1932

Abstract

Centromeres are essential to genome inheritance, serving as the site of kinetochore assembly and coordinating chromosome segregation during cell division. Abnormal centromere function is associated with birth defects, infertility, and cancer. Normally, centromeres are assembled and maintained at the same chromosomal location. However, ectopic centromeres form spontaneously at new genomic locations and contribute to genome instability and developmental defects as well as to acquired and congenital human disease. Studies in model organisms have suggested that certain regions of the genome, including pericentromeres, heterochromatin, and regions of open chromatin or active transcription, support neocentromere activation. However, there is no universal mechanism that explains neocentromere formation. This review focuses on recent technological and intellectual advances in neocentromere research and proposes future areas of study. Understanding neocentromere biology will provide a better perspective on chromosome and genome organization and functional context for information generated from the Human Genome Project, ENCODE, and other large genomics consortia.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-020924
2021-11-23
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-020924.html?itemId=/content/journals/10.1146/annurev-genet-071719-020924&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agudo M, Abad JP, Molina I, Losada A, Ripoll P, Villasante A. 2000. A dicentric chromosome of Drosophila melanogaster showing alternate centromere inactivation. Chromosoma 109:190–96
    [Google Scholar]
  2. 2. 
    Alonso A, Fritz B, Hasson D, Abrusan G, Cheung F et al. 2007. Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8:R148
    [Google Scholar]
  3. 3. 
    Alonso A, Mahmood R, Li S, Cheung F, Yoda K, Warburton PE. 2003. Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum. Mol. Genet. 12:2711–21
    [Google Scholar]
  4. 4. 
    Amor DJ, Bentley K, Ryan J, Perry J, Wong L et al. 2004. Human centromere repositioning “in progress.”. PNAS 101:6542–47
    [Google Scholar]
  5. 5. 
    Amor DJ, Choo KH. 2002. Neocentromeres: role in human disease, evolution, and centromere study. Am. J. Hum. Genet. 71:695–714
    [Google Scholar]
  6. 6. 
    Armanet N, Tosca L, Brisset S, Liehr T, Tachdjian G. 2015. Small supernumerary marker chromosomes in human infertility. Cytogenet. Genome Res. 146:100–8
    [Google Scholar]
  7. 7. 
    Athwal RK, Walkiewicz MP, Baek S, Fu S, Bui M et al. 2015. CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenet. Chromatin 8:2
    [Google Scholar]
  8. 8. 
    Barnhart MC, Kuich PH, Stellfox ME, Ward JA, Bassett EA et al. 2011. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194:229–43
    [Google Scholar]
  9. 9. 
    Barry AE, Howman EV, Cancilla MR, Saffery R, Choo KHA. 1999. Sequence analysis of an 80 kb human neocentromere. Hum. Mol. Genet. 8:217–27
    [Google Scholar]
  10. 10. 
    Bassett EA, Wood S, Salimian KJ, Ajith S, Foltz DR, Black BE. 2010. Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors. J. Cell Biol. 190:177–85
    [Google Scholar]
  11. 11. 
    Bergmann JH, Rodríguez MG, Martins NMC, Kimura H, Kelly DA et al. 2011. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–40
    [Google Scholar]
  12. 12. 
    Bloom K, Hill A, Jones E. 1989. Conditional dicentric chromosomes in yeast. Prog. Clin. Biol. Res. 318:149–58
    [Google Scholar]
  13. 13. 
    Blower MD. 2016. Centromeric transcription regulates Aurora-B localization and activation. Cell Rep 15:1624–33
    [Google Scholar]
  14. 14. 
    Blower MD, Karpen GH. 2001. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat. Cell Biol. 3:730–39
    [Google Scholar]
  15. 15. 
    Blower MD, Sullivan BA, Karpen GH. 2002. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2:319–30
    [Google Scholar]
  16. 16. 
    Bobkov GOM, Gilbert N, Heun P. 2018. Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation. J. Cell Biol. 217:1957–72
    [Google Scholar]
  17. 17. 
    Buerstedde JM, Takeda S. 1991. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67:179–88
    [Google Scholar]
  18. 18. 
    Burrack LS, Hutton HF, Matter KJ, Clancey SA, Liachko I et al. 2016. Neocentromeres provide chromosome segregation accuracy and centromere clustering to multiple loci along a Candida albicans chromosome. PLOS Genet 12:e1006317
    [Google Scholar]
  19. 19. 
    Bury L, Moodie B, Ly J, McKay LS, Miga KHH, Cheeseman IM 2020. Alpha-satellite RNA transcripts are repressed by centromere-nucleolus associations. eLife 9:e59770
    [Google Scholar]
  20. 20. 
    Carone DM, Longo MS, Ferreri GC, Hall L, Harris M et al. 2009. A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118:113–25
    [Google Scholar]
  21. 21. 
    Carone DM, Zhang C, Hall LE, Obergfell C, Carone BR et al. 2013. Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A loading. Chromosome Res 21:49–62
    [Google Scholar]
  22. 22. 
    Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E et al. 2012. Active transcription and essential role of RNA polymerase II at the centromere during mitosis. PNAS 109:1979–84
    [Google Scholar]
  23. 23. 
    Chang CH, Chavan A, Palladino J, Wei X, Martins NMC et al. 2019. Islands of retroelements are major components of Drosophila centromeres. PLOS Biol 17:e3000241
    [Google Scholar]
  24. 24. 
    Cheeseman IM, Hori T, Fukagawa T, Desai A. 2008. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol. Biol. Cell 19:587–94
    [Google Scholar]
  25. 25. 
    Chen CC, Bowers S, Lipinszki Z, Palladino J, Trusiak S et al. 2015. Establishment of centromeric chromatin by the CENP-A assembly factor CAL1 requires FACT-mediated transcription. Dev. Cell 34:73–84
    [Google Scholar]
  26. 26. 
    Chen CC, Dechassa ML, Bettini E, Ledoux MB, Belisario C et al. 2014. CAL1 is the Drosophila CENP-A assembly factor. J. Cell Biol. 204:313–29
    [Google Scholar]
  27. 27. 
    Chikashige Y, Kinoshita N, Nakaseko Y, Matsumoto T, Murakami S et al. 1989. Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell 57:739–51
    [Google Scholar]
  28. 28. 
    Chueh AC, Wong LH, Wong N, Choo KH. 2005. Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere. Hum. Mol. Genet. 14:85–93
    [Google Scholar]
  29. 29. 
    Clarke L. 1990. Centromeres of budding and fission yeasts. Trends Genet 6:150–54
    [Google Scholar]
  30. 30. 
    Cuacos M, Franklin FCH, Heckmann S. 2015. Atypical centromeres in plants—what they can tell us. Front. Plant Sci 6:913
    [Google Scholar]
  31. 31. 
    Dawe RK, Hiatt EN. 2004. Plant neocentromeres: fast, focused, and driven. Chromosome Res 12:655–69
    [Google Scholar]
  32. 32. 
    Dawe RK, Lowry EG, Gent JI, Stitzer MC, Swentowsky KW et al. 2018. A kinesin-14 motor activates neocentromeres to promote meiotic drive in maize. Cell 173:839–50.e18
    [Google Scholar]
  33. 33. 
    Depinet TW, Zackowski JL, Earnshaw WC, Kaffe S, Sekhon GS et al. 1997. Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA. Hum. Mol. Genet. 6:1195–204
    [Google Scholar]
  34. 34. 
    du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R et al. 1997. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat. Genet. 16:144–53
    [Google Scholar]
  35. 35. 
    Earnshaw WC, Migeon BR. 1985. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92:290–96
    [Google Scholar]
  36. 36. 
    Fachinetti D, Logsdon GA, Abdullah A, Selzer EB, Cleveland DW, Black BE. 2017. CENP-A modifications on Ser68 and Lys124 are dispensable for establishment, maintenance, and long-term function of human centromeres. Dev. Cell 40:104–13
    [Google Scholar]
  37. 37. 
    Feng C, Liu Y, Su H, Wang H, Birchler J, Han F. 2015. Recent advances in plant centromere biology. Sci. China Life Sci. 58:240–45
    [Google Scholar]
  38. 38. 
    Folco HD, Pidoux AL, Urano T, Allshire RC. 2008. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94–97
    [Google Scholar]
  39. 39. 
    Fu S, Gao Z, Birchler J, Han F. 2012. Dicentric chromosome formation and epigenetics of centromere formation in plants. J. Genet. Genom. 39:125–30
    [Google Scholar]
  40. 40. 
    Fu S, Lv Z, Gao Z, Wu H, Pang J et al. 2013. De novo centromere formation on a chromosome fragment in maize. PNAS 110:6033–36
    [Google Scholar]
  41. 41. 
    Garsed DW, Marshall OJ, Corbin VD, Hsu A, Di Stefano L et al. 2014. The architecture and evolution of cancer neochromosomes. Cancer Cell 26:653–67
    [Google Scholar]
  42. 42. 
    Gascoigne KE, Cheeseman IM. 2013. Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis. Chromosome Res 21:407–18
    [Google Scholar]
  43. 43. 
    Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM. 2011. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410–22
    [Google Scholar]
  44. 44. 
    Gonzalez M, He H, Dong Q, Sun S, Li F. 2014. Ectopic centromere nucleation by CENP–A in fission yeast. Genetics 198:1433–46
    [Google Scholar]
  45. 45. 
    Greaves IK, Rangasamy D, Ridgway P, Tremethick DJ 2007. H2A.Z contributes to the unique 3D structure of the centromere. PNAS 104:525–30
    [Google Scholar]
  46. 46. 
    Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M et al. 2010. Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet. Genome Res. 129:82–96
    [Google Scholar]
  47. 47. 
    Guo X, Su H, Shi Q, Fu S, Wang J et al. 2016. De novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLOS Genet 12:e1005997
    [Google Scholar]
  48. 48. 
    Hara M, Fukagawa T. 2017. Critical foundation of the kinetochore: the constitutive centromere-associated network (CCAN). Prog. Mol. Subcell Biol. 56:29–57
    [Google Scholar]
  49. 49. 
    Hasson D, Alonso A, Cheung F, Tepperberg JH, Papenhausen PR et al. 2011. Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres. Chromosoma 120:621–32
    [Google Scholar]
  50. 50. 
    Hasson D, Panchenko T, Salimian KJ, Salman MU, Sekulic N et al. 2013. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat. Struct. Mol. Biol. 20:687–95
    [Google Scholar]
  51. 51. 
    Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH. 2006. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 10:303–15
    [Google Scholar]
  52. 52. 
    Hiatt EN, Kentner EK, Dawe RK. 2002. Independently regulated neocentromere activity of two classes of tandem repeat arrays. Plant Cell 14:407–20
    [Google Scholar]
  53. 53. 
    Higgins AW, Gustashaw KM, Willard HF. 2005. Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res 13:745–62
    [Google Scholar]
  54. 54. 
    Hochstenbach R, Nowakowska B, Volleth M, Ummels A, Kutkowska-Kaźmierczak A et al. 2016. Multiple small supernumerary marker chromosomes resulting from maternal meiosis I or II errors. Mol. Syndromol. 6:210–21
    [Google Scholar]
  55. 55. 
    Hori T, Kagawa N, Toyoda A, Fujiyama A, Misu S et al. 2017. Constitutive centromere-associated network controls centromere drift in vertebrate cells. J. Cell Biol. 216:101–13
    [Google Scholar]
  56. 56. 
    Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F et al. 2008. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321:1088–91
    [Google Scholar]
  57. 57. 
    Jafari-Ghahfarokhi H, Moradi-Chaleshtori M, Liehr T, Hashemzadeh-Chaleshtori M, Teimori H, Ghasemi-Dehkordi P. 2015. Small supernumerary marker chromosomes and their correlation with specific syndromes. Adv. Biomed. Res. 4:140
    [Google Scholar]
  58. 58. 
    Jansen LE, Black BE, Foltz DR, Cleveland DW. 2007. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176:795–805
    [Google Scholar]
  59. 59. 
    Jin W, Lamb JC, Zhang W, Kolano B, Birchler JA, Jiang J. 2008. Histone modifications associated with both A and B chromosomes of maize. Chromosome Res 16:1203–14
    [Google Scholar]
  60. 60. 
    Kagansky A, Folco HD, Almeida R, Pidoux AL, Boukaba A et al. 2009. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 324:1716–19
    [Google Scholar]
  61. 61. 
    Karpen GH, Spradling AC. 1990. Reduced DNA polytenization of a minichromosome region undergoing position-effect variegation in Drosophila. Cell 63:97–107
    [Google Scholar]
  62. 62. 
    Karpen GH, Spradling AC. 1992. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics 132:737–53
    [Google Scholar]
  63. 63. 
    Kasinathan S, Henikoff S. 2018. Non-B-form DNA is enriched at centromeres. Mol. Biol. Evol. 35:949–62
    [Google Scholar]
  64. 64. 
    Ketel C, Wang HSW, McClellan M, Bouchonville K, Selmecki A et al. 2009. Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLOS Genet 5:e1000400
    [Google Scholar]
  65. 65. 
    Koren A, Tsai HJ, Tirosh I, Burrack LS, Barkai N, Berman J. 2010. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLOS Genet 6:e1001068
    [Google Scholar]
  66. 66. 
    Koshland D, Rutledge L, Fitzgerald-Hayes M, Hartwell LH 1987. A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell 48:801–12
    [Google Scholar]
  67. 67. 
    Krasikova A, Fukagawa T, Zlotina A. 2012. High-resolution mapping and transcriptional activity analysis of chicken centromere sequences on giant lampbrush chromosomes. Chromosome Res 20:995–1008
    [Google Scholar]
  68. 68. 
    Liehr T, Mrasek K, Weise A, Dufke A, Rodriguez L et al. 2006. Small supernumerary marker chromosomes—progress towards a genotype-phenotype correlation. Cytogenet. Genome Res. 112:23–34
    [Google Scholar]
  69. 69. 
    Liehr T, Weise A. 2007. Frequency of small supernumerary marker chromosomes in prenatal, newborn, developmentally retarded and infertility diagnostics. Int. J. Mol. Med. 19:719–31
    [Google Scholar]
  70. 70. 
    Lo AWI, Craig JM, Saffery R, Kalitsis P, Irvine DV et al. 2001. A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J 20:2087–96
    [Google Scholar]
  71. 71. 
    Lo AWI, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KH. 2001. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 11:448–57
    [Google Scholar]
  72. 72. 
    Logsdon GA, Barrey EJ, Bassett EA, DeNizio JE, Guo LY et al. 2015. Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. J. Cell Biol. 208:521–31
    [Google Scholar]
  73. 73. 
    Maggert KA, Karpen GH. 2000. Acquisition and metastability of centromere identity and function: sequence analysis of a human neocentromere. Genome Res 10:725–28
    [Google Scholar]
  74. 74. 
    Maggert KA, Karpen GH. 2001. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158:1615–28
    [Google Scholar]
  75. 75. 
    Marshall OJ, Chueh AC, Wong LH, Choo KH. 2008. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 82:261–82
    [Google Scholar]
  76. 76. 
    McClintock B. 1930. A cytological demonstration of the location of an interchange between two non-homologous chromosomes of Zea mays. PNAS 16:791–96
    [Google Scholar]
  77. 77. 
    McNulty SM, Sullivan LL, Sullivan BA. 2017. Human centromeres produce chromosome-specific and array-specific alpha satellite transcripts that are complexed with CENP-A and CENP-C. Dev. Cell 42:226–40.e6
    [Google Scholar]
  78. 78. 
    Mendiburo MJ, Padeken J, Fulop S, Schepers A, Heun P. 2011. Drosophila CENH3 is sufficient for centromere formation. Science 334:686–90
    [Google Scholar]
  79. 79. 
    Miga KH, Koren S, Rhie A, Vollger MR, Gershman A et al. 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585:79–84
    [Google Scholar]
  80. 80. 
    Murillo-Pineda M, Valente LP, Dumont M, Mata JF, Fachinetti D, Jansen LET. 2021. Induction of spontaneous human neocentromere formation and long-term maturation. J. Cell Biol. 220:e202007210
    [Google Scholar]
  81. 81. 
    Murphy TD, Karpen GH. 1995. Localization of centromere function in a Drosophila minichromosome. Cell 82:599–609
    [Google Scholar]
  82. 82. 
    Musacchio A, Desai A. 2017. A molecular view of kinetochore assembly and function. Biology 6:15
    [Google Scholar]
  83. 83. 
    Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P et al. 2008. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14:507–22
    [Google Scholar]
  84. 84. 
    Nishimura K, Komiya M, Hori T, Itoh T, Fukagawa T. 2018. 3D genomic architecture reveals that neocentromeres associate with heterochromatin regions. J. Cell Biol. 218:134–49
    [Google Scholar]
  85. 85. 
    Olszak AM, van Essen D, Pereira AJ, Diehl S, Manke T et al. 2011. Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat. Cell Biol. 13:799–808
    [Google Scholar]
  86. 86. 
    Palladino J, Chavan A, Sposato A, Mason TD, Mellone BG. 2020. Targeted de novo centromere formation in Drosophila reveals plasticity and maintenance potential of CENP-A chromatin. Dev. Cell 52:379–94.e7
    [Google Scholar]
  87. 87. 
    Palmer DK, O'Day K, Trong HL, Charbonneau H, Margolis RL 1991. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. PNAS 88:3734–38
    [Google Scholar]
  88. 88. 
    Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ 1981. Highly repeated DNA sequence limited to knob heterochromatin in maize. PNAS 78:4490–94
    [Google Scholar]
  89. 89. 
    Rhoades MM. 1942. Preferential segregation in maize. Genetics 27:395–407
    [Google Scholar]
  90. 90. 
    Rosic S, Kohler F, Erhardt S. 2014. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J. Cell Biol. 207:335–49
    [Google Scholar]
  91. 91. 
    Ross JE, Woodlief KS, Sullivan BA. 2016. Inheritance of the CENP-A chromatin domain is spatially and temporally constrained at human centromeres. Epigenet. Chromatin 9:20
    [Google Scholar]
  92. 92. 
    Roure V, Medina-Pritchard B, Lazou V, Rago L, Anselm E et al. 2019. Reconstituting Drosophila centromere identity in human cells. Cell Rep 29:464–79.e5
    [Google Scholar]
  93. 93. 
    Sanyal K, Baum M, Carbon J 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. PNAS 101:11374–79
    [Google Scholar]
  94. 94. 
    Schotanus K, Heitman J 2020. Centromere deletion in Cryptococcus deuterogattii leads to neocentromere formation and chromosome fusions. eLife 9:e56026
    [Google Scholar]
  95. 95. 
    Schubert I. 2018. What is behind “centromere repositioning”?. Chromosoma 127:229–34
    [Google Scholar]
  96. 96. 
    Scott KC, White CV, Willard HF. 2007. An RNA polymerase III-dependent heterochromatin barrier at fission yeast centromere 1. PLOS ONE 2:e1099
    [Google Scholar]
  97. 97. 
    Shang WH, Hori T, Martins NM, Toyoda A, Misu S et al. 2013. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev. Cell 24:635–48
    [Google Scholar]
  98. 98. 
    Shang WH, Hori T, Toyoda A, Kato J, Popendorf K et al. 2010. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res 20:1219–28
    [Google Scholar]
  99. 99. 
    Slater HR, Nouri S, Earle E, Lo AW, Hale LG, Choo KH. 1999. Neocentromere formation in a stable ring 1p32-p36.1 chromosome. J. Med. Genet. 36:914–18
    [Google Scholar]
  100. 100. 
    Steiner NC, Hahnenberger KM, Clarke L 1993. Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol. Cell. Biol. 13:4578–87
    [Google Scholar]
  101. 101. 
    Stimpson KM, Matheny JE, Sullivan BA. 2012. Dicentric chromosomes: unique models to study centromere function and inactivation. Chromosome Res 20:595–605
    [Google Scholar]
  102. 102. 
    Stimpson KM, Song IY, Jauch A, Holtgreve-Grez H, Hayden KE et al. 2010. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLOS Genet 6:e1001061
    [Google Scholar]
  103. 103. 
    Stimpson KM, Sullivan BA. 2010. Epigenomics of centromere assembly and function. Curr. Opin. Cell Biol. 22:772–80
    [Google Scholar]
  104. 104. 
    Su H, Liu Y, Liu YX, Lv Z, Li H et al. 2016. Dynamic chromatin changes associated with de novo centromere formation in maize euchromatin. Plant J 88:854–66
    [Google Scholar]
  105. 105. 
    Sullivan BA, Karpen GH. 2004. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 11:1076–83
    [Google Scholar]
  106. 106. 
    Sullivan BA, Schwartz S. 1995. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4:2189–97
    [Google Scholar]
  107. 107. 
    Sullivan LL, Boivin CD, Mravinac B, Song IY, Sullivan BA. 2011. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res 19:457
    [Google Scholar]
  108. 108. 
    Sullivan LL, Maloney KA, Towers AJ, Gregory SG, Sullivan BA. 2016. Human centromere repositioning within euchromatin after partial chromosome deletion. Chromosome Res 24:451–66
    [Google Scholar]
  109. 109. 
    Swentowsky KW, Gent JI, Lowry EG, Schubert V, Ran X et al. 2020. Distinct kinesin motors drive two types of maize neocentromeres. Genes Dev 34:1239–51
    [Google Scholar]
  110. 110. 
    Talbert PB, Henikoff S. 2018. Transcribing centromeres: noncoding RNAs and kinetochore assembly. Trends Genet 34:587–99
    [Google Scholar]
  111. 111. 
    Thakur J, Sanyal K. 2013. Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res 23:638–52
    [Google Scholar]
  112. 112. 
    Tomonaga T, Matsushita K, Ishibashi M, Nezu M, Shimada H et al. 2005. Centromere protein H is up-regulated in primary human colorectal cancer and its overexpression induces aneuploidy. Cancer Res 65:4683–89
    [Google Scholar]
  113. 113. 
    Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H et al. 2003. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63:3511–16
    [Google Scholar]
  114. 114. 
    Topp CN, Okagaki RJ, Melo JR, Kynast RG, Phillips RL, Dawe RK. 2009. Identification of a maize neocentromere in an oat-maize addition line. Cytogenet. Genome Res. 124:228–38
    [Google Scholar]
  115. 115. 
    Topp CN, Zhong CX, Dawe RK 2004. Centromere-encoded RNAs are integral components of the maize kinetochore. PNAS 101:15986–91
    [Google Scholar]
  116. 116. 
    Voullaire L, Saffery R, Davies J, Earle E, Kalitsis P et al. 1999. Trisomy 20p resulting from inverted duplication and neocentromere formation. Am. J. Med. Genet. 85:403–8
    [Google Scholar]
  117. 117. 
    Voullaire L, Saffery R, Earle E, Irvine DV, Slater H et al. 2001. Mosaic inv dup(8p) marker chromosome with stable neocentromere suggests neocentromerization is a post-zygotic event. Am. J. Med. Genet. 102:86–94
    [Google Scholar]
  118. 118. 
    Voullaire LE, Slater HR, Petrovic V, Choo KH. 1993. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere?. Am. J. Hum. Genet. 52:1153–63
    [Google Scholar]
  119. 119. 
    Warburton PE. 2004. Chromosomal dynamics of human neocentromere formation. Chromosome Res 12:617–26
    [Google Scholar]
  120. 120. 
    Wevrick R, Earnshaw WC, Howard-Peebles PN, Willard HF 1990. Partial deletion of alpha satellite DNA associated with reduced amounts of the centromere protein CENP-B in a mitotically stable human chromosome rearrangement. Mol. Cell. Biol. 10:6374–80
    [Google Scholar]
  121. 121. 
    Williams BC, Murphy TD, Goldberg ML, Karpen GH. 1998. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat. Genet. 18:30–37
    [Google Scholar]
  122. 122. 
    Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA et al. 2007. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–60
    [Google Scholar]
  123. 123. 
    Wong NC, Wong LH, Quach JM, Canham P, Craig JM et al. 2006. Permissive transcriptional activity at the centromere through pockets of DNA hypomethylation. PLOS Genet 2:e17
    [Google Scholar]
  124. 124. 
    Yan H, Jin W, Nagaki K, Tian S, Ouyang S et al. 2005. Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–38
    [Google Scholar]
  125. 125. 
    Yang R, Li Y, Su Y, Shen Y, Tang D et al. 2016. A functional centromere lacking CentO sequences in a newly formed ring chromosome in rice. J. Genet. Genom. 43:694–701
    [Google Scholar]
  126. 126. 
    Zhang W, Friebe B, Gill BS, Jiang J. 2010. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma 119:553–63
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-020924
Loading
/content/journals/10.1146/annurev-genet-071719-020924
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error