1932

Abstract

The ciliate genus served as one of the first model systems in microbial eukaryotic genetics, contributing much to the early understanding of phenomena as diverse as genome rearrangement, cryptic speciation, cytoplasmic inheritance, and endosymbiosis, as well as more recently to the evolution of mating types, introns, and roles of small RNAs in DNA processing. Substantial progress has recently been made in the area of comparative and population genomics. species combine some of the lowest known mutation rates with some of the largest known effective populations, along with likely very high recombination rates, thereby harboring a population-genetic environment that promotes an exceptionally efficient capacity for selection. As a consequence, the genomes are extraordinarily streamlined, with very small intergenic regions combined with small numbers of tiny introns. The subject of the bulk of research, the ancient species complex, is descended from two whole-genome duplication events that retain high degrees of synteny, thereby providing an exceptional platform for studying the fates of duplicate genes. Despite having a common ancestor dating to several hundred million years ago, the known descendant species are morphologically indistinguishable, raising significant questions about the common view that gene duplications lead to the origins of evolutionary novelties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071819-104035
2023-11-27
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/genet/57/1/annurev-genet-071819-104035.html?itemId=/content/journals/10.1146/annurev-genet-071819-104035&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abello A, Régnier V, Arnaiz O, Le Bars R, Bétermier M, Bischerour J. 2020. Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination. PLOS Genet. 16:e1008723
    [Google Scholar]
  2. 2.
    Amar L. 1994. Chromosome end formation and internal sequence elimination as alternative genomic rearrangements in the ciliate Paramecium. J. Mol. Biol. 236:421–26
    [Google Scholar]
  3. 3.
    Arnaiz O, Mathy N, Baudry C, Malinsky S, Aury J-M et al. 2012. The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLOS Genet. 8:e1002984
    [Google Scholar]
  4. 4.
    Arnaiz O, Meyer E, Sperling L. 2020. ParameciumDB 2019: integrating genomic data across the genus for functional and evolutionary biology. Nucleic Acids Res. 48:D599–605
    [Google Scholar]
  5. 5.
    Arnaiz O, Van Dijk E, Bétermier M, Lhuillier-Akakpo M, De Vanssay A et al. 2017. Improved methods and resources for Paramecium genomics: transcription units, gene annotation and gene expression. BMC Genom. 18:483
    [Google Scholar]
  6. 6.
    Aufderheide KJ, Daggett P-M, Nerad TA. 1983. Paramecium sonneborni n. sp., a new member of the Paramecium aurelia species-complex. J. Protozool. 30:128–31
    [Google Scholar]
  7. 7.
    Aury J-M, Jaillon O, Duret L, Noel B, Jubin C et al. 2006. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–78
    [Google Scholar]
  8. 8.
    Barth D, Krenek S, Fokin SI, Berendonk TU. 2006. Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome c oxidase I sequences. J. Eukaryot. Microbiol. 53:20–25
    [Google Scholar]
  9. 9.
    Bateson W. 2009. Heredity and variation in modern lights. Darwin and Modern Science: Essays in Commemoration of the Centenary of the Birth of Charles Darwin and of the Fiftieth Anniversary of the Publication of The Origin of Species A Seward 85–101. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  10. 10.
    Beale GH. 1982. Tracy Morton Sonneborn, 19 October 1905–26 January 1981. Biogr. Mem. Fell. R. Soc. 28:537–74
    [Google Scholar]
  11. 11.
    Beale GH, Preer JR Jr. 2008. Paramecium: Genetics and Epigenetics Boca Raton, FL: CRC Press
    [Google Scholar]
  12. 12.
    Beaumont MA, Zhang W, Balding DJ. 2002. Approximate Bayesian computation in population genetics. Genetics 162:2025–35
    [Google Scholar]
  13. 13.
    Beisson J, Bétermier M, Bré M-H, Cohen J, Duharcourt S et al. 2010. Paramecium tetraurelia: the renaissance of an early unicellular model. Cold Spring Harb. Protoc. 2010:pdb.emo140
    [Google Scholar]
  14. 14.
    Birchler JA, Veitia RA. 2012. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. PNAS 109:14746–53
    [Google Scholar]
  15. 15.
    Boileau AJ, Kissmehl R, Kanabrocki JA, Saimi Y. 1999. Transformation of Paramecium tetraurelia by electroporation or particle bombardment. J. Eukaryot. Microbiol. 46:56–65
    [Google Scholar]
  16. 16.
    Bouhouche K, Gout J-F, Kapusta A, Bétermier M, Meyer E. 2011. Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling. Nucleic Acids Res. 39:4249–64
    [Google Scholar]
  17. 17.
    Byrne BC. 1973. Mutational analysis of mating type inheritance in syngen 4 of Paramecium aurelia. Genetics 74:63–80
    [Google Scholar]
  18. 18.
    Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH et al. 2022. Somatic mutation rates scale with lifespan across mammals. Nature 604:517–24
    [Google Scholar]
  19. 19.
    Castelli M, Sabaneyeva E, Lanzoni O, Lebedeva N, Floriano AM et al. 2019. Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales. ISME J. 13:2280–94
    [Google Scholar]
  20. 20.
    Catania F, Rothering R, Vitali V. 2021. One cell, two gears: Extensive somatic genome plasticity accompanies high germline genome stability in Paramecium. Genome Biol. Evol. 13:evab263
    [Google Scholar]
  21. 21.
    Catania F, Wurmser F, Potekhin AA, Przybos E, Lynch M. 2009. Genetic diversity in the Paramecium aurelia species complex. Mol. Biol. Evol. 26:421–31
    [Google Scholar]
  22. 22.
    Chalker DL. 2012. Transformation and strain engineering of Tetrahymena. . Methods Cell Biol. 109:327–45
    [Google Scholar]
  23. 23.
    Cheng Y-H, Liu C-FJ, Yu Y-H, Jhou Y-T, Fujishima M et al. 2020. Genome plasticity in Paramecium bursaria revealed by population genomics. BMC Biology 18:180
    [Google Scholar]
  24. 24.
    Conant GC, Birchler JA, Pires JC. 2014. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr. Opin. Plant Biol. 19:91–98
    [Google Scholar]
  25. 25.
    Dai Y-H, Liu BR, Chiang H-J, Lee H-J. 2011. Gene transport and expression by arginine-rich cell-penetrating peptides in Paramecium. Gene 489:89–97
    [Google Scholar]
  26. 26.
    Dapper AL, Payseur BA. 2017. Effects of demographic history on the detection of recombination hotspots from linkage disequilibrium. Mol. Biol. Evol. 35:335–53
    [Google Scholar]
  27. 27.
    de Vanssay A, Touzeau A, Arnaiz O, Frapporti A, Phipps J, Duharcourt S. 2020. The Paramecium histone chaperone Spt16-1 is required for Pgm endonuclease function in programmed genome rearrangements. PLOS Genet. 16:e1008949
    [Google Scholar]
  28. 28.
    Dehal P, Boore JL. 2005. Two rounds of whole genome duplication in the ancestral vertebrate. PLOS Biol. 3:e314
    [Google Scholar]
  29. 29.
    Dillon MM, Sung W, Lynch M, Cooper VS. 2015. The rate and molecular spectrum of spontaneous mutations in the GC-rich multichromosome genome of Burkholderia cenocepacia. Genetics 200:935–46
    [Google Scholar]
  30. 30.
    Dobzhansky T. 1937. Genetics and the Origin of Species New York: Columbia Univ. Press
    [Google Scholar]
  31. 31.
    Drews F, Boenigk J, Simon M. 2022. Paramecium epigenetics in development and proliferation. J. Eukaryot. Microbiol. 69:e12914
    [Google Scholar]
  32. 32.
    Duharcourt S, Butler A, Meyer E. 1995. Epigenetic self-regulation of developmental excision of an internal eliminated sequence on Paramecium tetraurelia. Genes Dev. 9:2065–77
    [Google Scholar]
  33. 33.
    Dupuis P. 1992. The β-tubulin genes of Paramecium are interrupted by two 27 bp introns. EMBO J. 11:3713–19
    [Google Scholar]
  34. 34.
    Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. 2013. Robust demographic inference from genomic and SNP data. PLOS Genet. 9:e1003905
    [Google Scholar]
  35. 35.
    Eyre-Walker A, Keightley PD. 2007. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8:610–18
    [Google Scholar]
  36. 36.
    Fenchel T, Esteban GF, Finlay BJ. 1997. Local versus global diversity of microorganisms: cryptic diversity of ciliated protozoa. Oikos 80:220–25
    [Google Scholar]
  37. 37.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11
    [Google Scholar]
  38. 38.
    Foissner W. 2011. Dispersal of protists: the role of cysts and human introductions. Biogeography of Microscopic Organisms: Is Everything Small Everywhere? D Fontaneto 61–87. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  39. 39.
    Fraga D, Keenan E, Hendel E, Nair A, Schofield W. 2006. The particle inflow gun can be used to co-transform Paramecium using tungsten particles. J. Eukaryot. Microbiol. 53:16–19
    [Google Scholar]
  40. 40.
    Galante PA, Sakabe NJ, Kirschbaum-Slager N, de Souza SJ. 2004. Detection and evaluation of intron retention events in the human transcriptome. RNA 10:757–65
    [Google Scholar]
  41. 41.
    Galvani A, Sperling L. 2002. RNA interference by feeding in Paramecium. Trends Genet. 18:11–12
    [Google Scholar]
  42. 42.
    Gao Y, Solberg T, Wang C, Gao F. 2023. Small RNA-mediated genome rearrangement pathways in ciliates. Trends Genet. 39:94–97
    [Google Scholar]
  43. 43.
    Gout J-F, Hao Y, Johri P, Arnaiz O, Doak TG et al. 2023. Dynamics of gene loss following ancient whole-genome duplication in the cryptic Paramecium complex. Mol. Biol. Evol. 40:msad107
    [Google Scholar]
  44. 44.
    Gout J-F, Kahn D, Duret L Paramecium Post-Genomics Consortium 2010. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution. PLOS Genet. 6:e1000944
    [Google Scholar]
  45. 45.
    Gout J-F, Lynch M. 2015. Maintenance and loss of duplicated genes by dosage subfunctionalization. Mol. Biol. Evol. 32:2141–48
    [Google Scholar]
  46. 46.
    Greczek-Stachura M, Rautian M, Tarcz S. 2021. Paramecium bursaria—a complex of five cryptic species: mitochondrial DNA COI haplotype variation and biogeographic distribution. Diversity 13:589
    [Google Scholar]
  47. 47.
    Guérin F, Arnaiz O, Boggetto N, Denby Wilkes C, Meyer E et al. 2017. Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements. BMC Genom. 18:327
    [Google Scholar]
  48. 48.
    Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLOS Genet. 5:e1000695
    [Google Scholar]
  49. 49.
    Hao Y, Fleming J, Petterson J, Lyons E, Edger PP et al. 2022. Convergent evolution of polyploid genomes from across the eukaryotic tree of life. G3 12:jkac094
    [Google Scholar]
  50. 50.
    Hao Y, Washburn JD, Rosenthal J, Nielsen B, Lyons E et al. 2018. Patterns of population variation in two paleopolyploid eudicot lineages suggest that dosage-based selection on homeologs is long-lived. Genome Biol. Evol. 10:999–1011
    [Google Scholar]
  51. 51.
    Hauser K, Haynes WJ, Kung C, Plattner H, Kissmehl R. 2000. Expression of the green fluorescent protein in Paramecium tetraurelia. Eur. J. Cell Biol. 79:144–49
    [Google Scholar]
  52. 52.
    Hauser K, Pavlovic N, Kissmehl R, Plattner H. 1998. Molecular characterization of a sarco(endo)plasmic reticulum Ca2+-ATPase gene from Paramecium tetraurelia and localization of its gene product to sub-plasmalemmal calcium stores. Biochem. J. 334:31–38
    [Google Scholar]
  53. 53.
    Hauser K, Pavlovic N, Klauke N, Geissinger D, Plattner H. 2000. Green fluorescent protein-tagged sarco(endo)plasmic reticulum Ca2+-ATPase overexpression in Paramecium cells: isoforms, subcellular localization, biogenesis of cortical calcium stores and functional aspects. Mol. Microbiol. 37:773–87
    [Google Scholar]
  54. 54.
    He M, Wang J, Fan X, Liu X, Shi W et al. 2019. Genetic basis for the establishment of endosymbiosis in Paramecium. ISME J. 13:1360–69
    [Google Scholar]
  55. 55.
    Holland LZ, Ocampo Daza D. 2018. A new look at an old question: When did the second whole genome duplication occur in vertebrate evolution?. Genome Biol. 19:209
    [Google Scholar]
  56. 56.
    Jaillon O, Bouhouche K, Gout JF, Aury JM, Noel B et al. 2008. Translational control of intron splicing in eukaryotes. Nature 451:359–62
    [Google Scholar]
  57. 57.
    Johri P, Aquadro CF, Beaumont M, Charlesworth B, Excoffier L et al. 2022. Recommendations for improving statistical inference in population genomics. PLOS Biol. 20:e3001669
    [Google Scholar]
  58. 58.
    Johri P, Charlesworth B, Jensen JD. 2020. Toward an evolutionarily appropriate null model: jointly inferring demography and purifying selection. Genetics 215:173–92
    [Google Scholar]
  59. 59.
    Johri P, Gout J-F, Doak TG, Lynch M. 2022. A population-genetic lens into the process of gene loss following whole-genome duplication. Mol. Biol. Evol. 39:msac118
    [Google Scholar]
  60. 60.
    Johri P, Krenek S, Marinov GK, Doak TG, Berendonk TU, Lynch M. 2017. Population genomics of Paramecium species. Mol. Biol. Evol. 34:1194–216
    [Google Scholar]
  61. 61.
    Johri P, Marinov GK, Doak TG, Lynch M. 2019. Population genetics of Paramecium mitochondrial genomes: recombination, mutation spectrum, and efficacy of selection. Genome Biol. Evol. 11:1398–416
    [Google Scholar]
  62. 62.
    Katz LA, Kovner AM. 2010. Alternative processing of scrambled genes generates protein diversity in the ciliate Chilodonella uncinata. J. Exp. Zool. B. Mol. Dev. Evol. 314B:480–88
    [Google Scholar]
  63. 63.
    Kissmehl R, Huber S, Kottwitz B, Hauser K, Plattner H. 1998. Subplasmalemmal camstores in Paramecium tetraurelia. Identification and characterisation of a sarco(endo)plasmic reticulum-like Ca2+-ATPase by phosphoenzyme intermediate formation and its inhibition by caffeine. Cell Calcium 24:193–203
    [Google Scholar]
  64. 64.
    Kodama Y, Suzuki H, Dohra H, Sugii M, Kitazume T et al. 2014. Comparison of gene expression of Paramecium bursaria with and without Chlorella variabilis symbionts. BMC Genom. 15:183
    [Google Scholar]
  65. 65.
    Koizumi S, Kobayashi S. 1989. Microinjection of plasmid DNA encoding the A surface antigen of Paramecium tetraurelia restores the ability to regenerate a wild-type macronucleus. Mol. Cell. Biol. 9:4398–401
    [Google Scholar]
  66. 66.
    Koll F, Meyer E, Cohen J. 1998. Biolistic transformation and green fluorescent protein: new tools for molecular and cellular genetics in Paramecium. Biol. Cell 90:1128
    [Google Scholar]
  67. 67.
    Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34:1812–19
    [Google Scholar]
  68. 68.
    Kung C. 1971. Genic mutants with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants. Genetics 69:29–45
    [Google Scholar]
  69. 69.
    Lepere G, Nowacki M, Serrano V, Gout J-F, Guglielmi G et al. 2009. Silencing-associated and meiosis-specific small RNA pathways in Paramecium tetraurelia. Nucleic Acids Res. 37:903–915
    [Google Scholar]
  70. 70.
    Long H, Doak TG, Lynch M. 2018. Limited mutation-rate variation within the Paramecium aurelia species complex. G3 8:2523–26
    [Google Scholar]
  71. 71.
    Long H, Kucukyildirim S, Sung W, Williams E, Lee H et al. 2015. Background mutational features of the radiation-resistant bacterium Deinococcus radiodurans. Mol. Biol. Evol. 32:2383–92
    [Google Scholar]
  72. 72.
    Long H, Sung W, Kucukyildirim S, Williams E, Miller SF et al. 2018. Evolutionary determinants of genome-wide nucleotide composition. Nat. Ecol. Evol. 2:237–40
    [Google Scholar]
  73. 73.
    Long H, Winter DJ, Chang AY-C, Sung W, Wu SH et al. 2016. Low base-substitution mutation rate in the germline genome of the ciliate Tetrahymena thermophila. Genome Biol. Evol. 8:3629–39
    [Google Scholar]
  74. 74.
    Long H, Paixão T, Azevedo RB, Zufall RA. 2013. Accumulation of spontaneous mutations in the ciliate Tetrahymena thermophila. Genetics 195:527–40
    [Google Scholar]
  75. 75.
    Lynch M. 2010. Evolution of the mutation rate. Trends Genet. 26:345–52
    [Google Scholar]
  76. 76.
    Lynch M. 2011. The lower bound to the evolution of mutation rates. Genome Biol. Evol. 3:1107–18
    [Google Scholar]
  77. 77.
    Lynch M, Ackerman MS, Gout J-F, Long H, Sung W et al. 2016. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17:704–14
    [Google Scholar]
  78. 78.
    Lynch M, Blanchard JL. 1998. Deleterious mutation accumulation in organelle genomes. Mutation and Evolution RC Woodruff, JN Thompson 29–39. Dordrecht, Neth.: Springer
    [Google Scholar]
  79. 79.
    Lynch M, Conery JS. 2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151–55
    [Google Scholar]
  80. 80.
    Lynch M, Force AG. 2000. The origin of interspecific genomic incompatibility via gene duplication. Am. Nat. 156:590–605
    [Google Scholar]
  81. 81.
    Lynch M, Schavemaker PE, Licknack TJ, Hao Y, Pezzano A. 2022. Evolutionary bioenergetics of ciliates. J. Eukaryot. Microbiol. 69:e12934
    [Google Scholar]
  82. 82.
    Lynch M, Walsh B. 2007. The Origins of Genome Architecture Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  83. 83.
    Marker S, Le Mouel A, Meyer E, Simon M. 2010. Distinct RNA-dependent RNA polymerases are required for RNAi triggered by double-stranded RNA versus truncated transgenes in Paramecium tetraurelia. Nucleic Acids Res. 38:4092–107
    [Google Scholar]
  84. 84.
    Maupas E. 1889. Le rejeunissement caryogamique chez les cilies. Archs. Zool. exp. gen. 7:149–517
    [Google Scholar]
  85. 85.
    McGrath CL, Gout J-F, Doak TG, Yanagi A, Lynch M. 2014. Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence. Genetics 197:1417–28
    [Google Scholar]
  86. 86.
    McGrath CL, Gout J-F, Johri P, Doak TG, Lynch M. 2014. Differential retention and divergent resolution of duplicate genes following whole-genome duplication. Genome Res. 24:1665–75
    [Google Scholar]
  87. 87.
    McTavish C, Sommerville J. 1980. Macronuclear DNA organization and transcription in Paramecium primaurelia. Chromosoma 78:147–64
    [Google Scholar]
  88. 88.
    Meyer E, Garnier O. 2002. Non-Mendelian inheritance and homology-dependent effects in ciliates. Adv. Genet. 46:305–37
    [Google Scholar]
  89. 89.
    Miró-Pina C, Charmant O, Kawaguchi T, Holoch D, Michaud A et al. 2022. Paramecium polycomb repressive complex 2 physically interacts with the small RNA-binding Piwi protein to repress transposable elements. Dev. Cell 57:1037–52
    [Google Scholar]
  90. 90.
    Muller HJ. 1942. Isolating mechanisms, evolution, and temperature. Biol. Symp. 6:71–125
    [Google Scholar]
  91. 91.
    Müller OF. 1773. Vermium terrestrium et fluviatilium, seu Animalium infusoriorum, helminthicorum et testaceorum non marinorum succincta historia Leipzig, Ger.: Heineck et Faber
    [Google Scholar]
  92. 92.
    Neiman M, Taylor DR. 2009. The causes of mutation accumulation in mitochondrial genomes. Proc. Royal Soc. B 276:1201–9
    [Google Scholar]
  93. 93.
    Nikiforov MA, Gorovsky MA, Allis CD. 2000. A novel chromodomain protein, Pdd3p, associates with internal eliminated sequences during macronuclear development in Tetrahymena thermophila. Mol. Cell. Biol. 20:4128–34
    [Google Scholar]
  94. 94.
    Ohno S. 2013. Evolution by Gene Duplication New York: Springer
    [Google Scholar]
  95. 95.
    One Thousand Plant Transcript. Initiat. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679–85
    [Google Scholar]
  96. 96.
    Orias E, Singh DP, Meyer E. 2017. Genetics and epigenetics of mating type determination in Paramecium and Tetrahymena. Annu. Rev. Microbiol. 71:133–56
    [Google Scholar]
  97. 97.
    Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131:452–62
    [Google Scholar]
  98. 98.
    Pannell JR, Charlesworth B. 2000. Effects of metapopulation processes on measures of genetic diversity. Philos. Trans. R. Soc. B 355:1851–64
    [Google Scholar]
  99. 99.
    Parfrey LW, Lahr DJ, Knoll AH, Katz LA. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. PNAS 108:13624–29
    [Google Scholar]
  100. 100.
    Pond FR, Gibson I, Lalucat J, Quackenbush RL. 1989. R-body-producing bacteria. Microbiol. Rev. 53:25–67
    [Google Scholar]
  101. 101.
    Potekhin A, Mayén-Estrada R. 2020. Paramecium diversity and a new member of the Paramecium aurelia species complex described from Mexico. Diversity 12:197
    [Google Scholar]
  102. 102.
    Preer JR Jr. 1997. Whatever happened to Paramecium genetics?. Genetics 145:217–25
    [Google Scholar]
  103. 103.
    Preer JR Jr., Preer LB, Jurand A. 1974. Kappa and other endosymbionts in Paramecium aurelia. Bacteriol. Rev. 38:113–63
    [Google Scholar]
  104. 104.
    Prescott DM. 1999. The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates. Nucleic Acids Res. 27:1243–50
    [Google Scholar]
  105. 105.
    Przyboś E, Surmacz M. 2010. New, world-wide data on the distribution of species of the Paramecium aurelia complex (Ciliophora, Protozoa). Folia Biol. 58:185–88
    [Google Scholar]
  106. 106.
    Russell CB, Fraga D, Hinrichsen RD. 1994. Extremely short 20–33 nucleotide introns are the standard length in Paramecium tetraurelia. Nucleic Acids Res. 22:1221–25
    [Google Scholar]
  107. 107.
    Ryll J, Rothering R, Catania F. 2022. Intronization signatures in coding exons reveal the evolutionary fluidity of eukaryotic gene architecture. Microorganisms 10:1901
    [Google Scholar]
  108. 108.
    Sankoff D, Zheng C, Zhu Q. 2010. The collapse of gene complement following whole genome duplication. BMC Genom. 11:313
    [Google Scholar]
  109. 109.
    Saudemont B, Popa A, Parmley JL, Rocher V, Blugeon C et al. 2017. The fitness cost of mis-splicing is the main determinant of alternative splicing patterns. Genome Biol. 18:208
    [Google Scholar]
  110. 110.
    Sawka-Gądek N, Potekhin A, Singh DP, Grevtseva I, Arnaiz O et al. 2021. Evolutionary plasticity of mating-type determination mechanisms in Paramecium aurelia sibling species. Genome Biol. Evol. 13:evaa258
    [Google Scholar]
  111. 111.
    Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH. 2006. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:341–45
    [Google Scholar]
  112. 112.
    Sellis D, Guérin F, Arnaiz O, Pett W, Lerat E et al. 2021. Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLOS Biol. 19:e3001309
    [Google Scholar]
  113. 113.
    Sémon M, Wolfe KH. 2007. Consequences of genome duplication. Curr. Opin. Genet. Dev. 17:505–12
    [Google Scholar]
  114. 114.
    Singh DP, Saudemont B, Guglielmi G, Arnaiz O, Goût JF et al. 2014. Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 509:447–52
    [Google Scholar]
  115. 115.
    Skouri F, Cohen J. 1997. Genetic approach to regulated exocytosis using functional complementation in Paramecium: identification of the ND7 gene required for membrane fusion. Mol. Biol. Cell 8:1063–71
    [Google Scholar]
  116. 116.
    Sonneborn TM. 1937. Sex, sex inheritance and sex determination in Paramecium aurelia. PNAS 23:378–85
    [Google Scholar]
  117. 117.
    Sonneborn TM. 1943. Gene and cytoplasm. PNAS 29:329–38
    [Google Scholar]
  118. 118.
    Sonneborn TM. 1975. Herbert Spencer Jennings: 1868–1947. Biogr. Mem 47:143–223
    [Google Scholar]
  119. 119.
    Sonneborn TM. 1975. The Paramecium aurelia complex of fourteen sibling species. Trans. Am. Microsc. Soc. 94:155–78
    [Google Scholar]
  120. 120.
    Spanner C, Darienko T, Filker S, Sonntag B, Pröschold T. 2022. Morphological diversity and molecular phylogeny of five Paramecium bursaria (Alveolata, Ciliophora, Oligohymenophorea) syngens and the identification of their green algal endosymbionts. Sci. Rep. 12:18089
    [Google Scholar]
  121. 121.
    Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos. Trans. R. Soc. B 372:20160455
    [Google Scholar]
  122. 122.
    Summons RE, Walter MR. 1990. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Am. J. Sci. 290:212–44
    [Google Scholar]
  123. 123.
    Sung W, Tucker AE, Doak TG, Choi E, Thomas WK, Lynch M. 2012. Extraordinary genome stability in the ciliate Paramecium tetraurelia. PNAS 109:19339–44
    [Google Scholar]
  124. 124.
    Timmons CM, Shazib SUA, Katz LA. 2022. Epigenetic influences of mobile genetic elements on ciliate genome architecture and evolution. J. Eukaryot. Microbiol. 69:e12891
    [Google Scholar]
  125. 125.
    Van Houten J 2019. Paramecium biology. Evo-Devo: Non-model Species in Cell and Developmental Biology W Tworzydlo, SM Bilinski 291–318. Cham, Switz.: Springer Internat.
    [Google Scholar]
  126. 126.
    Vitali V, Hagen R, Catania F. 2019. Environmentally induced plasticity of programmed DNA elimination boosts somatic variability in Paramecium tetraurelia. Genome Res. 29:1693–704
    [Google Scholar]
  127. 127.
    Wackerow-Kouzova ND, Myagkov DV. 2021. Clarification of the taxonomic position of Paramecium caudatum micronucleus symbionts. Curr. Microbiol. 78:4098–102
    [Google Scholar]
  128. 128.
    Walsh B, Lynch M. 2018. Evolution and Selection of Quantitative Traits New York: Oxford Univ. Press
    [Google Scholar]
  129. 129.
    Wichterman R. 1986. The Biology of Paramecium. New York: Springer
    [Google Scholar]
  130. 130.
    Yakovleva Y, Nassonova E, Lebedeva N, Lanzoni O, Petroni G et al. 2020. The first case of microsporidiosis in Paramecium. Parasitology 147:957–71
    [Google Scholar]
  131. 131.
    Zagulski M, Nowak JK, Le Mouël A, Nowacki M, Migdalski A et al. 2004. High coding density on the largest Parameciumtetraurelia somatic chromosome. Curr. Biol. 14:1397–404
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071819-104035
Loading
/content/journals/10.1146/annurev-genet-071819-104035
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error