1932

Abstract

The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-020235
2021-11-23
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-020235.html?itemId=/content/journals/10.1146/annurev-genet-071719-020235&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Acquaviva L, Boekhout M, Karasu ME, Brick K, Pratto F et al. 2020. Ensuring meiotic DNA break formation in the mouse pseudoautosomal region. Nature 582:426–31
    [Google Scholar]
  2. 2. 
    Acquaviva L, Székvölgyi L, Dichtl B, Dichtl BS, de La Roche Saint André C et al. 2013. The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 339:215–18
    [Google Scholar]
  3. 3. 
    Adelman CA, Petrini JH. 2008. ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over. PLOS Genet 4:e1000042
    [Google Scholar]
  4. 4. 
    Ahuja JS, Sandhu R, Mainpal R, Lawson C, Henley H et al. 2017. Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science 355:408–11
    [Google Scholar]
  5. 5. 
    Albini SM, Jones GH. 1984. Synaptonemal complex-associated centromeres and recombination nodules in plant meiocytes prepared by an improved surface-spreading technique. Exp. Cell Res. 155:588–92
    [Google Scholar]
  6. 6. 
    Aragón L. 2018. The Smc5/6 complex: new and old functions of the enigmatic long-distance relative. Annu. Rev. Genet. 52:89–107
    [Google Scholar]
  7. 7. 
    Aravind L, Koonin EV. 1998. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem. Sci. 23:284–86
    [Google Scholar]
  8. 8. 
    Arora K, Corbett KD. 2019. The conserved XPF:ERCC1-like Zip2:Spo16 complex controls meiotic crossover formation through structure-specific DNA binding. Nucleic Acids Res 47:2365–76
    [Google Scholar]
  9. 9. 
    Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C et al. 2010. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–40
    [Google Scholar]
  10. 10. 
    Beckouet F, Hu B, Roig MB, Sutani T, Komata M et al. 2010. An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion. Mol. Cell 39:689–99
    [Google Scholar]
  11. 11. 
    Bhagwat NR, Owens SN, Ito M, Boinapalli JV, Poa P et al. 2021. SUMO is a pervasive regulator of meiosis. eLife 10:e57720
    [Google Scholar]
  12. 12. 
    Biswas U, Hempel K, Llano E, Pendas A, Jessberger R 2016. Distinct roles of meiosis-specific cohesin complexes in mammalian spermatogenesis. PLOS Genet 12:e1006389
    [Google Scholar]
  13. 13. 
    Boekhout M, Karasu ME, Wang J, Acquaviva L, Pratto F et al. 2019. REC114 partner ANKRD31 controls number, timing, and location of meiotic DNA breaks. Mol. Cell 74:1053–68.e8
    [Google Scholar]
  14. 14. 
    Bolcun-Filas E, Costa Y, Speed R, Taggart M, Benavente R et al. 2007. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J. Cell Biol. 176:741–47
    [Google Scholar]
  15. 15. 
    Bolcun-Filas E, Hall E, Speed R, Taggart M, Grey C et al. 2009. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLOS Genet 5:e1000393
    [Google Scholar]
  16. 16. 
    Borde V, Robine N, Lin W, Bonfils S, Geli V, Nicolas A 2009. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28:99–111
    [Google Scholar]
  17. 17. 
    Borges V, Lehane C, Lopez-Serra L, Flynn H, Skehel M et al. 2010. Hos1 deacetylates Smc3 to close the cohesin acetylation cycle. Mol. Cell 39:677–88
    [Google Scholar]
  18. 18. 
    Borner GV, Barot A, Kleckner N. 2008. Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis. PNAS 105:3327–32
    [Google Scholar]
  19. 19. 
    Borner GV, Kleckner N, Hunter N 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45
    [Google Scholar]
  20. 20. 
    Cahoon CK, Yu Z, Wang Y, Guo F, Unruh JR et al. 2017. Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex. PNAS 114:E6857–66
    [Google Scholar]
  21. 21. 
    Callender TL, Laureau R, Wan L, Chen X, Sandhu R et al. 2016. Mek1 down regulates Rad51 activity during yeast meiosis by phosphorylation of Hed1. PLOS Genet 12:e1006226
    [Google Scholar]
  22. 22. 
    Capilla-Pérez L, Durand S, Hurel A, Lian Q, Chambon A et al. 2021. The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis. PNAS 118:e2023613118
    [Google Scholar]
  23. 23. 
    Carballo JA, Johnson AL, Sedgwick SG, Cha RS. 2008. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132:758–70
    [Google Scholar]
  24. 24. 
    Carballo JA, Panizza S, Serrentino ME, Johnson AL, Geymonat M et al. 2013. Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery. PLOS Genet 9:e1003545
    [Google Scholar]
  25. 25. 
    Carpenter AT. 1975. Electron microscopy of meiosis in Drosophila melanogaster females. I. Structure, arrangement, and temporal change of the synaptonemal complex in wild-type. Chromosoma 51:157–82
    [Google Scholar]
  26. 26. 
    Chambon A, West A, Vezon D, Horlow C, De Muyt A et al. 2018. Identification of ASYNAPTIC4, a component of the meiotic chromosome axis. Plant Physiol 178:233–46
    [Google Scholar]
  27. 27. 
    Chelysheva L, Gendrot G, Vezon D, Doutriaux MP, Mercier R, Grelon M. 2007. Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana. PLOS Genet 3:e83
    [Google Scholar]
  28. 28. 
    Chen X, Gaglione R, Leong T, Bednor L, de los Santos T et al. 2018. Mek1 coordinates meiotic progression with DNA break repair by directly phosphorylating and inhibiting the yeast pachytene exit regulator Ndt80. PLOS Genet 14:e1007832
    [Google Scholar]
  29. 29. 
    Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y. 2006. Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69
    [Google Scholar]
  30. 30. 
    Chua PR, Roeder GS. 1998. Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93:349–59
    [Google Scholar]
  31. 31. 
    Chuang C-N, Cheng Y-H, Wang T-F. 2012. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res 40:11416–27
    [Google Scholar]
  32. 32. 
    Claeys Bouuaert C, Pu S, Wang J, Oger C, Daccache D et al. 2021. DNA-driven condensation assembles the meiotic DNA break machinery. Nature 592:144–49
    [Google Scholar]
  33. 33. 
    Clift D, Marston AL. 2011. The role of shugoshin in meiotic chromosome segregation. Cytogenet. Genome Res. 133:234–42
    [Google Scholar]
  34. 34. 
    Cooper TJ, Wardell K, Garcia V, Neale MJ 2014. Homeostatic regulation of meiotic DSB formation by ATM/ATR. Exp. Cell Res. 329:124–31
    [Google Scholar]
  35. 35. 
    Craig JM, Bickmore WA. 1993. Chromosome bands—flavours to savour. Bioessays 15:349–54
    [Google Scholar]
  36. 36. 
    Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM 2019. DNA loop extrusion by human cohesin. Science 366:1338–45
    [Google Scholar]
  37. 37. 
    Davies OR, Maman JD, Pellegrini L. 2012. Structural analysis of the human SYCE2-TEX12 complex provides molecular insights into synaptonemal complex assembly. Open. Biol. 2:120099
    [Google Scholar]
  38. 38. 
    De Muyt A, Pyatnitskaya A, Andreani J, Ranjha L, Ramus C et al. 2018. A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes Dev 32:283–96
    [Google Scholar]
  39. 39. 
    del Mazo J, Gil-Alberdi L. 1986. Multistranded organization of the lateral elements of the synaptonemal complex in the rat and mouse. Cytogenet. Cell Genet. 41:219–24
    [Google Scholar]
  40. 40. 
    Dereli I, Stanzione M, Olmeda F, Papanikos F, Baumann M et al. 2021. Four-pronged negative feedback of DSB machinery in meiotic DNA-break control in mice. Nucleic Acids Res 49:2609–28
    [Google Scholar]
  41. 41. 
    Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M. 2007. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12:863–72
    [Google Scholar]
  42. 42. 
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–80
    [Google Scholar]
  43. 43. 
    Dobson MJ, Pearlman RE, Karaiskakis A, Spyropoulos B, Moens PB. 1994. Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. J. Cell Sci. 107:2749–60
    [Google Scholar]
  44. 44. 
    Dong H, Roeder GS 2000. Organization of the yeast Zip1 protein within the central region of the synaptonemal complex. J. Cell Biol. 148:417–26
    [Google Scholar]
  45. 45. 
    Dumont J, Oegema K, Desai A. 2010. A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nat. Cell Biol. 12:894–901
    [Google Scholar]
  46. 46. 
    Dunce JM, Dunne OM, Ratcliff M, Millan C, Madgwick S et al. 2018. Structural basis of meiotic chromosome synapsis through SYCP1 self-assembly. Nat. Struct. Mol. Biol. 25:557–69
    [Google Scholar]
  47. 47. 
    Dunce JM, Salmon LJ, Davies OR. 2021. Structural basis of meiotic chromosome synaptic elongation through hierarchical fibrous assembly of SYCE2-TEX12. Nat. Struct. Mol. Biol. 28:681–93
    [Google Scholar]
  48. 48. 
    Dunne OM, Davies OR. 2019. A molecular model for self-assembly of the synaptonemal complex protein SYCE3. J. Biol. Chem. 294:9260–75
    [Google Scholar]
  49. 49. 
    Dunne OM, Davies OR. 2019. Molecular structure of human synaptonemal complex protein SYCE1. Chromosoma 128:223–36
    [Google Scholar]
  50. 50. 
    Eichinger CS, Jentsch S. 2010. Synaptonemal complex formation and meiotic checkpoint signaling are linked to the lateral element protein Red1. PNAS 107:11370–75
    [Google Scholar]
  51. 51. 
    Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR et al. 2019. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570:395–99
    [Google Scholar]
  52. 52. 
    Feng J, Fu S, Cao X, Wu H, Lu J et al. 2017. Synaptonemal complex protein 2 (SYCP2) mediates the association of the centromere with the synaptonemal complex. Protein Cell 8:538–43
    [Google Scholar]
  53. 53. 
    Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E et al. 2012. Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. PLOS Genet 8:e1002507
    [Google Scholar]
  54. 54. 
    Ferrandiz N, Barroso C, Telecan O, Shao N, Kim H-M et al. 2018. Spatiotemporal regulation of Aurora B recruitment ensures release of cohesion during C. elegans oocyte meiosis. Nat. Commun. 9:834
    [Google Scholar]
  55. 55. 
    Fowler KR, Hyppa RW, Cromie GA, Smith GR. 2018. Physical basis for long-distance communication along meiotic chromosomes. PNAS 115:E9333–42
    [Google Scholar]
  56. 56. 
    Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA 2016. Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–49
    [Google Scholar]
  57. 57. 
    Fujiwara Y, Horisawa-Takada Y, Inoue E, Tani N, Shibuya H et al. 2020. Meiotic cohesins mediate initial loading of HORMAD1 to the chromosomes and coordinate SC formation during meiotic prophase. PLOS Genet 16:e1009048
    [Google Scholar]
  58. 58. 
    Fung JC, Rockmill B, Odell M, Roeder GS 2004. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116:795–802
    [Google Scholar]
  59. 59. 
    Furey TS, Haussler D. 2003. Integration of the cytogenetic map with the draft human genome sequence. Hum. Mol. Genet. 12:1037–44
    [Google Scholar]
  60. 60. 
    Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A et al. 2018. Real-time imaging of DNA loop extrusion by condensin. Science 360:102–5
    [Google Scholar]
  61. 61. 
    Gao J, Colaiacovo MP. 2018. Zipping and unzipping: protein modifications regulating synaptonemal complex dynamics. Trends Genet 34:232–45
    [Google Scholar]
  62. 62. 
    Garcia V, Gray S, Allison RM, Cooper TJ, Neale MJ 2015. Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation. Nature 520:114–18
    [Google Scholar]
  63. 63. 
    Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N et al. 2018. A pathway for mitotic chromosome formation. Science 359:eaao6135
    [Google Scholar]
  64. 64. 
    Gómez-H L, Felipe-Medina N, Sánchez-Martín M, Davies OR, Ramos I et al. 2016. C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nat. Commun. 7:13298
    [Google Scholar]
  65. 65. 
    Gordon SG, Kursel LE, Xu K, Rog O. 2021. Synaptonemal complex dimerization regulates chromosome alignment and crossover patterning in meiosis. PLOS Genet 17:e1009205
    [Google Scholar]
  66. 66. 
    Guiraldelli MF, Felberg A, Almeida LP, Parikh A, de Castro RO, Pezza RJ. 2018. SHOC1 is a ERCC4-(HhH)2-like protein, integral to the formation of crossover recombination intermediates during mammalian meiosis. PLOS Genet 14:e1007381
    [Google Scholar]
  67. 67. 
    Gutiérrez-Caballero C, Herrán Y, Sánchez-Martín M, Suja JA, Barbero JL et al. 2011. Identification and molecular characterization of the mammalian α-kleisin RAD21L. Cell Cycle 10:1477–87
    [Google Scholar]
  68. 68. 
    Gyuricza MR, Manheimer KB, Apte V, Krishnan B, Joyce EF et al. 2016. Dynamic and stable cohesins regulate synaptonemal complex assembly and chromosome segregation. Curr. Biol. 26:1688–98
    [Google Scholar]
  69. 69. 
    Hamer G, Gell K, Kouznetsova A, Novak I, Benavente R, Hoog C. 2006. Characterization of a novel meiosis-specific protein within the central element of the synaptonemal complex. J. Cell Sci. 119:4025–32
    [Google Scholar]
  70. 70. 
    Hamer G, Wang H, Bolcun-Filas E, Cooke HJ, Benavente R, Hoog C. 2008. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex. J. Cell Sci. 121:2445–51
    [Google Scholar]
  71. 71. 
    Harami GM, Gyimesi M, Kovács M. 2013. From keys to bulldozers: expanding roles for winged helix domains in nucleic-acid-binding proteins. Trends Biochem. Sci. 38:364–71
    [Google Scholar]
  72. 72. 
    Hassold T, Hall H, Hunt P 2007. The origin of human aneuploidy: where we have been, where we are going. Hum. Mol. Genet. 16:R203–8
    [Google Scholar]
  73. 73. 
    Hassold T, Hunt P. 2001. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2:280–91
    [Google Scholar]
  74. 74. 
    Heldrich J, Markowitz TE, Vale-Silva LA, Hochwagen A. 2020. A cohesin-independent mechanism modulates recombination activity along meiotic chromosomes. bioRxiv 2020.08.11.247122. https://doi.org/10.1101/2020.08.11.247122
    [Crossref]
  75. 75. 
    Henzel JV, Nabeshima K, Schvarzstein M, BE Turner, Villeneuve AM, Hillers KJ. 2011. An asymmetric chromosome pair undergoes synaptic adjustment and crossover redistribution during Caenorhabditis elegans meiosis: implications for sex chromosome evolution. Genetics 187:685–99
    [Google Scholar]
  76. 76. 
    Herrán Y, Gutiérrez-Caballero C, Sánchez-Martín M, Hernández T, Viera A et al. 2011. The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO J 30:3091–105
    [Google Scholar]
  77. 77. 
    Herruzo E, Lago-Maciel A, Baztán S, Santos B, Carballo JA, San-Segundo PA. 2021. Pch2 orchestrates the meiotic recombination checkpoint from the cytoplasm. PLOS Genet. 17:e1009560
    [Google Scholar]
  78. 78. 
    Herruzo E, Santos B, Freire R, Carballo JA, San-Segundo PA. 2019. Characterization of Pch2 localization determinants reveals a nucleolar-independent role in the meiotic recombination checkpoint. Chromosoma 128:297–316
    [Google Scholar]
  79. 79. 
    Hollingsworth NM. 2010. Phosphorylation and the creation of interhomolog bias during meiosis in yeast. Cell Cycle 9:436–37
    [Google Scholar]
  80. 80. 
    Hollingsworth NM, Johnson AD. 1993. A conditional allele of the Saccharomyces cerevisiae HOP1 gene is suppressed by overexpression of two other meiosis-specific genes: RED1 and REC104. Genetics 133:785–97
    [Google Scholar]
  81. 81. 
    Horn HF, Kim DI, Wright GD, Wong ESM, Stewart CL et al. 2013. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J. Cell Biol. 202:1023–39
    [Google Scholar]
  82. 82. 
    Huang T, Yuan S, Gao L, Li M, Yu X et al. 2020. The histone modification reader ZCWPW1 links histone methylation to PRDM9-induced double-strand break repair. eLife 9:e53459
    [Google Scholar]
  83. 83. 
    Humphryes N, Hochwagen A. 2014. A non-sister act: recombination template choice during meiosis. Exp. Cell Res. 329:53–60
    [Google Scholar]
  84. 84. 
    Humphryes N, Leung WK, Argunhan B, Terentyev Y, Dvorackova M, Tsubouchi H. 2013. The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast. PLOS Genet 9:e1003194
    [Google Scholar]
  85. 85. 
    Hurlock ME, Cavka I, Kursel LE, Haversat J, Wooten M et al. 2020. Identification of novel synaptonemal complex components in C. elegans. J. Cell Biol. 219:e201910043
    [Google Scholar]
  86. 86. 
    Ishiguro T, Tanaka K, Sakuno T, Watanabe Y. 2010. Shugoshin-PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase. Nat. Cell Biol. 12:500–6
    [Google Scholar]
  87. 87. 
    Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K. 2002. Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr. Biol. 12:323–28
    [Google Scholar]
  88. 88. 
    Jin X, Fudenberg G, Pollard KS 2021. Genome-wide variability in recombination activity is associated with meiotic chromatin organization. Genome Res 31:91561–72
    [Google Scholar]
  89. 89. 
    Johnson D, Crawford M, Cooper T, Claeys Bouuaert C, Keeney S et al. 2021. Concerted cutting by Spo11 illuminates meiotic DNA break mechanics. Nature 594:572–76
    [Google Scholar]
  90. 90. 
    Joshi N, Barot A, Jamison C, Borner GV 2009. Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis. PLOS Genet 5:e1000557
    [Google Scholar]
  91. 91. 
    Joyce EF, Pedersen M, Tiong S, White-Brown SK, Paul A et al. 2011. Drosophila ATM and ATR have distinct activities in the regulation of meiotic DNA damage and repair. J. Cell Biol. 195:359–67
    [Google Scholar]
  92. 92. 
    Kariyazono R, Oda A, Yamada T, Ohta K 2019. Conserved HORMA domain-containing protein Hop1 stabilizes interaction between proteins of meiotic DNA break hotspots and chromosome axis. Nucleic Acids Res 47:10166–80
    [Google Scholar]
  93. 93. 
    Kauppi L, Barchi M, Lange J, Baudat F, Jasin M et al. 2013. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev. 27:873–86
    [Google Scholar]
  94. 94. 
    Kelley LA, Sternberg MJE. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4:363–71
    [Google Scholar]
  95. 95. 
    Kim KP, Weiner BM, Zhang L, Jordan A, Dekker J, Kleckner N 2010. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143:924–37
    [Google Scholar]
  96. 96. 
    Kim Y, Rosenberg SC, Kugel CL, Kostow N, Rog O et al. 2014. The chromosome axis controls meiotic events through a hierarchical assembly of HORMA domain proteins. Dev. Cell 31:487–502
    [Google Scholar]
  97. 97. 
    Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H. 2019. Human cohesin compacts DNA by loop extrusion. Science 366:1345–49
    [Google Scholar]
  98. 98. 
    Köhler S, Wojcik M, Xu K, Dernburg AF. 2017. Superresolution microscopy reveals the three-dimensional organization of meiotic chromosome axes in intact Caenorhabditis elegans tissue. PNAS 114:E4734–43
    [Google Scholar]
  99. 99. 
    Kong M, Cutts EE, Pan D, Beuron F, Kaliyappan T et al. 2020. Human Condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA. Mol. Cell 79:99–114.e9
    [Google Scholar]
  100. 100. 
    Krishnan B, Thomas SE, Yan R, Yamada H, Zhulin IB, McKee BD. 2014. Sisters unbound is required for meiotic centromeric cohesion in Drosophila melanogaster. Genetics 198:947–65
    [Google Scholar]
  101. 101. 
    Kumar R, Oliver C, Brun C, Juarez-Martinez AB, Tarabay Y et al. 2018. Mouse REC114 is essential for meiotic DNA double-strand break formation and forms a complex with MEI4. Life Sci. Alliance 1:e201800259
    [Google Scholar]
  102. 102. 
    Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD et al. 2015. Arabidopsis PCH2 mediates meiotic chromosome remodeling and maturation of crossovers. PLOS Genet 11:e1005372
    [Google Scholar]
  103. 103. 
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  104. 104. 
    Lange J, Pan J, Cole F, Thelen MP, Jasin M, Keeney S 2011. ATM controls meiotic double-strand-break formation. Nature 479:237–40
    [Google Scholar]
  105. 105. 
    Lange J, Yamada S, Tischfield SE, Pan J, Kim S et al. 2016. The landscape of mouse meiotic double-strand break formation, processing, and repair. Cell 167:695–708.e16
    [Google Scholar]
  106. 106. 
    Lao JP, Cloud V, Huang CC, Grubb J, Thacker D et al. 2013. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLOS Genet 9:e1003978
    [Google Scholar]
  107. 107. 
    Lao JP, Hunter N. 2010. Trying to avoid your sister. PLOS Biol 8:e1000519
    [Google Scholar]
  108. 108. 
    Lee J, Hirano T 2011. RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis. J. Cell Biol. 192:263–76
    [Google Scholar]
  109. 109. 
    Li J, Hooker GW, Roeder GS. 2006. Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics 173:1969–81
    [Google Scholar]
  110. 110. 
    Li Y, Haarhuis JHI, Sedeno Cacciatore A, Oldenkamp R, van Ruiten MS et al. 2020. The structural basis for cohesin-CTCF-anchored loops. Nature 578:472–76
    [Google Scholar]
  111. 111. 
    Libuda DE, Uzawa S, Meyer BJ, Villeneuve AM 2013. Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature 502:703–6
    [Google Scholar]
  112. 112. 
    Lichten M, de Massy B. 2011. The impressionistic landscape of meiotic recombination. Cell 147:267–70
    [Google Scholar]
  113. 113. 
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93
    [Google Scholar]
  114. 114. 
    Liu JG, Yuan L, Brundell E, Bjorkroth B, Daneholt B, Hoog C 1996. Localization of the N-terminus of SCP1 to the central element of the synaptonemal complex and evidence for direct interactions between the N-termini of SCP1 molecules organized head-to-head. Exp. Cell Res. 226:11–19
    [Google Scholar]
  115. 115. 
    Lorenz A, Wells JL, Pryce DW, Novatchkova M, Eisenhaber F et al. 2004. S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. J. Cell Sci. 117:3343–51
    [Google Scholar]
  116. 116. 
    Lu J, Gu Y, Feng J, Zhou W, Yang X, Shen Y 2014. Structural insight into the central element assembly of the synaptonemal complex. Sci. Rep. 4:7059
    [Google Scholar]
  117. 117. 
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–60
    [Google Scholar]
  118. 118. 
    Lukaszewicz A, Lange J, Keeney S, Jasin M. 2018. Control of meiotic double-strand-break formation by ATM: local and global views. Cell Cycle 17:1155–72
    [Google Scholar]
  119. 119. 
    Macaisne N, Novatchkova M, Peirera L, Vezon D, Jolivet S et al. 2008. SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers. Curr. Biol. 18:1432–37
    [Google Scholar]
  120. 120. 
    Macaisne N, Vignard J, Mercier R. 2011. SHOC1 and PTD form an XPF-ERCC1-like complex that is required for formation of class I crossovers. J. Cell Sci. 124:2687–91
    [Google Scholar]
  121. 121. 
    Maddox PS, Oegema K, Desai A, Cheeseman IM. 2004.. “ Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 12:641–53
    [Google Scholar]
  122. 122. 
    Mahgoub M, Paiano J, Bruno M, Wu W, Pathuri S et al. 2020. Dual histone methyl reader ZCWPW1 facilitates repair of meiotic double strand breaks in male mice. eLife 9:e53360
    [Google Scholar]
  123. 123. 
    Malavasic MJ, Elder RT. 1990. Complementary transcripts from two genes necessary for normal meiosis in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2809–19
    [Google Scholar]
  124. 124. 
    Manheim EA, McKim KS. 2003. The synaptonemal complex component C(2)M regulates meiotic crossing over in Drosophila. Curr. Biol. 13:276–85
    [Google Scholar]
  125. 125. 
    Marston AL, Amon A. 2004. Meiosis: cell-cycle controls shuffle and deal. Nat. Rev. Mol. Cell Biol. 5:983–97
    [Google Scholar]
  126. 126. 
    Martinez-Perez E, Schvarzstein M, Barroso C, Lightfoot J, Dernburg AF, Villeneuve AM. 2008. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev 22:2886–901
    [Google Scholar]
  127. 127. 
    McKim KS, Hayashi-Hagihara A. 1998. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev 12:2932–42
    [Google Scholar]
  128. 128. 
    Morimoto A, Shibuya H, Zhu X, Kim J, Ishiguro K et al. 2012. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J. Cell Biol. 198:165–72
    [Google Scholar]
  129. 129. 
    Moses MJ. 1956. Chromosomal structures in crayfish spermatocytes. J. Biophys. Biochem. Cytol 2:215–18
    [Google Scholar]
  130. 130. 
    Mu X, Murakami H, Mohibullah N, Keeney S 2020. Chromosome-autonomous feedback down-regulates meiotic DNA break competence upon synaptonemal complex formation. Genes Dev. 34:1605–18
    [Google Scholar]
  131. 131. 
    Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C et al. 2010. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327:876–79
    [Google Scholar]
  132. 132. 
    Nabeshima K, Villeneuve AM, Colaiacovo MP. 2005. Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC. J. Cell Biol. 168:683–89
    [Google Scholar]
  133. 133. 
    Nasmyth K. 2001. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35:673–745
    [Google Scholar]
  134. 134. 
    Nasmyth K. 2015. A meiotic mystery: how sister kinetochores avoid being pulled in opposite directions during the first division. Bioessays 37:657–65
    [Google Scholar]
  135. 135. 
    Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR et al. 2013. Organization of the mitotic chromosome. Science 342:948–53
    [Google Scholar]
  136. 136. 
    Nguyen H, Labella S, Silva N, Jantsch V, Zetka M 2018. C. elegans ZHP-4 is required at multiple distinct steps in the formation of crossovers and their transition to segregation competent chiasmata. PLOS Genet 14:e1007776
    [Google Scholar]
  137. 137. 
    Niu H, Li X, Job E, Park C, Moazed D et al. 2007. Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis. Mol. Cell. Biol. 27:5456–67
    [Google Scholar]
  138. 138. 
    Niu H, Wan L, Busygina V, Kwon Y, Allen JA et al. 2009. Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol. Cell 36:393–404
    [Google Scholar]
  139. 139. 
    Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A et al. 2017. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930–44.e22
    [Google Scholar]
  140. 140. 
    Novak I, Wang H, Revenkova E, Jessberger R, Scherthan H, Höög C. 2008. Cohesin Smc1β determines meiotic chromatin axis loop organization. J. Cell Biol. 180:83–90
    [Google Scholar]
  141. 141. 
    Novak JE, Ross-Macdonald PB, Roeder GS. 2001. The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158:1013–25
    [Google Scholar]
  142. 142. 
    Oliver-Bonet M, Campillo M, Turek PJ, Ko E, Martin RH 2007. Analysis of replication protein A (RPA) in human spermatogenesis. Mol. Hum. Reprod. 13:837–44
    [Google Scholar]
  143. 143. 
    Otto SP, Payseur BA. 2019. Crossover interference: shedding light on the evolution of recombination. Annu. Rev. Genet. 53:19–44
    [Google Scholar]
  144. 144. 
    Page SL, Hawley RS. 2001. c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev 15:3130–43
    [Google Scholar]
  145. 145. 
    Page SL, Hawley RS. 2004. The genetics and molecular biology of the synaptonemal complex. Annu. Rev. Cell Dev. Biol. 20:525–58
    [Google Scholar]
  146. 146. 
    Pan J, Keeney S. 2007. Molecular cartography: mapping the landscape of meiotic recombination. PLOS Biol 5:e333
    [Google Scholar]
  147. 147. 
    Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG et al. 2011. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144:719–31
    [Google Scholar]
  148. 148. 
    Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A et al. 2011. Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 146:372–83
    [Google Scholar]
  149. 149. 
    Papanikos F, Clement JAJ, Testa E, Ravindranathan R, Grey C et al. 2019. Mouse ANKRD31 regulates spatiotemporal patterning of meiotic recombination initiation and ensures recombination between X and Y sex chromosomes. Mol. Cell 74:1069–85.e11
    [Google Scholar]
  150. 150. 
    Parvanov ED, Petkov PM, Paigen K. 2010. Prdm9 controls activation of mammalian recombination hotspots. Science 327:835
    [Google Scholar]
  151. 151. 
    Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J. 2001. A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15:1349–60
    [Google Scholar]
  152. 152. 
    Patel L, Kang R, Rosenberg SC, Qiu Y, Raviram R et al. 2019. Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nat. Struct. Mol. Biol. 26:164–74
    [Google Scholar]
  153. 153. 
    Penedos A, Johnson AL, Strong E, Goldman AS, Carballo JA, Cha RS. 2015. Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1. PLOS ONE 10:e0134297
    [Google Scholar]
  154. 154. 
    Perry J, Kleckner N, Borner GV. 2005. Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. PNAS 102:17594–99
    [Google Scholar]
  155. 155. 
    Phillips CM, Dernburg AF. 2006. A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans. Dev. Cell 11:817–29
    [Google Scholar]
  156. 156. 
    Phillips CM, Meng X, Zhang L, Chretien JH, Urnov FD, Dernburg AF. 2009. Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nat. Cell Biol. 11:934–42
    [Google Scholar]
  157. 157. 
    Phillips CM, Wong C, Bhalla N, Carlton PM, Weiser P et al. 2005. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell 123:1051–63
    [Google Scholar]
  158. 158. 
    Prakash K, Fournier D, Redl S, Best G, Borsos M et al. 2015. Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes. PNAS 112:14635–40
    [Google Scholar]
  159. 159. 
    Prieler S, Chen D, Huang L, Mayrhofer E, Zsoter S et al. 2021. Spo11 generates gaps through concerted cuts at sites of topological stress. Nature 594:577–82
    [Google Scholar]
  160. 160. 
    Prieto I, Suja JA, Pezzi N, Kremer L, Martinez AC et al. 2001. Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat. Cell Biol. 3:761–66
    [Google Scholar]
  161. 161. 
    Prugar E, Burnett C, Chen X, Hollingsworth NM 2017. Coordination of double strand break repair and meiotic progression in yeast by a Mek1-Ndt80 negative feedback loop. Genetics 206:497–512
    [Google Scholar]
  162. 162. 
    Pyatnitskaya A, Borde V, De Muyt A. 2019. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 128:181–98
    [Google Scholar]
  163. 163. 
    Raina VB, Vader G 2020. Homeostatic control of meiotic prophase checkpoint function by Pch2 and Hop1. Curr. Biol. 30:4413–24
    [Google Scholar]
  164. 164. 
    Rando OJ. 2012. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr. Opin. Genet. Dev. 22:148–55
    [Google Scholar]
  165. 165. 
    Rao HB, Qiao H, Bhatt SK, Bailey LR, Tran HD et al. 2017. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 355:403–7
    [Google Scholar]
  166. 166. 
    Rao SSP, Huang S-C, Glenn St Hilaire B, Engreitz JM, Perez EM et al. 2017. Cohesin loss eliminates all loop domains. Cell 171:305–20.e24
    [Google Scholar]
  167. 167. 
    Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–80
    [Google Scholar]
  168. 168. 
    Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R. 2001. Novel meiosis-specific isoform of mammalian SMC1. Mol. Cell. Biol. 21:6984–98
    [Google Scholar]
  169. 169. 
    Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA et al. 2004. Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat. Cell Biol. 6:555–62
    [Google Scholar]
  170. 170. 
    Rockmill B, Roeder GS. 1990. Meiosis in asynaptic yeast. Genetics 126:563–74
    [Google Scholar]
  171. 171. 
    Rockmill B, Sym M, Scherthan H, Roeder GS. 1995. Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev 9:2684–95
    [Google Scholar]
  172. 172. 
    Rog O, Dernburg AF 2015. Direct visualization reveals kinetics of meiotic chromosome synapsis. Cell Rep 10:1639–45
    [Google Scholar]
  173. 173. 
    Rog O, Köhler S, Dernburg AF 2017. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 6:e21455
    [Google Scholar]
  174. 174. 
    Roig I, Dowdle JA, Toth A, de Rooij DG, Jasin M, Keeney S 2010. Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLOS Genet 6:e1001062
    [Google Scholar]
  175. 175. 
    Rosenberg SC, Corbett KD. 2015. The multifaceted roles of the HORMA domain in cellular signaling. J. Cell Biol. 211:745–55
    [Google Scholar]
  176. 176. 
    Rousova D, Funk SK, Reichle H, Weir JR 2020. Mer2 binds directly to both nucleosomes and axial proteins as the keystone of meiotic recombination. bioRxiv 2020.07.30.228908. https://doi.org/10.1101/2020.07.30.228908
    [Crossref]
  177. 177. 
    San-Segundo PA, Roeder GS. 1999. Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97:313–24
    [Google Scholar]
  178. 178. 
    Sanchez R, Zhou M-M. 2011. The PHD finger: a versatile epigenome reader. Trends Biochem. Sci. 36:364–72
    [Google Scholar]
  179. 179. 
    Sánchez-Sáez F, Gómez-H L, Dunne OM, Gallego-Páramo C, Felipe-Medina N et al. 2020. Meiotic chromosome synapsis depends on multivalent SYCE1-SIX6OS1 interactions that are disrupted in cases of human infertility. Sci. Adv. 6:eabb1660
    [Google Scholar]
  180. 180. 
    Santucci-Darmanin S, Walpita D, Lespinasse F, Desnuelle C, Ashley T, Paquis-Flucklinger V 2000. MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J 14:1539–47
    [Google Scholar]
  181. 181. 
    Sarangapani KK, Duro E, Deng Y, de Lima Alves F, Ye Q et al. 2014. Sister kinetochores are mechanically fused during meiosis I in yeast. Science 346:248–51
    [Google Scholar]
  182. 182. 
    Sato A, Isaac B, Phillips CM, Rillo R, Carlton PM et al. 2009. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 139:907–19
    [Google Scholar]
  183. 183. 
    Schalbetter SA, Fudenberg G, Baxter J, Pollard KS, Neale MJ. 2019. Principles of meiotic chromosome assembly revealed in S. cerevisiae. Nat. Commun. 10:4795
    [Google Scholar]
  184. 184. 
    Schild-Prufert K, Saito TT, Smolikov S, Gu Y, Hincapie M et al. 2011. Organization of the synaptonemal complex during meiosis in Caenorhabditis elegans. Genetics 189:411–21
    [Google Scholar]
  185. 185. 
    Schmekel K, Meuwissen RL, Dietrich AJ, Vink AC, van Marle J et al. 1996. Organization of SCP1 protein molecules within synaptonemal complexes of the rat. Exp. Cell Res. 226:20–30
    [Google Scholar]
  186. 186. 
    Schramm S, Fraune J, Naumann R, Hernandez-Hernandez A, Höög C et al. 2011. A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility. PLOS Genet 7:e1002088
    [Google Scholar]
  187. 187. 
    Severson AF, Ling L, van Zuylen V, Meyer BJ. 2009. The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation. Genes Dev 23:1763–78
    [Google Scholar]
  188. 188. 
    Shen Y, Tang D, Wang K, Wang M, Huang J et al. 2012. ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis. J. Cell Sci. 125:2581–91
    [Google Scholar]
  189. 189. 
    Shi Z, Gao H, Bai X-C, Yu H 2020. Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science 368:1454–59
    [Google Scholar]
  190. 190. 
    Shinohara M, Oh SD, Hunter N, Shinohara A 2008. Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat. Genet. 40:299–309
    [Google Scholar]
  191. 191. 
    Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R et al. 2006. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38:1348–54
    [Google Scholar]
  192. 192. 
    Skibbens RV, Corson LB, Koshland D, Hieter P 1999. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 13:307–19
    [Google Scholar]
  193. 193. 
    Snowden T, Acharya S, Butz C, Berardini M, Fishel R. 2004. hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol. Cell 15:437–51
    [Google Scholar]
  194. 194. 
    Snowden T, Shim KS, Schmutte C, Acharya S, Fishel R 2008. hMSH4-hMSH5 adenosine nucleotide processing and interactions with homologous recombination machinery. J. Biol. Chem. 283:145–54
    [Google Scholar]
  195. 195. 
    Sommermeyer V, Beneut C, Chaplais E, Serrentino ME, Borde V. 2013. Spp1, a member of the Set1 complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Mol. Cell 49:43–54
    [Google Scholar]
  196. 196. 
    Spindler MC, Filbeck S, Stigloher C, Benavente R. 2019. Quantitative basis of meiotic chromosome synapsis analyzed by electron tomography. Sci. Rep. 9:16102
    [Google Scholar]
  197. 197. 
    Stanzione M, Baumann M, Papanikos F, Dereli I, Lange J et al. 2016. Meiotic DNA break formation requires the unsynapsed chromosome axis-binding protein IHO1 (CCDC36) in mice. Nat. Cell Biol. 18:1208–20
    [Google Scholar]
  198. 198. 
    Strahl BD, Allis CD. 2000. The language of covalent histone modifications. Nature 403:41–45
    [Google Scholar]
  199. 199. 
    Subramanian VV, Hochwagen A. 2014. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb. Perspect. Biol. 6:a016675
    [Google Scholar]
  200. 200. 
    Subramanian VV, MacQueen AJ, Vader G, Shinohara M, Sanchez A et al. 2016. Chromosome synapsis alleviates Mek1-dependent suppression of meiotic DNA repair. PLOS Biol 14:e1002369
    [Google Scholar]
  201. 201. 
    Suhandynata R, Liang J, Albuquerque CP, Zhou H, Hollingsworth NM 2014. A method for sporulating budding yeast cells that allows for unbiased identification of kinase substrates using stable isotope labeling by amino acids in cell culture. G3 4:2125–35
    [Google Scholar]
  202. 202. 
    Sun X, Huang L, Markowitz TE, Blitzblau HG, Chen D et al. 2015. Transcription dynamically patterns the meiotic chromosome-axis interface. eLife 4:e07424
    [Google Scholar]
  203. 203. 
    Sym M, Engebrecht JA, Roeder GS. 1993. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72:365–78
    [Google Scholar]
  204. 204. 
    Syrjanen JL, Pellegrini L, Davies OR 2014. A molecular model for the role of SYCP3 in meiotic chromosome organisation. eLife 3:e02963
    [Google Scholar]
  205. 205. 
    Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC. 2017. The condensin complex is a mechanochemical motor that translocates along DNA. Science 358:672–76
    [Google Scholar]
  206. 206. 
    Thacker D, Mohibullah N, Zhu X, Keeney S. 2014. Homologue engagement controls meiotic DNA break number and distribution. Nature 510:241–46
    [Google Scholar]
  207. 207. 
    Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K. 1999. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13:320–33
    [Google Scholar]
  208. 208. 
    Tromer EC, van Hooff JJE, Kops G, Snel B 2019. Mosaic origin of the eukaryotic kinetochore. PNAS 116:12873–82
    [Google Scholar]
  209. 209. 
    Tromer EC, Wemyss TA, Ludzia P, Waller RF, Akiyoshi B. 2021. Repurposing of synaptonemal complex proteins for kinetochores in Kinetoplastida. Open Biol. 11:210049
    [Google Scholar]
  210. 210. 
    Tsai B, Liu W, Dong D, Shi K, Chen L, Gao N 2020. Phase separation of Mer2 organizes the meiotic loop-axis structure during meiosis I. bioRxiv 422856. https://doi.org/10.1101/2020.12.15.422856
    [Crossref]
  211. 211. 
    Tsubouchi T, Zhao H, Roeder GS. 2006. The meiosis-specific zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with zip2. Dev. Cell 10:809–19
    [Google Scholar]
  212. 212. 
    Tung KS, Hong EJ, Roeder GS 2000. The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. PNAS 97:12187–92
    [Google Scholar]
  213. 213. 
    van Heemst D, Heyting C. 2000. Sister chromatid cohesion and recombination in meiosis. Chromosoma 109:10–26
    [Google Scholar]
  214. 214. 
    Vara C, Paytuvi-Gallart A, Cuartero Y, Le Dily F, Garcia F et al. 2019. Three-dimensional genomic structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Rep 28:352–67.e9
    [Google Scholar]
  215. 215. 
    Voelkel-Meiman K, Moustafa SS, Lefrancois P, Villeneuve AM, MacQueen AJ. 2012. Full-length synaptonemal complex grows continuously during meiotic prophase in budding yeast. PLOS Genet 8:e1002993
    [Google Scholar]
  216. 216. 
    Voelkel-Meiman K, Taylor LF, Mukherjee P, Humphryes N, Tsubouchi H, MacQueen AJ. 2013. SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLOS Genet 9:e1003837
    [Google Scholar]
  217. 217. 
    Watts FZ, Hoffmann E. 2011. SUMO meets meiosis: an encounter at the synaptonemal complex: SUMO chains and sumoylated proteins suggest that heterogeneous and complex interactions lie at the centre of the synaptonemal complex. Bioessays 33:529–37
    [Google Scholar]
  218. 218. 
    Webber HA, Howard L, Bickel SE 2004. The cohesion protein ORD is required for homologue bias during meiotic recombination. J. Cell Biol. 164:819–29
    [Google Scholar]
  219. 219. 
    Wells D, Bitoun E, Moralli D, Zhang G, Hinch A et al. 2020. ZCWPW1 is recruited to recombination hotspots by PRDM9 and is essential for meiotic double strand break repair. eLife 9:e53392
    [Google Scholar]
  220. 220. 
    West AMV, Komives EA, Corbett KD. 2018. Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2. Nucleic Acids Res 46:279–92
    [Google Scholar]
  221. 221. 
    West AMV, Rosenberg SC, Ur SN, Lehmer MK, Ye Q et al. 2019. A conserved filamentous assembly underlies the structure of the meiotic chromosome axis. eLife 8:e40372
    [Google Scholar]
  222. 222. 
    Wijeratne AJ, Chen C, Zhang W, Timofejeva L, Ma H 2006. The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination. Mol. Biol. Cell 17:1331–43
    [Google Scholar]
  223. 223. 
    Winters T, McNicoll F, Jessberger R. 2014. Meiotic cohesin STAG3 is required for chromosome axis formation and sister chromatid cohesion. EMBO J 33:1256–70
    [Google Scholar]
  224. 224. 
    Woglar A, Yamaya K, Roelens B, Boettiger A, Kohler S, Villeneuve AM. 2020. Quantitative cytogenetics reveals molecular stoichiometry and longitudinal organization of meiotic chromosome axes and loops. PLOS Biol 18:e3000817
    [Google Scholar]
  225. 225. 
    Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H et al. 2009. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLOS Genet 5:e1000702
    [Google Scholar]
  226. 226. 
    Woltering D, Baumgartner B, Bagchi S, Larkin B, Loidl J et al. 2000. Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins Red1p and Hop1p. Mol. Cell. Biol. 20:6646–58
    [Google Scholar]
  227. 227. 
    Xie C, He C, Jiang Y, Yu H, Cheng L et al. 2018. Structural insights into the recognition of phosphorylated Hop1 by Mek1. Acta Crystallogr. D Struct. Biol. 74:1027–38
    [Google Scholar]
  228. 228. 
    Xu H, Tong Z, Ye Q, Sun T, Hong Z et al. 2019. Molecular organization of mammalian meiotic chromosome axis revealed by expansion STORM microscopy. PNAS 116:18423–28
    [Google Scholar]
  229. 229. 
    Yan R, McKee BD 2013. The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila meiosis. PLOS Genet 9:e1003637
    [Google Scholar]
  230. 230. 
    Yang C, Hu B, Portheine SM, Chuenban P, Schnittger A 2020. State changes of the HORMA protein ASY1 are mediated by an interplay between its closure motif and PCH2. Nucleic Acids Res 48:11521–35
    [Google Scholar]
  231. 231. 
    Yang F, De La Fuente R, Leu NA, Baumann C, McLaughlin KJ, Wang PJ. 2006. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J. Cell Biol. 173:497–507
    [Google Scholar]
  232. 232. 
    Yatskevich S, Rhodes J, Nasmyth K. 2019. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53:445–82
    [Google Scholar]
  233. 233. 
    Ye Q, Kim DH, Dereli I, Rosenberg SC, Hagemann G et al. 2017. The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding. EMBO J 36:2419–34
    [Google Scholar]
  234. 234. 
    Ye Q, Rosenberg SC, Moeller A, Speir JA, Su TY, Corbett KD 2015. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. eLife 4:e07367
    [Google Scholar]
  235. 235. 
    Yu Y, Li S, Ser Z, Sanyal T, Choi K et al. 2021. Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. PNAS 118:e2026844118
    [Google Scholar]
  236. 236. 
    Yuan L, Liu J-G, Hoja M-R, Wilbertz J, Nordqvist K, Höög C 2002. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296:1115–18
    [Google Scholar]
  237. 237. 
    Yuan L, Liu J-G, Zhao J, Brundell E, Daneholt B, Höög C 2000. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell 5:73–83
    [Google Scholar]
  238. 238. 
    Zhang L, Kim KP, Kleckner NE, Storlazzi A. 2011. Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. PNAS 108:20036–41
    [Google Scholar]
  239. 239. 
    Zhang L, Kohler S, Rillo-Bohn R, Dernburg AF 2018. A compartmentalized signaling network mediates crossover control in meiosis. eLife 7:e30789
    [Google Scholar]
  240. 240. 
    Zhang Q, Ji SY, Busayavalasa K, Yu C 2019. SPO16 binds SHOC1 to promote homologous recombination and crossing-over in meiotic prophase I. Sci. Adv 5:eaau9780
    [Google Scholar]
  241. 241. 
    Zhang Q, Shao J, Fan H-Y, Yu C 2018. Evolutionarily-conserved MZIP2 is essential for crossover formation in mammalian meiosis. Commun. Biol. 1:147
    [Google Scholar]
  242. 242. 
    Zhang Z, Xie S, Wang R, Guo S, Zhao Q et al. 2020. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J. Cell Biol. 219:e201910086
    [Google Scholar]
  243. 243. 
    Zickler D, Kleckner N. 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33:603–754
    [Google Scholar]
  244. 244. 
    Zickler D, Kleckner N. 2015. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7:a016626
    [Google Scholar]
  245. 245. 
    Zickler D, Kleckner N. 2016. A few of our favorite things: pairing, the bouquet, crossover interference and evolution of meiosis. Semin. Cell Dev. Biol. 54:135–48
    [Google Scholar]
  246. 246. 
    Zickler D, Moreau PJ, Huynh AD, Slezec AM. 1992. Correlation between pairing initiation sites, recombination nodules and meiotic recombination in Sordaria macrospora. Genetics 132:135–48
    [Google Scholar]
  247. 247. 
    Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J et al. 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430:2237–43
    [Google Scholar]
  248. 248. 
    Zwettler FU, Spindler MC, Reinhard S, Klein T, Kurz A et al. 2020. Tracking down the molecular architecture of the synaptonemal complex by expansion microscopy. Nat. Commun. 11:3222
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-020235
Loading
/content/journals/10.1146/annurev-genet-071719-020235
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error