Campillo M, Turek PJ, Ko E, Martin RH. 2007. Analysis of replication protein A (RPA) in human spermatogenesis. Mol. Hum. Reprod. 13:837–44
    [Google Scholar]
  264. 264.
    Oomen ME, Hedger AK, Watts JK, Dekker J. 2020. Detecting chromatin interactions between and along sister chromatids with SisterC. Nat. Methods 17:101002–9
    [Google Scholar]
  265. 265.
    Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ et al. 2021. Distal bias of meiotic crossovers in hexaploid bread wheat reflects spatio-temporal asymmetry of the meiotic program. Front. Plant Sci. 12:631323
    [Google Scholar]
  266. 266.
    Osman K, Sanchez-Moran E, Higgins JD, Jones GH, Franklin FC. 2006. Chromosome synapsis in Arabidopsis: analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex. Chromosoma 115:3212–19
    [Google Scholar]
  267. 267.
    Osman K, Sanchez-Moran E, Mann SC, Jones GH, Franklin FC. 2009. Replication protein A (AtRPA1a) is required for class I crossover formation but is dispensable for meiotic DNA break repair. EMBO J. 28:4394–404
    [Google Scholar]
  268. 268.
    Ottolini CS, Newnham L, Capalbo A, Natesan SA, Joshi HA et al. 2015. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47:7727–35
    [Google Scholar]
  269. 269.
    Owens S, Tang S, Hunter N. 2018. Monitoring recombination during meiosis in budding yeast. Methods Enzymol 601:275–307
    [Google Scholar]
  270. 270.
    Padmore R, Cao L, Kleckner N. 1991. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66:61239–56
    [Google Scholar]
  271. 271.
    Page SL, Hawley RS. 2001. c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev 15:233130–43
    [Google Scholar]
  272. 272.
    Paigen K, Petkov PM. 2018. PRDM9 and its role in genetic recombination. Trends Genet 34:4291–300
    [Google Scholar]
  273. 273.
    Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG et al. 2011. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144:5719–31
    [Google Scholar]
  274. 274.
    Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A et al. 2011. Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 146:3372–83
    [Google Scholar]
  275. 275.
    Paouneskou D, Jantsch V. 2019. Meiotic chromosome movement: What's lamin got to do with it?. Nucleus 10:11–6
    [Google Scholar]
  276. 276.
    Pazhayam NM, Turcotte CA, Sekelsky J. 2021. Meiotic crossover patterning. Front. Cell Dev. Biol. 9:681123
    [Google Scholar]
  277. 277.
    Petkov PM, Broman KW, Szatkiewicz JP, Paigen K. 2007. Crossover interference underlies sex differences in recombination rates. Trends Genet 23:11539–42
    [Google Scholar]
  278. 278.
    Piazza A, Heyer WD. 2018. Multi-invasion-induced rearrangements as a pathway for physiological and pathological recombination. Bioessays 40:5e1700249
    [Google Scholar]
  279. 279.
    Ponting CP. 2011. What are the genomic drivers of the rapid evolution of PRDM9?. Trends Genet 27:5165–71
    [Google Scholar]
  280. 280.
    Pratto F, Brick K, Cheng G, Lam KG, Cloutier JM et al. 2021. Meiotic recombination mirrors patterns of germline replication in mice and humans. Cell 184:164251–67
    [Google Scholar]
  281. 281.
    Previato de Almeida L, Evatt JM, Chuong HH, Kurdzo EL, Eyster CA et al. 2019. Shugoshin protects centromere pairing and promotes segregation of nonexchange partner chromosomes in meiosis. PNAS 116:199417–22
    [Google Scholar]
  282. 282.
    Prieler S, Chen D, Huang L, Mayrhofer E, Zsótér S et al. 2021. Spo11 generates gaps through concerted cuts at sites of topological stress. Nature 594:7864577–82
    [Google Scholar]
  283. 283.
    Prince JP, Martinez-Perez E. 2022. Functions and regulation of meiotic HORMA-domain proteins. Genes 13:5777
    [Google Scholar]
  284. 284.
    Protacio RU, Davidson MK, Wahls WP. 2022. Adaptive control of the meiotic recombination landscape by DNA site-dependent hotspots with implications for evolution. Front. Genet. 13:947572
    [Google Scholar]
  285. 285.
    Pyatnitskaya A, Andreani J, Guérois R, De Muyt A, Borde V. 2022. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly. Genes Dev 36:1–253–69
    [Google Scholar]
  286. 286.
    Pyatnitskaya A, Borde V, De Muyt A. 2019. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 128:3181–98
    [Google Scholar]
  287. 287.
    Qiao H, Chen JK, Reynolds A, Höög C, Paddy M, Hunter N. 2012. Interplay between synaptonemal complex, homologous recombination, and centromeres during mammalian meiosis. PLOS Genet. 8:6e1002790
    [Google Scholar]
  288. 288.
    Qiao H, Rao HBDP, Yang Y, Fong JH, Cloutier JM et al. 2014. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat. Genet. 46:2194–99
    [Google Scholar]
  289. 289.
    Rao HBDP, Qiao H, Bhatt SK, Bailey LR, Tran HD et al. 2017. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 355:6323403–7
    [Google Scholar]
  290. 290.
    Rao HBDP, Sato T, Challa K, Fujita Y, Shinohara M, Shinohara A. 2021. Phosphorylation of luminal region of the SUN-domain protein Mps3 promotes nuclear envelope localization during meiosis. eLife 10:e63119
    [Google Scholar]
  291. 291.
    Rasmussen SW. 1977. Meiosis in Bombyx mori females. Philos. Trans. R. Soc. B 277:955343–50
    [Google Scholar]
  292. 292.
    Rasmussen SW. 1986. Initiation of synapsis and interlocking of chromosomes during zygotene in Bombyx spermatocytes. Carlsberg Res. Commun. 1:6401–32
    [Google Scholar]
  293. 293.
    Rasmussen SW, Holm PB. 1978. Human meiosis II. Chromosome pairing and recombination nodules in human spermatocytes. Carlsberg Res. Commun. 43:5275–327
    [Google Scholar]
  294. 294.
    Reitz D, Grubb J, Bishop DK. 2019. A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability. PLOS Genet. 15:12e1008217
    [Google Scholar]
  295. 295.
    Reynolds A, Qiao H, Yang Y, Chen JK, Jackson N et al. 2013. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat. Genet. 45:3269–78
    [Google Scholar]
  296. 296.
    Rhoades N, Nguyen T-S, Witz G, Cecere G, Hammond T et al. 2021. Recombination-independent recognition of DNA homology for meiotic silencing in Neurospora crassa. PNAS 118:33e2108664118
    [Google Scholar]
  297. 297.
    Robert T, Vrielynck N, Mézard C, de Massy B, Grelon M. 2016. A new light on the meiotic DSB catalytic complex. Semin. Cell Dev. Biol. 54:165–76
    [Google Scholar]
  298. 298.
    Rog O, Dernburg AF. 2013. Chromosome pairing and synapsis during Caenorhabditis elegans meiosis. Curr. Opin. Cell Biol. 25:3349–56
    [Google Scholar]
  299. 299.
    Rog O, Köhler S, Dernburg AF. 2017. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 6:e21455
    [Google Scholar]
  300. 300.
    Rousová D, Nivsarkar V, Altmannova V, Raina VB, Funk SK et al. 2021. Novel mechanistic insights into the role of Mer2 as the keystone of meiotic DNA break formation. eLife 10:e72330
    [Google Scholar]
  301. 301.
    Rubin T, Macaisne N, Vallés AM, Guilleman C, Gaugué I et al. 2022. Premeiotic pairing of homologous chromosomes during Drosophila male meiosis. PNAS 119:47e2207660119
    [Google Scholar]
  302. 302.
    Saitoh Y, Laemmli UK. 1994. Metaphase chromosome structure: Bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76:4609–22
    [Google Scholar]
  303. 303.
    Sakuno T, Tashiro S, Tanizawa H, Iwasaki O, Ding D-Q et al. 2022. Rec8 cohesin-mediated axis-loop chromatin architecture is required for meiotic recombination. Nucleic Acids Res. 50:73799–816
    [Google Scholar]
  304. 304.
    Sandhu R, Monge Neria F, Monge Neria J, Chen X, Hollingsworth NM, Börner GV 2020. DNA helicase Mph1FANCM ensures meiotic recombination between parental chromosomes by dissociating precocious displacement loops. Dev. Cell 53:4458–72.e5
    [Google Scholar]
  305. 305.
    Sarens M, Copenhaver GP, De Storme N. 2021. The role of chromatid interference in determining meiotic crossover patterns. Front. Plant Sci. 12:656691
    [Google Scholar]
  306. 306.
    Schalbetter SA, Fudenberg G, Baxter J, Pollard KS, Neale MJ. 2019. Principles of meiotic chromosome assembly revealed in S. cerevisiae. Nat. Commun. 10:14795
    [Google Scholar]
  307. 307.
    Scherthan H. 2001. A bouquet makes ends meet. Nat. Rev. Mol. Cell Biol. 2:8621–27
    [Google Scholar]
  308. 308.
    Scherthan H, Schöfisch K, Dell T, Illner D. 2014. Contrasting behavior of heterochromatic and euchromatic chromosome portions and pericentric genome separation in pre-bouquet spermatocytes of hybrid mice. Chromosoma 123:6609–24
    [Google Scholar]
  309. 309.
    Scherthan H, Sfeir A, de Lange T. 2011. Rap1-independent telomere attachment and bouquet formation in mammalian meiosis. Chromosoma 120:2151–57
    [Google Scholar]
  310. 310.
    Scherthan H, Wang H, Adelfalk C, White EJ, Cowan C et al. 2007. Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. PNAS 104:4316934–39
    [Google Scholar]
  311. 311.
    Schield DR, Pasquesi GIM, Perry BW, Adams RH, Nikolakis ZL et al. 2020. Snake recombination landscapes are concentrated in functional regions despite PRDM9. Mol. Biol. Evol. 37:51272–94
    [Google Scholar]
  312. 312.
    Schlecht HB, Lichten M, Goldman AS. 2004. Compartmentalization of the yeast meiotic nucleus revealed by analysis of ectopic recombination. Genetics 168:31189–203
    [Google Scholar]
  313. 313.
    Senmatsu S, Asada R, Oda A, Hoffman CS, Ohta K, Hirota K. 2021. lncRNA transcription induces meiotic recombination through chromatin remodeling in fission yeast. Commun. Biol. 4:1295
    [Google Scholar]
  314. 314.
    Serra H, Lambing C, Griffin CH, Topp SD, Nageswaran DC et al. 2018. Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. PNAS 115:102437–42
    [Google Scholar]
  315. 315.
    Serrentino ME, Chaplais E, Sommermeyer V, Borde V. 2013. Differential association of the conserved SUMO ligase Zip3 with meiotic double-strand break sites reveals regional variations in the outcome of meiotic recombination. PLOS Genet. 9:4e1003416
    [Google Scholar]
  316. 316.
    Shinohara M, Hayashihara K, Grubb JT, Bishop DK, Shinohara A. 2015. DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex. . J. Cell Sci. 128:81494–506
    [Google Scholar]
  317. 317.
    Shinohara M, Oh SD, Hunter N, Shinohara A. 2008. Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat. Genet. 40:3299–309
    [Google Scholar]
  318. 318.
    Shinohara M, Sakai K, Shinohara A, Bishop DK. 2003. Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163:41273–86
    [Google Scholar]
  319. 319.
    Sims J, Rabanal FA, Elgert C, von Haeseler A, Schlögelhofer P. 2021. It is just a matter of time: balancing homologous recombination and non-homologous end joining at the rDNA locus during meiosis. Front. Plant Sci. 12:773052
    [Google Scholar]
  320. 320.
    Singh DK, Gamboa RS, Singh AK, Walkemeier B, Van Leene J et al. 2023. The FANCC–FANCE–FANCF complex is evolutionarily conserved and regulates meiotic recombination. Nucleic Acids Res. 51:62516–28
    [Google Scholar]
  321. 321.
    Singhal S, Leffler EM, Sannareddy K, Turner I, Venn O et al. 2015. Stable recombination hotspots in birds. Science 350:6263928–32
    [Google Scholar]
  322. 322.
    Slotman JA, Paul MW, Carofiglio F, de Gruiter HM, Vergroesen T et al. 2020. Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase. PLOS Genet 16:6e1008595
    [Google Scholar]
  323. 323.
    Song M, Zhai B, Yang X, Tan T, Wang Y et al. 2021 Interplay between Pds5 and Rec8 in regulating chromosome axis length and crossover frequency. Sci. Adv. 7:11eabe7920
    [Google Scholar]
  324. 324.
    Spruce C, Dlamini S, Ananda G, Bronkema N, Tian H et al. 2020. HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots. Genes Dev 34:5–6398–412
    [Google Scholar]
  325. 325.
    Storlazzi A, Gargano S, Ruprich-Robert G, Falque M, David M et al. 2010. Recombination proteins mediate meiotic spatial chromosome organization and pairing. Cell 141:194–106
    [Google Scholar]
  326. 326.
    Storlazzi A, Xu L, Schwacha A, Kleckner N. 1996. Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. PNAS 93:179043–48
    [Google Scholar]
  327. 327.
    Subramanian VV, Zhu X, Markowitz TE, Vale-Silva LA, San-Segundo PA et al. 2019. Persistent DNA-break potential near telomeres increases initiation of meiotic recombination on short chromosomes. Nat. Commun. 10:1970
    [Google Scholar]
  328. 328.
    Sun X, Huang L, Markowitz TE, Blitzblau HG, Chen D et al. 2015. Transcription dynamically patterns the meiotic chromosome-axis interface. eLife 4:e07424
    [Google Scholar]
  329. 329.
    Taagen E, Bogdanove AJ, Sorrells ME. 2020. Counting on crossovers: controlled recombination for plant breeding. Trends Plant Sci. 25:5455–65
    [Google Scholar]
  330. 330.
    Taagen E, Jordan K, Akhunov E, Sorrells ME, Jannink JL. 2022. If it ain't broke, don't fix it: evaluating the effect of increased recombination on response to selection for wheat breeding. G3 12:12jkac291
    [Google Scholar]
  331. 331.
    Tan R, Lam AJ, Tan T, Han J, Nowakowski DW et al. 2019. Microtubules gate tau condensation to spatially regulate microtubule functions. Nat. Cell Biol. 21:91078–85
    [Google Scholar]
  332. 332.
    Tang S, Wu MKY, Zhang R, Hunter N. 2015. Pervasive and essential roles of the Top3-Rmi1 decatenase orchestrate recombination and facilitate chromosome segregation in meiosis. Mol. Cell 57:4607–21
    [Google Scholar]
  333. 333.
    Tease C, Jones GH. 1995. Do chiasmata disappear? An examination of whether closely spaced chiasmata are liable to reduction or loss. Chromosome Res. 3:162–68
    [Google Scholar]
  334. 334.
    Tessé S, Bourbon HM, Debuchy R, Budin K, Dubois E et al. 2017. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction. Genes Dev 31:181880–93
    [Google Scholar]
  335. 335.
    Tessé S, Storlazzi A, Kleckner N, Gargano S, Zickler D. 2003. Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. PNAS 100:2212865–70
    [Google Scholar]
  336. 336.
    Thacker D, Mohibullah N, Zhu X, Keeney S. 2014. Homologue engagement controls meiotic DNA break number and distribution. Nature 510:7504241–46
    [Google Scholar]
  337. 337.
    Tian H, Billings T, Petkov PM. 2021. EWSR1 affects PRDM9-dependent histone 3 methylation and provides a link between recombination hotspots and the chromosome axis protein REC8. Mol. Biol. Cell 32:11–14
    [Google Scholar]
  338. 338.
    Tock AJ, Henderson IR. 2018. Hotspots for initiation of meiotic recombination. Front. Genet. 9:521
    [Google Scholar]
  339. 339.
    Tsubouchi H. 2023. The Hop2-Mnd1 complex and its regulation of homologous recombination. Biomolecules 13:4662
    [Google Scholar]
  340. 340.
    Tsubouchi H, Argunhan B, Ito K, Takahashi M, Iwasaki H. 2020. Two auxiliary factors promote Dmc1-driven DNA strand exchange via stepwise mechanisms. PNAS 117:2212062–70
    [Google Scholar]
  341. 341.
    Tsubouchi H, Argunhan B, Tsubouchi T. 2016. Shaping meiotic chromosomes with SUMO: A feedback loop controls the assembly of the synaptonemal complex in budding yeast. Microb. Cell 3:3126–28
    [Google Scholar]
  342. 342.
    Tsubouchi T, Zhao H, Roeder GS. 2006. The meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2. Dev. Cell 10:6809–19
    [Google Scholar]
  343. 343.
    Uanschou C, Ronceret A, Von Harder M, De Muyt A, Vezon D et al. 2013. Sufficient amounts of functional HOP2/MND1 complex promote interhomolog DNA repair but are dispensable for intersister DNA repair during meiosis in Arabidopsis. Plant Cell 25:124924–40
    [Google Scholar]
  344. 344.
    Underwood CJ, Mercier R. 2022. Engineering apomixis: clonal seeds approaching the fields. Annu. Rev. Plant Biol. 73:201–25
    [Google Scholar]
  345. 345.
    Ur SN, Corbett KD. 2021. Architecture and dynamics of meiotic chromosomes. Annu. Rev. Genet. 55:497–526
    [Google Scholar]
  346. 346.
    Vasnier C, de Muyt A, Zhang L, Tessé S, Kleckner NE et al. 2014. Absence of SUN-domain protein Slp1 blocks karyogamy and switches meiotic recombination and synapsis from homologs to sister chromatids. PNAS 111:38E4015–23
    [Google Scholar]
  347. 347.
    Veller C, Kleckner N, Nowak MA. 2019. A rigorous measure of genome-wide genetic shuffling that takes into account crossover positions and Mendel's second law. PNAS 116:51659–68
    [Google Scholar]
  348. 348.
    Veller C, Wang S, Zickler D, Zhang L, Kleckner N. 2022. Limitations of gamete sequencing for crossover analysis. Nature 606:7913E1–3
    [Google Scholar]
  349. 349.
    Vernekar DV, Reginato G, Adam C, Ranjha L, Dingli F et al. 2021. The Pif1 helicase is actively inhibited during meiotic recombination which restrains gene conversion tract length. Nucleic Acids Res. 49:84522–33
    [Google Scholar]
  350. 350.
    Viera A, Santos JL, Parra MT, Calvente A, Gómez R et al. 2010. Incomplete synapsis and chiasma localization: the chicken or the egg?. Cytogenet. Genome Res. 128:1–3139–51
    [Google Scholar]
  351. 351.
    Vincenten N, Kuhl L-M, Lam I, Oke A, Kerr ARW et al. 2015. The kinetochore prevents centromere-proximal crossover recombination during meiosis. eLife 4:e10850
    [Google Scholar]
  352. 352.
    von Diezmann L, Rog O 2021. Let's get physical—mechanisms of crossover interference. J. Cell Sci. 134:10jcs255745
    [Google Scholar]
  353. 353.
    von Wettstein D, Rasmussen SW, Holm PB. 1984. The synaptonemal complex in genetic segregation. Annu. Rev. Genet. 18:331–413
    [Google Scholar]
  354. 354.
    Vrielynck N, Schneider K, Rodriguez M, Sims J, Chambon A et al. 2021. Conservation and divergence of meiotic DNA double strand break forming mechanisms in Arabidopsis thaliana. Nucleic Acids Res. 49:179821–35
    [Google Scholar]
  355. 355.
    Walther N, Hossain MJ, Politi AZ, Koch B, Kueblbeck M et al. 2018. A quantitative map of human condensins provides new insights into mitotic chromosome architecture. J. Cell Biol. 217:72309–28
    [Google Scholar]
  356. 356.
    Wang CR, Carlton PM, Golubovskaya IN, Cande WZ. 2009. Interlock formation and coiling of meiotic chromosome axes during synapsis. Genetics 183:3905–15
    [Google Scholar]
  357. 357.
    Wang S, Hassold T, Hunt P, White MA, Zickler D et al. 2017. Inefficient crossover maturation underlies elevated aneuploidy in human female meiosis. Cell 168:6977–89
    [Google Scholar]
  358. 358.
    Wang S, Kleckner N, Zhang L. 2017. Crossover maturation inefficiency and aneuploidy in human female meiosis. Cell Cycle 16:111017–19
    [Google Scholar]
  359. 359.
    Wang S, Veller C, Sun F, Ruiz-Herrera A, Shang Y et al. 2019. Per-nucleus crossover covariation and implications for evolution. Cell 177:2326–38
    [Google Scholar]
  360. 360.
    Wang S, Zickler D, Kleckner N, Zhang L. 2015. Meiotic crossover patterns: obligatory crossover, interference and homeostasis in a single process. Cell Cycle 14:3305–14
    [Google Scholar]
  361. 361.
    Wang Y, Li S-Y, Wang Y-Z, He Y. 2023. ZmASY1 interacts with ZmPRD3 and is crucial for meiotic double-strand break formation in maize. New Phytol. 237:2454–70
    [Google Scholar]
  362. 362.
    Wang Y, Zhai B, Tan T, Yang X, Zhang J et al. 2021. ESA1 regulates meiotic chromosome axis and crossover frequency via acetylating histone H4. Nucleic Acids Res. 49:169353–73
    [Google Scholar]
  363. 363.
    Wartosch L, Schindler K, Schuh M, Gruhn JR, Hoffmann ER et al. 2021. Origins and mechanisms leading to aneuploidy in human eggs. Prenat. Diagn. 41:5620–30
    [Google Scholar]
  364. 364.
    West AM, Rosenberg SC, Ur SN, Lehmer MK, Ye Q et al. 2019. A conserved filamentous assembly underlies the structure of the meiotic chromosome axis. eLife 8:e40372
    [Google Scholar]
  365. 365.
    Wilkins AS, Holliday R. 2009. The evolution of meiosis from mitosis. Genetics 181:13–12
    [Google Scholar]
  366. 366.
    Woglar A, Jantsch V. 2014. Chromosome movement in meiosis I prophase of Caenorhabditis elegans. Chromosoma 123:1–215–24
    [Google Scholar]
  367. 367.
    Woglar A, Villeneuve AM. 2018. Dynamic architecture of DNA repair complexes and the synaptonemal complex at sites of meiotic recombination. Cell 173:71678–91
    [Google Scholar]
  368. 368.
    Woglar A, Yamaya K, Roelens B, Boettiger A, Köhler S, Villeneuve AM. 2020. Quantitative cytogenetics reveals molecular stoichiometry and longitudinal organization of meiotic chromosome axes and loops. PLOS Biol. 18:8e3000817
    [Google Scholar]
  369. 369.
    Wooldridge LK, Dumont BL. 2023. Rapid evolution of the fine-scale recombination landscape in wild house mouse (Mus musculus) populations. Mol. Biol. Evol. 40:1msac267
    [Google Scholar]
  370. 370.
    Wu FL, Strand AI, Cox LA, Ober C, Wall JD et al. 2020. A comparison of humans and baboons suggests germline mutation rates do not track cell divisions. PLOS Biol 18:8e3000838
    [Google Scholar]
  371. 371.
    Wynne DJ, Rog O, Carlton PM, Dernburg AF 2012. Dynein-dependent processive chromosome motions promote homologous pairing in C. elegans meiosis. J. Cell Biol. 196:147–64
    [Google Scholar]
  372. 372.
    Xaver M, Huang L, Chen D, Klein F. 2013. Smc5/6-Mms21 prevents and eliminates inappropriate recombination intermediates in meiosis. PLOS Genet 9:12e1004067
    [Google Scholar]
  373. 373.
    Xu L, Kleckner N. 1995. Sequence non-specific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast. EMBO J. 14:205115–28
    [Google Scholar]
  374. 374.
    Yadav VK, Claeys Bouuaert C. 2021. Mechanism and control of meiotic DNA double-strand break formation in S. cerevisiae. Front. . Cell Dev. Biol. 9:642737
    [Google Scholar]
  375. 375.
    Yamada S, Hinch AG, Kamido H, Zhang Y, Edelmann W, Keeney S. 2020. Molecular structures and mechanisms of DNA break processing in mouse meiosis. Genes Dev. 34:11–12806–18
    [Google Scholar]
  376. 376.
    Yancey-Wrona JE, Camerini-Otero RD. 1995. The search for DNA homology does not limit stable homologous pairing promoted by RecA protein. Curr. Biol. 5:101149–58
    [Google Scholar]
  377. 377.
    Yang D, Boyer B, Prévost C, Danilowicz C, Prentiss M. 2015. Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure. Nucleic Acids Res. 43:2110251–63
    [Google Scholar]
  378. 378.
    Yang X, Song M, Wang Y, Tan T, Tian Z et al. 2022. The ubiquitin–proteasome system regulates meiotic chromosome organization. PNAS 119:17e2106902119
    [Google Scholar]
  379. 379.
    Yang X, Zhai B, Wang S, Kong X, Tan Y et al. 2021. RNA-DNA hybrids regulate meiotic recombination. Cell Rep. 37:10110097
    [Google Scholar]
  380. 380.
    Yokoo R, Zawadzki KA, Nabeshima K, Drake M, Arur S, Villeneuve AM. 2012. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell 149:175–87
    [Google Scholar]
  381. 381.
    Yoon S-W, Lee M-S, Xaver M, Zhang L, Hong S-G et al. 2016. Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure. Nucleic Acids Res. 44:199296–314
    [Google Scholar]
  382. 382.
    Yoshimura SH, Hirano T. 2016. HEAT repeats—versatile arrays of amphiphilic helices working in crowded environments?. J. Cell Sci. 129:213963–70
    [Google Scholar]
  383. 383.
    Yun H, Kim K. 2019. Ku complex suppresses recombination in the absence of MRX activity during budding yeast meiosis. BMB Rep. 52:10607–12
    [Google Scholar]
  384. 384.
    Zakharyevich K, Tang S, Ma Y, Hunter N. 2012. Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase. Cell 149:2334–47
    [Google Scholar]
  385. 385.
    Zelazowski MJ, Cole F. 2016. X marks the spot: PRDM9 rescues hybrid sterility by finding hidden treasure in the genome. Nat. Struct. Mol. Biol. 23:4267–69
    [Google Scholar]
  386. 386.
    Zelazowski MJ, Sandoval M, Paniker L, Hamilton HM, Han J et al. 2017. Age-dependent alterations in meiotic recombination cause chromosome segregation errors in spermatocytes. Cell 171:3601–14
    [Google Scholar]
  387. 387.
    Zetka M, Paouneskou D, Jantsch V. 2020. The nuclear envelope, a meiotic jack-of-all-trades. Curr. Opin. Cell Biol. 64:34–42
    [Google Scholar]
  388. 388.
    Zhang L, Espagne E, de Muyt A, Zickler D, Kleckner NE. 2014. Interference-mediated synaptonemal complex formation with embedded crossover designation. PNAS 111:47E5059–68
    [Google Scholar]
  389. 389.
    Zhang L, Kim KP, Kleckner NE, Storlazzi A. 2011. Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. PNAS 108:5020036–41
    [Google Scholar]
  390. 390.
    Zhang L, Köhler S, Rillo-Bohn R, Dernburg AF. 2018. A compartmentalized signaling network mediates crossover control in meiosis. eLife 7:e30789
    [Google Scholar]
  391. 391.
    Zhang L, Liang Z, Hutchinson J, Kleckner N. 2014. Crossover patterning by the beam-film model: analysis and implications. PLOS Genet. 10:1e1004042
    [Google Scholar]
  392. 392.
    Zhang L, Wang S, Yin S, Hong S, Kim KP, Kleckner N. 2014. Topoisomerase II mediates meiotic crossover interference. Nature 511:7511551–56
    [Google Scholar]
  393. 393.
    Zhang Z, Xie S, Wang R, Guo S, Zhao Q et al. 2020. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J. Cell Biol. 219:5e201910086
    [Google Scholar]
  394. 394.
    Zickler D. 1977. Development of the synaptonemal complex and the “recombination nodules” during meiotic prophase in the seven bivalents of the fungus Sordaria macrospora Auersw. Chromosoma 61:4289–316
    [Google Scholar]
  395. 395.
    Zickler D. 2006. From early homologue recognition to synaptonemal complex formation. Chromosoma 115:3158–74
    [Google Scholar]
  396. 396.
    Zickler D, Kleckner N. 1998. The leptotene-zygotene transition of meiosis. Annu. Rev. Genet. 32:619–97
    [Google Scholar]
  397. 397.
    Zickler D, Kleckner N. 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33:603–754
    [Google Scholar]
  398. 398.
    Zickler D, Kleckner N. 2015. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7:6a016626
    [Google Scholar]
  399. 399.
    Zwettler FU, Spindler M-C, Reinhard S, Klein T, Kurz A et al. 2020. Tracking down the molecular architecture of the synaptonemal complex by expansion microscopy. Nat. Commun. 11:13222
    [Google Scholar]
/content/journals/10.1146/annurev-genet-061323-044915
Loading
/content/journals/10.1146/annurev-genet-061323-044915
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error