1932

Abstract

Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-021009
2021-11-23
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-021009.html?itemId=/content/journals/10.1146/annurev-genet-071719-021009&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R et al. 2015. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA 314:1850–60
    [Google Scholar]
  2. 2. 
    Abercrombie M. 1979. Contact inhibition and malignancy. Nature 281:259–62
    [Google Scholar]
  3. 3. 
    Agaba M, Ishengoma E, Miller WC, McGrath BC, Hudson CN et al. 2016. Giraffe genome sequence reveals clues to its unique morphology and physiology. Nat. Commun. 7:11519
    [Google Scholar]
  4. 4. 
    Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL et al. 2019. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat. Microbiol. 4:789–99
    [Google Scholar]
  5. 5. 
    Ahn M, Cui J, Irving AT, Wang L-F. 2016. Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing. Sci. Rep. 6:21722
    [Google Scholar]
  6. 6. 
    Amstrup Funder J, Christian Danielsen C, Baandrup U, Martin Bibby B, Carl Andelius T et al. 2017. How heart valves evolve to adapt to an extreme-pressure system: morphologic and biomechanical properties of giraffe heart valves. J. Heart Valve Dis. 26:63–71
    [Google Scholar]
  7. 7. 
    Ardiles ÁO, Tapia-Rojas CC, Mandal M, Alexandre F, Kirkwood A et al. 2012. Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer's disease. PNAS 109:13835–40
    [Google Scholar]
  8. 8. 
    Ashur-Fabian O, Avivi A, Trakhtenbrot L, Adamsky K, Cohen M et al. 2004. Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. PNAS 101:12236–41
    [Google Scholar]
  9. 9. 
    Austad SN, Fischer KE. 1991. Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J. Gerontol. 46:B47–53
    [Google Scholar]
  10. 10. 
    Azpurua J, Ke Z, Chen IX, Zhang Q, Ermolenko DN et al. 2013. Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. PNAS 110:17350–55
    [Google Scholar]
  11. 11. 
    Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ et al. 2017. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132–47.e16
    [Google Scholar]
  12. 12. 
    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ et al. 2016. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530:184–89
    [Google Scholar]
  13. 13. 
    Banerjee A, Baker ML, Kulcsar K, Misra V, Plowright R, Mossman K. 2020. Novel insights into immune systems of bats. Front. Immunol. 11:26:
    [Google Scholar]
  14. 14. 
    Banerjee A, Rapin N, Bollinger T, Misra V. 2017. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci. Rep. 7:2232
    [Google Scholar]
  15. 15. 
    Banerjee A, Zhang X, Yip A, Schulz KS, Irving AT et al. 2020. Positive selection of a serine residue in bat IRF3 confers enhanced antiviral protection. iScience 23:100958
    [Google Scholar]
  16. 16. 
    Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D et al. 2006. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–37
    [Google Scholar]
  17. 17. 
    Ben-David U, Benvenisty N 2011. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer 11:268–77
    [Google Scholar]
  18. 18. 
    Berg von Linde M, Arevström L, Fröbert O. 2015. Insights from the den: how hibernating bears may help us understand and treat human disease. Clin. Transl. Sci. 8:601–5
    [Google Scholar]
  19. 19. 
    Blagosklonny MV. 2013. Big mice die young but large animals live longer. Aging 5:227–33
    [Google Scholar]
  20. 20. 
    Braidy N, Muñoz P, Palacios AG, Castellano-Gonzalez G, Inestrosa NC et al. 2012. Recent rodent models for Alzheimer's disease: clinical implications and basic research. J. Neural Transm. 119:173–95
    [Google Scholar]
  21. 21. 
    Brant JO, Yoon JH, Polvadore T, Barbazuk WB, Maden M. 2016. Cellular events during scar-free skin regeneration in the spiny mouse. Acomys. Wound Repair Regen. 24:75–88
    [Google Scholar]
  22. 22. 
    Braun K, Poeggel G. 2001. Recognition of Mother's voice evokes metabolic activation in the medial prefrontal cortex and lateral thalamus of Octodon degus pups. Neuroscience 103:861–64
    [Google Scholar]
  23. 23. 
    Buffenstein R. 2008. Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J. Comp. Physiol. B 178:439–45
    [Google Scholar]
  24. 24. 
    Buffenstein R, Jarvis JUM. 2002. The naked mole rat. a new record for the oldest living rodent. Sci. Aging Knowledge Environ. 2002:pe7
    [Google Scholar]
  25. 25. 
    Chang AR, Ferrer CM, Mostoslavsky R. 2020. SIRT6, a mammalian deacylase with multitasking abilities. Physiol. Rev. 100:145–69
    [Google Scholar]
  26. 26. 
    Chionh YT, Cui J, Koh J, Mendenhall IH, Ng JHJ et al. 2019. High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress Chaperones 24:835–49
    [Google Scholar]
  27. 27. 
    Choo SW, Rayko M, Tan TK, Hari R, Komissarov A et al. 2016. Pangolin genomes and the evolution of mammalian scales and immunity. Genome Res. 26:1312–22
    [Google Scholar]
  28. 28. 
    Colbert RW, Holley CT, Stone LH, Crampton M, Adabag S et al. 2015. The recovery of hibernating hearts lies on a spectrum: from bears in nature to patients with coronary artery disease. J. Cardiovasc. Transl. Res. 8:244–52
    [Google Scholar]
  29. 29. 
    Cole JE, Steeil JC, Sarro SJ, Kerns KL, Cartoceti A. 2020. Chordoma of the sacrum of an adult naked mole-rat. J. Vet. Diagn. Investig. 32:132–35
    [Google Scholar]
  30. 30. 
    Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ et al. 2005. Tumour biology: senescence in premalignant tumours. Nature 436:642
    [Google Scholar]
  31. 31. 
    Colonnello V, Iacobucci P, Fuchs T, Newberry RC, Panksepp J. 2011. Octodon degus. A useful animal model for social-affective neuroscience research: basic description of separation distress, social attachments and play. Neurosci. Biobehav. Rev. 35:1854–63
    [Google Scholar]
  32. 32. 
    Dave KR, Prado R, Raval AP, Drew KL, Perez-Pinzon MA. 2006. The arctic ground squirrel brain is resistant to injury from cardiac arrest during euthermia. Stroke 37:1261–65
    [Google Scholar]
  33. 33. 
    Day SL, Ramshaw IA, Ramsay AJ, Ranasinghe C. 2008. Differential effects of the type I interferons α4, β, and ε on antiviral activity and vaccine efficacy. J. Immunol. 180:7158–66
    [Google Scholar]
  34. 34. 
    De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ et al. 2019. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
    [Google Scholar]
  35. 35. 
    de la Torre JC. 2004. Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol. 3:184–90
    [Google Scholar]
  36. 36. 
    Deacon RM, Altimiras FJ, Bazan-Leon EA, Pyarasani RD, Nachtigall FM et al. 2015. Natural AD-like neuropathology in Octodon degus: impaired burrowing and neuroinflammation. Curr. Alzheimer Res. 12:314–22
    [Google Scholar]
  37. 37. 
    Delaney MA, Ward JM, Walsh TF, Chinnadurai SK, Kerns K et al. 2016. Initial case reports of cancer in naked mole-rats (Heterocephalus glaber). Vet. Pathol. 53:691–96
    [Google Scholar]
  38. 38. 
    Dhingra R, Vasan RS. 2012. Age as a risk factor. Med. Clin. N. Am. 96:87–91
    [Google Scholar]
  39. 39. 
    Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P et al. 2006. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–42
    [Google Scholar]
  40. 40. 
    Diamond GA. 1989. Hibernating myocardium. Am. Heart J. 118:1361
    [Google Scholar]
  41. 41. 
    Diamond GA, Forrester JS, deLuz PL, Wyatt HL, Swan HJC. 1978. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am. Heart J. 95:204–9
    [Google Scholar]
  42. 42. 
    Drummond DA, Wilke CO. 2008. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–52
    [Google Scholar]
  43. 43. 
    Egorov YV, Glukhov AV, Efimov IR, Rosenshtraukh LV. 2012. Hypothermia-induced spatially discordant action potential duration alternans and arrhythmogenesis in nonhibernating versus hibernating mammals. Am. J. Physiol. Heart Circ. Physiol. 303:H1035–46
    [Google Scholar]
  44. 44. 
    Elsasser A, Schlepper M, Klovekorn WP, Cai WJ, Zimmermann R et al. 1997. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 96:2920–31
    [Google Scholar]
  45. 45. 
    Englund M. 2010. The role of biomechanics in the initiation and progression of OA of the knee. Best Pract. Res. Clin. Rheumatol. 24:39–46
    [Google Scholar]
  46. 46. 
    Escalera-Zamudio M, Zepeda-Mendoza ML, Loza-Rubio E, Rojas-Anaya E, Méndez-Ojeda ML et al. 2015. The evolution of bat nucleic acid-sensing Toll-like receptors. Mol. Ecol. 24:5899–909
    [Google Scholar]
  47. 47. 
    Esquerda-Canals G, Montoliu-Gaya L, Güell-Bosch J, Villegas S. 2017. Mouse models of Alzheimer's disease. J. Alzheimers Dis. 57:1171–83
    [Google Scholar]
  48. 48. 
    Fang X, Nevo E, Han L, Levanon EY, Zhao J et al. 2014. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat. Commun. 5:3966
    [Google Scholar]
  49. 49. 
    Fazzalari A, Basadonna G, Kucukural A, Tanriverdi K, Koupenova M et al. 2021. A translational model for venous thromboembolism: microRNA expression in hibernating black bears. J. Surg. Res. 257:203–12
    [Google Scholar]
  50. 50. 
    Fedorov VB, Goropashnaya AV, Tøien Ø, Stewart NC, Chang C et al. 2011. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus). BMC Genom. 12:171
    [Google Scholar]
  51. 51. 
    Fedorov VV, Li L, Glukhov A, Shishkina I, Aliev RR et al. 2005. Hibernator Citellus undulatus maintains safe cardiac conduction and is protected against tachyarrhythmias during extreme hypothermia: possible role of C×43 and C×45 up-regulation. Heart Rhythm 2:966–75
    [Google Scholar]
  52. 52. 
    Fischer H, Tschachler E, Eckhart L. 2020. Cytosolic DNA sensing through cGAS and STING is inactivated by gene mutations in pangolins. Apoptosis 25:474–80
    [Google Scholar]
  53. 53. 
    Fischer H, Tschachler E, Eckhart L. 2020. Pangolins lack IFIH1/MDA5, a cytoplasmic RNA sensor that initiates innate immune defense upon coronavirus infection. Front. Immunol. 11:939
    [Google Scholar]
  54. 54. 
    Foidl BM, Humpel C. 2020. Can mouse models mimic sporadic Alzheimer's disease?. Neural Regen. Res. 15:401–6
    [Google Scholar]
  55. 55. 
    Foote AD, Liu Y, Thomas GW, Vinar T, Alfoldi J et al. 2015. Convergent evolution of the genomes of marine mammals. Nat. Genet. 47:272–75
    [Google Scholar]
  56. 56. 
    Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M et al. 2000. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908:244–54
    [Google Scholar]
  57. 57. 
    Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. 2018. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14:576–90
    [Google Scholar]
  58. 58. 
    Gerstein AD, Phillips TJ, Rogers GS, Gilchrest BA. 1993. Wound healing and aging. Dermatol. Clin. 11:749–57
    [Google Scholar]
  59. 59. 
    Gillet LC, Scharer OD. 2006. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 106:253–76
    [Google Scholar]
  60. 60. 
    Goodson WH 3rd, Hunt TK. 1979. Wound healing and aging. J. Investig. Dermatol. 73:88–91
    [Google Scholar]
  61. 61. 
    Gorbunova V, Bozzella MJ, Seluanov A. 2008. Rodents for comparative aging studies: from mice to beavers. Age 30:111–19
    [Google Scholar]
  62. 62. 
    Gorbunova V, Hine C, Tian X, Ablaeva J, Gudkov AV et al. 2012. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. PNAS 109:19392–96
    [Google Scholar]
  63. 63. 
    Gorbunova V, Seluanov A. 2016. DNA double strand break repair, aging and the chromatin connection. Mutat. Res. 788:2–6
    [Google Scholar]
  64. 64. 
    Gorbunova V, Seluanov A, Kennedy BK. 2020. The world goes bats: living longer and tolerating viruses. Cell Metab. 32:31–43
    [Google Scholar]
  65. 65. 
    Gosain A, DiPietro LA. 2004. Aging and wound healing. World J. Surg. 28:321–26
    [Google Scholar]
  66. 66. 
    Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. 1999. Creation of human tumour cells with defined genetic elements. Nature 400:464–68
    [Google Scholar]
  67. 67. 
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  68. 68. 
    Hargens AR, Millard RW, Pettersson K, Johansen K. 1987. Gravitational haemodynamics and oedema prevention in the giraffe. Nature 329:59–60
    [Google Scholar]
  69. 69. 
    Harley CB, Futcher AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–60
    [Google Scholar]
  70. 70. 
    Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM et al. 2009. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–95
    [Google Scholar]
  71. 71. 
    Hasty P, Campisi J, Hoeijmakers J, van Steeg H, Vijg J. 2003. Aging and genome maintenance: lessons from the mouse?. Science 299:1355–59
    [Google Scholar]
  72. 72. 
    Holmes DJ, Austad SN. 1994. Fly now, die later: life-history correlates of gliding and flying in mammals. J. Mammal. 75:224–26
    [Google Scholar]
  73. 73. 
    Holmes MWA, Bayliss MT, Muir H. 1988. Hyaluronic acid in human articular cartilage. Age-related changes in content and size. Biochem. J. 250:435–41
    [Google Scholar]
  74. 74. 
    Hughes GM, Leech J, Puechmaille SJ, Lopez JV, Teeling EC. 2018. Is there a link between aging and microbiome diversity in exceptional mammalian longevity?. PeerJ 6:e4174
    [Google Scholar]
  75. 75. 
    Hurley MJ, Deacon RMJ, Beyer K, Ioannou E, Ibáñez A et al. 2018. The long-lived Octodon degus as a rodent drug discovery model for Alzheimer's and other age-related diseases. Pharmacol. Ther. 188:36–44
    [Google Scholar]
  76. 76. 
    Inestrosa NC, Reyes AE, Chacón MA, Cerpa W, Villalón A et al. 2005. Human-like rodent amyloid-β-peptide determines Alzheimer pathology in aged wild-type Octodon degu. Neurobiol. Aging 26:1023–28
    [Google Scholar]
  77. 77. 
    Inestrosa NC, Rios JA, Cisternas P, Tapia-Rojas C, Rivera DS et al. 2015. Age progression of neuropathological markers in the brain of the Chilean rodent Octodon degus, a natural model of Alzheimer's disease. Brain Pathol. 25:679–91
    [Google Scholar]
  78. 78. 
    Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenko K et al. 2020. Six reference-quality genomes reveal evolution of bat adaptations. Nature 583:578–84
    [Google Scholar]
  79. 79. 
    Jeck WR, Siebold AP, Sharpless NE. 2012. Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11:727–31
    [Google Scholar]
  80. 80. 
    Jensen FB. 2009. The role of nitrite in nitric oxide homeostasis: a comparative perspective. Biochim. Biophys. Acta Bioenerg. 1787:841–48
    [Google Scholar]
  81. 81. 
    Jørgensen PG, Evans A, Kindberg J, Olsen LH, Galatius S, Fröbert O. 2020. Cardiac adaptation in hibernating, free-ranging Scandinavian Brown Bears. Ursus arctos. Sci. Rep. 10:247
    [Google Scholar]
  82. 82. 
    Joven A, Elewa A, Simon A. 2019. Model systems for regeneration: salamanders. Development 146:dev167700
    [Google Scholar]
  83. 83. 
    Kacprzyk J, Hughes GM, Palsson-McDermott EM, Quinn SR, Puechmaille SJ et al. 2017. A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance. Acta Chiropterol. 19:219–28
    [Google Scholar]
  84. 84. 
    Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G et al. 2012. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–21
    [Google Scholar]
  85. 85. 
    Ke Z, Mallik P, Johnson AB, Luna F, Nevo E et al. 2017. Translation fidelity coevolves with longevity. Aging Cell 16:988–93
    [Google Scholar]
  86. 86. 
    Keane M, Semeiks J, Webb AE, Li YI, Quesada V et al. 2015. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 10:112–22
    [Google Scholar]
  87. 87. 
    Kirkwood TB. 2005. Understanding the odd science of aging. Cell 120:437–47
    [Google Scholar]
  88. 88. 
    Kloner RA. 2020. Stunned and hibernating myocardium: Where are we nearly 4 decades later?. J. Am. Heart Assoc. 9:e015502
    [Google Scholar]
  89. 89. 
    Kothapalli D, Zhao L, Hawthorne EA, Cheng Y, Lee E et al. 2007. Hyaluronan and CD44 antagonize mitogen-dependent cyclin D1 expression in mesenchymal cells. J. Cell Biol. 176:535–44
    [Google Scholar]
  90. 90. 
    Kragl M, Knapp D, Nacu E, Khattak S, Maden M et al. 2009. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65
    [Google Scholar]
  91. 91. 
    Laing ED, Sterling SL, Weir DL, Beauregard CR, Smith IL et al. 2019. Enhanced autophagy contributes to reduced viral infection in black flying fox cells. Viruses 11:260:
    [Google Scholar]
  92. 92. 
    Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF et al. 2020. Identifying SARS-CoV-2-related corona-viruses in Malayan pangolins. Nature 583:282–85
    [Google Scholar]
  93. 93. 
    Land H, Parada LF, Weinberg RA. 1983. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602
    [Google Scholar]
  94. 94. 
    Lee S-G, Mikhalchenko AE, Yim SH, Lobanov AV, Park J-K et al. 2017. Naked mole rat induced pluripotent stem cells and their contribution to interspecific chimera. Stem Cell Rep. 9:1706–20
    [Google Scholar]
  95. 95. 
    Leonova KI, Brodsky L, Lipchick B, Pal M, Novototskaya L et al. 2013. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. PNAS 110:E89–98
    [Google Scholar]
  96. 96. 
    Levenberg S, Yarden A, Kam Z, Geiger B. 1999. p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry. Oncogene 18:869–76
    [Google Scholar]
  97. 97. 
    Li XC, Wei L, Zhang GQ, Bai ZL, Hu YY et al. 2011. Ca2+ cycling in heart cells from ground squirrels: adaptive strategies for intracellular Ca2+ homeostasis. PLOS ONE 6:e24787
    [Google Scholar]
  98. 98. 
    Liang S, Mele J, Wu Y, Buffenstein R, Hornsby PJ. 2010. Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell 9:626–35
    [Google Scholar]
  99. 99. 
    Lipman R, Galecki A, Burke DT, Miller RA. 2004. Genetic loci that influence cause of death in a heterogeneous mouse stock. J. Gerontol. A Biol. Sci. Med. Sci. 59:977–83
    [Google Scholar]
  100. 100. 
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell 153:1194–217
    [Google Scholar]
  101. 101. 
    MacRae SL, Croken MM, Calder RB, Aliper A, Milholland B et al. 2015. DNA repair in species with extreme lifespan differences. Aging 7:1171–84
    [Google Scholar]
  102. 102. 
    Manov I, Hirsh M, Iancu TC, Malik A, Sotnichenko N et al. 2013. Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitro evidence. BMC Biol. 11:91
    [Google Scholar]
  103. 103. 
    Mao Z, Hine C, Tian X, Van Meter M, Au M et al. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332:1443–46
    [Google Scholar]
  104. 104. 
    Marley AR, Nan H 2016. Epidemiology of colorectal cancer. Int. J. Mol. Epidemiol. Genet. 7:105–14
    [Google Scholar]
  105. 105. 
    Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C et al. 2016. Osteoarthritis. Nat. Rev. Dis. Primers 2:16072
    [Google Scholar]
  106. 106. 
    Martens UM, Chavez EA, Poon SS, Schmoor C, Lansdorp PM. 2000. Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp. Cell Res. 256:291–99
    [Google Scholar]
  107. 107. 
    Melen GJ, Pesce CG, Rossi MS, Kornblihtt AR. 1999. Novel processing in a mammalian nuclear 28S pre-rRNA: tissue-specific elimination of an ‘intron’ bearing a hidden break site. EMBO J. 18:3107–18
    [Google Scholar]
  108. 108. 
    Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334:521–24
    [Google Scholar]
  109. 109. 
    Meza R, Jeon J, Moolgavkar SH, Luebeck EG. 2008. Age-specific incidence of cancer: phases, transitions, and biological implications. PNAS 105:16284–89
    [Google Scholar]
  110. 110. 
    Mitchell G, Bobbitt JP, Devries S. 2008. Cerebral perfusion pressure in giraffe: modelling the effects of head-raising and -lowering. J. Theor. Biol. 252:98–108
    [Google Scholar]
  111. 111. 
    Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T et al. 2016. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat. Commun. 7:11471
    [Google Scholar]
  112. 112. 
    Mugahid DA, Sengul TG, You X, Wang Y, Steil L et al. 2019. Proteomic and transcriptomic changes in hibernating grizzly bears reveal metabolic and signaling pathways that protect against muscle atrophy. Sci. Rep. 9:19976
    [Google Scholar]
  113. 113. 
    Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J et al. 2013. Programmed cell senescence during mammalian embryonic development. Cell 155:1104–18
    [Google Scholar]
  114. 114. 
    Myers A, McGonigle P. 2019. Overview of transgenic mouse models for Alzheimer's disease. Curr. Protoc. Neurosci. 89:e81
    [Google Scholar]
  115. 115. 
    Nelson OL, Robbins CT. 2010. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis). J. Comp. Physiol. B 180:465–73
    [Google Scholar]
  116. 116. 
    Nelson OL, Robbins CT. 2015. Cardiovascular function in large to small hibernators: bears to ground squirrels. J. Comp. Physiol. B 185:265–79
    [Google Scholar]
  117. 117. 
    Nevo E. 1999. Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global Convergence Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  118. 118. 
    Niccoli T, Partridge L. 2012. Ageing as a risk factor for disease. Curr. Biol. 22:R741–52
    [Google Scholar]
  119. 119. 
    North BJ, Sinclair DA. 2012. The intersection between aging and cardiovascular disease. Circ. Res. 110:1097–108
    [Google Scholar]
  120. 120. 
    Nowak RM. 1999. Walker's Mammals of the World Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  121. 121. 
    Okanoya K, Tokimoto N, Kumazawa N, Hihara S, Iriki A. 2008. Tool-use training in a species of rodent: the emergence of an optimal motor strategy and functional understanding. PLOS ONE 3:e1860
    [Google Scholar]
  122. 122. 
    Orgel LE. 1963. The maintenance of the accuracy of protein synthesis and its relevance to ageing. PNAS 49:517–21
    [Google Scholar]
  123. 123. 
    Orgel LE. 1970. The maintenance of the accuracy of protein synthesis and its relevance to ageing: a correction. PNAS 67:1476
    [Google Scholar]
  124. 124. 
    Orgel LE. 1973. Ageing of clones of mammalian cells. Nature 243:441–45
    [Google Scholar]
  125. 125. 
    O'Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DTS et al. 2014. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 20:741–45
    [Google Scholar]
  126. 126. 
    Peto R, Roe FJ, Lee PN, Levy L, Clack J. 1975. Cancer and ageing in mice and men. Br. J. Cancer 32:411–26
    [Google Scholar]
  127. 127. 
    Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J et al. 1994. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 8:9–22
    [Google Scholar]
  128. 128. 
    Ponta H, Sherman L, Herrlich PA. 2003. CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4:33–45
    [Google Scholar]
  129. 129. 
    Pritham EJ, Feschotte C. 2007. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. PNAS 104:1895–900
    [Google Scholar]
  130. 130. 
    Puré E, Assoian RK. 2009. Rheostatic signaling by CD44 and hyaluronan. Cell Signal. 21:651–55
    [Google Scholar]
  131. 131. 
    Quinones QJ, Zhang Z, Ma Q, Smith MP, Soderblom E et al. 2016. Proteomic profiling reveals adaptive responses to surgical myocardial ischemia-reperfusion in hibernating arctic ground squirrels compared to rats. Anesthesiology 124:1296–310
    [Google Scholar]
  132. 132. 
    Quirici V, Castro RA, Oyarzún J, Ebensperger LA. 2008. Female degus (Octodon degus) monitor their environment while foraging socially. Anim. Cogn. 11:441–48
    [Google Scholar]
  133. 133. 
    Rahimtoola SH. 1989. The hibernating myocardium. Am. Heart J. 117:211–21
    [Google Scholar]
  134. 134. 
    Rangarajan A, Hong SJ, Gifford A, Weinberg RA 2004. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6:171–83
    [Google Scholar]
  135. 135. 
    Revsbech IG, Fago A. 2017. Regulation of blood oxygen transport in hibernating mammals. J. Comp. Physiol. B 187:847–56
    [Google Scholar]
  136. 136. 
    Rim SH, Seeff L, Ahmed F, King JB, Coughlin SS. 2009. Colorectal cancer incidence in the United States, 1999. 2004: an updated analysis of data from the National Program of Cancer Registries and the Surveillance, Epidemiology, and End Results Program. Cancer 115:1967–76
    [Google Scholar]
  137. 137. 
    Ritchie H, Roser M. 2018. Causes of death. . Our World in Data. https://ourworldindata.org/causes-of-death
    [Google Scholar]
  138. 138. 
    Rogina B, Helfand SL, Frankel S. 2002. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298:1745
    [Google Scholar]
  139. 139. 
    Roichman A, Elhanati S, Aon MA, Abramovich I, Di Francesco A et al. 2021. Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat. Commun. 12:3208
    [Google Scholar]
  140. 140. 
    Rose MR. 1991. Evolutionary Biology of Aging New York: Oxford Univ. Press
    [Google Scholar]
  141. 141. 
    Rozhok AI, DeGregori J. 2015. Toward an evolutionary model of cancer: considering the mechanisms that govern the fate of somatic mutations. PNAS 112:8914–21
    [Google Scholar]
  142. 142. 
    Ruby JG, Smith M, Buffenstein R. 2018. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. eLife 7:e31157
    [Google Scholar]
  143. 143. 
    Rutanen J, Leppänen P, Tuomisto TT, Rissanen TT, Hiltunen MO et al. 2003. Vascular endothelial growth factor-D expression in human atherosclerotic lesions. Cardiovasc. Res. 59:971–79
    [Google Scholar]
  144. 144. 
    Saha S, Panigrahi DP, Patil S, Bhutia SK. 2018. Autophagy in health and disease: a comprehensive review. Biomed. Pharmacother. 104:485–95
    [Google Scholar]
  145. 145. 
    Salazar C, Valdivia G, Ardiles AO, Ewer J, Palacios AG. 2016. Genetic variants associated with neurodegenerative Alzheimer disease in natural models. Biol. Res. 49:14
    [Google Scholar]
  146. 146. 
    Salmon AB, Leonard S, Masamsetti V, Pierce A, Podlutsky AJ et al. 2009. The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J. 23:2317–26
    [Google Scholar]
  147. 147. 
    Sandoval AGW, Maden M. 2020. Regeneration in the spiny mouse, Acomys, a new mammalian model. Curr. Opin. Genet. Dev. 64:31–36
    [Google Scholar]
  148. 148. 
    Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. 2012. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489:561–65
    [Google Scholar]
  149. 149. 
    Seim I, Fang X, Xiong Z, Lobanov AV, Huang Z et al. 2013. Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii. Nat. Commun. 4:2212
    [Google Scholar]
  150. 150. 
    Seim I, Ma S, Zhou X, Gerashchenko MV, Lee S-G et al. 2014. The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging 6:879–99
    [Google Scholar]
  151. 151. 
    Selman C, Tullet JMA, Wieser D, Irvine E, Lingard SJ et al. 2009. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–44
    [Google Scholar]
  152. 152. 
    Seluanov A, Chen Z, Hine C, Sasahara TH, Ribeiro AA et al. 2007. Telomerase activity coevolves with body mass not lifespan. Aging Cell 6:45–52
    [Google Scholar]
  153. 153. 
    Seluanov A, Gladyshev VN, Vijg J, Gorbunova V. 2018. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 18:433–41
    [Google Scholar]
  154. 154. 
    Seluanov A, Hine C, Azpurua J, Feigenson M, Bozzella M et al. 2009. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. PNAS 106:19352–57
    [Google Scholar]
  155. 155. 
    Seluanov A, Hine C, Bozzella M, Hall A, Sasahara TH et al. 2008. Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell 7:813–23
    [Google Scholar]
  156. 156. 
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602
    [Google Scholar]
  157. 157. 
    Shattuck MR, Williams SA. 2010. Arboreality has allowed for the evolution of increased longevity in mammals. PNAS 107:4635–39
    [Google Scholar]
  158. 158. 
    Siegel RL, Miller KD, Fuchs HE, Jemal A. 2021. Cancer statistics, 2021. CA Cancer J. Clin. 71:7–33
    [Google Scholar]
  159. 159. 
    Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS et al. 2019. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 29:871–85.e5
    [Google Scholar]
  160. 160. 
    Singhal NS, Bai M, Lee EM, Luo S, Cook KR, Ma DK. 2020. Cytoprotection by a naturally occurring variant of ATP5G1 in Arctic ground squirrel neural progenitor cells. eLife 9:e55578
    [Google Scholar]
  161. 161. 
    Smerup M, Damkjær M, Brøndum E, Baandrup UT, Kristiansen SB et al. 2016. The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output. J. Exp. Biol. 219:457–63
    [Google Scholar]
  162. 162. 
    Stewart DC, Serrano PN, Rubiano A, Yokosawa R, Sandler J et al. 2018. Unique behavior of dermal cells from regenerative mammal, the African Spiny Mouse, in response to substrate stiffness. J. Biomech. 81:149–54
    [Google Scholar]
  163. 163. 
    Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC et al. 2013. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–30
    [Google Scholar]
  164. 164. 
    Sulak M, Fong L, Mika K, Chigurupati S, Yon L et al. 2016. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 5:e11994
    [Google Scholar]
  165. 165. 
    Suva ML, Riggi N, Bernstein BE. 2013. Epigenetic reprogramming in cancer. Science 339:1567–70
    [Google Scholar]
  166. 166. 
    Tacutu R, Budovsky A, Yanai H, Fraifeld VE. 2011. Molecular links between cellular senescence, longevity and age-related diseases—a systems biology perspective. Aging 3:1178–91
    [Google Scholar]
  167. 167. 
    Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G et al. 2013. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41:D1027–33
    [Google Scholar]
  168. 168. 
    Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D et al. 2018. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res. 46:D1083D90
    [Google Scholar]
  169. 169. 
    Taguchi T, Kotelsky A, Takasugi M, Chang M, Ke Z et al. 2020. Naked mole-rats are extremely resistant to post-traumatic osteoarthritis. Aging Cell 19:e13255
    [Google Scholar]
  170. 170. 
    Takasugi M, Firsanov D, Tombline G, Ning H, Ablaeva J et al. 2020. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat. Commun. 11:2376
    [Google Scholar]
  171. 171. 
    Tan L, Ke Z, Tombline G, Macoretta N, Hayes K et al. 2017. Naked mole rat cells have a stable epigenome that resists iPSC reprogramming. Stem Cell Rep. 9:1721–34
    [Google Scholar]
  172. 172. 
    Tarumi T, Zhang R. 2018. Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness. J. Neurochem. 144:595–608
    [Google Scholar]
  173. 173. 
    Taylor KR, Milone NA, Rodriguez CE. 2017. Four cases of spontaneous neoplasia in the naked mole-rat (Heterocephalus glaber), a putative cancer-resistant species. J. Gerontol. A Biol. Sci. Med. Sci. 72:38–43
    [Google Scholar]
  174. 174. 
    Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M et al. 2013. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499:346–49
    [Google Scholar]
  175. 175. 
    Tian X, Azpurua J, Ke Z, Augereau A, Zhang ZD et al. 2015. INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. PNAS 112:1053–58
    [Google Scholar]
  176. 176. 
    Tian X, Doerig K, Park R, Qin ACR, Hwang C et al. 2018. Evolution of telomere maintenance and tumour suppressor mechanisms across mammals. Philos. Trans. R. Soc. B 373:20160443
    [Google Scholar]
  177. 177. 
    Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L et al. 2019. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell 177:622–38.e22
    [Google Scholar]
  178. 178. 
    Tian X, Seluanov A, Gorbunova V. 2017. Molecular mechanisms determining lifespan in short- and long-lived species. Trends Endocrinol. Metab. 28:722–34
    [Google Scholar]
  179. 179. 
    Toole BP. 2004. Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4:528–39
    [Google Scholar]
  180. 180. 
    Toren D, Kulaga A, Jethva M, Rubin E, Snezhkina AV et al. 2020. Gray whale transcriptome reveals longevity adaptations associated with DNA repair and ubiquitination. Aging Cell 19:e13158
    [Google Scholar]
  181. 181. 
    Toussaint O, Dumont P, Dierick JF, Pascal T, Frippiat C et al. 2000. Stress-induced premature senescence: essence of life, evolution, stress, and aging. Ann. N. Y. Acad. Sci. 908:85–98
    [Google Scholar]
  182. 182. 
    Toussaint O, Medrano EE, von Zglinicki T 2000. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp. Gerontol. 35:927–45
    [Google Scholar]
  183. 183. 
    Vazquez JM, Sulak M, Chigurupati S, Lynch VJ. 2018. A zombie LIF gene in elephants is upregulated by TP53 to induce apoptosis in response to DNA damage. Cell Rep. 24:1765–76
    [Google Scholar]
  184. 184. 
    Vieira WA, Wells KM, McCusker CD. 2020. Advancements to the axolotl model for regeneration and aging. Gerontology 66:212–22
    [Google Scholar]
  185. 185. 
    Villiard É, Brinkmann H, Moiseeva O, Mallette FA, Ferbeyre G, Roy S 2007. Urodele p53 tolerates amino acid changes found in p53 variants linked to human cancer. BMC Evol. Biol. 7:180
    [Google Scholar]
  186. 186. 
    White RR, Vijg J. 2016. Do DNA double-strand breaks drive aging?. Mol. Cell 63:729–38
    [Google Scholar]
  187. 187. 
    Williams GC. 1957. Pleiotropy, natural selection, and the evolution of senescence. Evol. Int. J. Org. Evol. 11:398–411
    [Google Scholar]
  188. 188. 
    Wylie A, Jones AE, D'Brot A, Lu W-J, Kurtz P et al. 2016. p53 genes function to restrain mobile elements. Genes Dev. 30:64–77
    [Google Scholar]
  189. 189. 
    Xi Y, Day SL, Jackson RJ, Ranasinghe C. 2012. Role of novel type I interferon epsilon in viral infection and mucosal immunity. Mucosal Immunol. 5:610–22
    [Google Scholar]
  190. 190. 
    Xia X, Jiang Q, McDermott J, Han JJ. 2018. Aging and Alzheimer's disease: comparison and associations from molecular to system level. Aging Cell 17:e12802
    [Google Scholar]
  191. 191. 
    Xie J, Li Y, Shen X, Goh G, Zhu Y et al. 2018. Dampened STING-dependent interferon activation in bats. Cell Host Microbe 23:297–301.e4
    [Google Scholar]
  192. 192. 
    Xing CY, Tarumi T, Liu J, Zhang Y, Turner M et al. 2017. Distribution of cardiac output to the brain across the adult lifespan. J. Cereb. Blood Flow Metab. 37:2848–56
    [Google Scholar]
  193. 193. 
    Xue W, Zender L, Miething C, Dickins RA, Hernando E et al. 2007. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–60
    [Google Scholar]
  194. 194. 
    Yanai H, Fraifeld VE. 2018. The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Res. Rev. 41:18–33
    [Google Scholar]
  195. 195. 
    Yim HS, Cho YS, Guang X, Kang SG, Jeong JY et al. 2014. Minke whale genome and aquatic adaptation in cetaceans. Nat. Genet. 46:88–92
    [Google Scholar]
  196. 196. 
    Youm Y-H, Grant RW, McCabe LR, Albarado DC, Nguyen KY et al. 2013. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18:519–32
    [Google Scholar]
  197. 197. 
    Yun MH, Gates PB, Brockes JP. 2013. Regulation of p53 is critical for vertebrate limb regeneration. PNAS 110:17392–97
    [Google Scholar]
  198. 198. 
    Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA et al. 2013. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:456–60
    [Google Scholar]
  199. 199. 
    Zhang T, Wu Q, Zhang Z. 2020. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30:1346–51.e2
    [Google Scholar]
  200. 200. 
    Zhao J, Tian X, Zhu Y, Zhang Z, Rydkina E et al. 2020. Reply to: Transformation of naked mole-rat cells. Nature 583:E8–13
    [Google Scholar]
  201. 201. 
    Zhao Y, Tyshkovskiy A, Muñoz-Espín D, Tian X, Serrano M et al. 2018. Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. PNAS 115:1801–6
    [Google Scholar]
  202. 202. 
    Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J et al. 2016. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. PNAS 113:2696–701
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-021009
Loading
/content/journals/10.1146/annurev-genet-071719-021009
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error