1932

Abstract

The discovery of biased histone inheritance in asymmetrically dividing male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-072920-125226
2022-11-30
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/genet/56/1/annurev-genet-072920-125226.html?itemId=/content/journals/10.1146/annurev-genet-072920-125226&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akera T, Chmátal L, Trimm E, Yang K, Aonbangkhen C et al. 2017. Spindle asymmetry drives non-Mendelian chromosome segregation. Science 358:6363668–72
    [Google Scholar]
  2. 2.
    Akera T, Trimm E, Lampson MA. 2019. Molecular strategies of meiotic cheating by selfish centromeres. Cell 178:51132–44.e10
    [Google Scholar]
  3. 3.
    Alabert C, Barth TK, Reverón-Gómez N, Sidoli S, Schmidt A et al. 2015. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29:6585–90
    [Google Scholar]
  4. 4.
    Alabert C, Bukowski-Wills JC, Lee SB, Kustatscher G, Nakamura K et al. 2014. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 16:3281–91
    [Google Scholar]
  5. 5.
    Altemose N, Logsdon GA, Bzikadze AV, Sidhwani P, Langley SA et al. 2022. Complete genomic and epigenetic maps of human centromeres. Science 376:6588eabl4178
    [Google Scholar]
  6. 6.
    Antel M, Masoud M, Raj R, Pan Z, Li S et al. 2021. Interchromosomal interaction of homologous Stat92E alleles regulates transcriptional switch during stem-cell differentiation. bioRxiv 2021.11.08.467622. https://doi.org/10.1101/2021.11.08.467622
    [Crossref]
  7. 7.
    Bellelli R, Belan O, Pye VE, Clement C, Maslen SL et al. 2018. POLE3-POLE4 is a histone H3-H4 chaperone that maintains chromatin integrity during DNA replication. Mol. Cell. 72:1112–26.e5
    [Google Scholar]
  8. 8.
    Bhanu NV, Sidoli S, Garcia BA. 2016. Histone modification profiling reveals differential signatures associated with human embryonic stem cell self-renewal and differentiation. Proteomics 16:3448–58
    [Google Scholar]
  9. 9.
    Black BE, Brock MA, Bédard S, Woods VL, Cleveland DW. 2007. An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. PNAS 104:125008–13
    [Google Scholar]
  10. 10.
    Brandvain Y, Coop G. 2015. Sperm should evolve to make female meiosis fair. Evolution 69:41004–14
    [Google Scholar]
  11. 11.
    Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S. 1999. A histone-H3-like protein in C. elegans. Nature 401:6753547–48
    [Google Scholar]
  12. 12.
    Burgess RJ, Zhang Z. 2013. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 20:114–22
    [Google Scholar]
  13. 13.
    Burt A, Trivers R. 2008. Genes in Conflict: The Biology of Selfish Genetic Elements Cambridge, Mass: Belknap Press
    [Google Scholar]
  14. 14.
    Carter B, Ku WL, Kang JY, Hu G, Perrie J et al. 2019. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat. Commun. 10:13747
    [Google Scholar]
  15. 15.
    Carty BL, Dattoli AA, Dunleavy EM. 2020. CENP-C functions in centromere assembly, the maintenance of CENP-A asymmetry and epigenetic age in Drosophila germline stem cells. PLOS Genet 17:5e1009247
    [Google Scholar]
  16. 16.
    Carty BL, Dunleavy EM. 2020. Centromere assembly and non-random sister chromatid segregation in stem cells. Essays Biochem 64:2223–32
    [Google Scholar]
  17. 17.
    Chan YW, West SC. 2018. A new class of ultrafine anaphase bridges generated by homologous recombination. Cell Cycle 17:172101–9
    [Google Scholar]
  18. 18.
    Chang C-H, Chavan A, Palladino J, Wei X, Martins NMC et al. 2019. Islands of retroelements are major components of Drosophila centromeres. PLOS Biol 17:5e3000241
    [Google Scholar]
  19. 19.
    Chen X, Shen Y, Draper W, Buenrostro JD, Litzenburger U et al. 2016. ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nat. Methods 13:121013–20
    [Google Scholar]
  20. 20.
    Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J et al. 2014. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr. Biol. 24:192295–300
    [Google Scholar]
  21. 21.
    Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ et al. 2009. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139:1123–34
    [Google Scholar]
  22. 22.
    Clémot M, Molla-Herman A, Mathieu J, Huynh J-R, Dostatni N. 2018. The replicative histone chaperone CAF1 is essential for the maintenance of identity and genome integrity in adult stem cells. Development 145:17dev161190
    [Google Scholar]
  23. 23.
    Conduit PT, Feng Z, Richens JH, Baumbach J, Wainman A et al. 2014. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev. Cell 28:6659–69
    [Google Scholar]
  24. 24.
    Conduit PT, Raff JW. 2010. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol. 20:242187–92
    [Google Scholar]
  25. 25.
    Conduit PT, Wainman A, Raff JW. 2015. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 16:10611–24
    [Google Scholar]
  26. 26.
    Dai J, Sultan S, Taylor SS, Higgins JMG. 2005. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19:4472–88
    [Google Scholar]
  27. 27.
    Das C, Lucia MS, Hansen KC, Tyler JK. 2009. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459:7243113–17
    [Google Scholar]
  28. 28.
    Dattoli AA, Carty BL, Kochendoerfer AM, Morgan C, Walshe AE, Dunleavy EM. 2020. Asymmetric assembly of centromeres epigenetically regulates stem cell fate J. Cell Biol. 219:4e201910084 Shows that epigenetic differences in centromeres bias sister chromatid segregation during asymmetric cell division in female germline stem cells.
    [Google Scholar]
  29. 29.
    de Villena FP-M, Sapienza C. 2001. Female meiosis drives karyotypic evolution in mammals. Genetics 159:31179–89
    [Google Scholar]
  30. 30.
    Dehapiot B, Carrière V, Carroll J, Halet G 2013. Polarized Cdc42 activation promotes polar body protrusion and asymmetric division in mouse oocytes. Dev. Biol. 377:1202–12
    [Google Scholar]
  31. 31.
    Deng M, Suraneni P, Schultz RM, Li R. 2007. The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev. Cell 12:2301–8
    [Google Scholar]
  32. 32.
    Dunleavy EM, Beier NL, Gorgescu W, Tang J, Costes SV, Karpen GH. 2012. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C. PLOS Biol 10:12e1001460
    [Google Scholar]
  33. 33.
    Ejlassi-Lassallette A, Mocquard E, Arnaud M-C, Thiriet C. 2011. H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo. Mol. Biol. Cell. 22:2245–55
    [Google Scholar]
  34. 34.
    Enomoto S, Berman J. 1998. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent matingloci. Genes Dev 12:2219–32
    [Google Scholar]
  35. 35.
    Evano B, Khalilian S, Le Carrou G, Almouzni G, Tajbakhsh S 2020. Dynamics of asymmetric and symmetric divisions of muscle stem cells in vivo and on artificial niches. Cell Rep 30:103195–206.e7
    [Google Scholar]
  36. 36.
    Evrin C, Maman JD, Diamante A, Pellegrini L, Labib K. 2018. Histone H2A-H2B binding by Pol α in the eukaryotic replisome contributes to the maintenance of repressive chromatin. EMBO J 37:19e99021
    [Google Scholar]
  37. 37.
    Feng Z, Caballe A, Wainman A, Johnson S, Haensele AFM et al. 2017. Structural basis for mitotic centrosome assembly in flies. Cell 169:61078–89.e13
    [Google Scholar]
  38. 38.
    Gambarotto D, Pennetier C, Ryniawec JM, Buster DW, Gogendeau D et al. 2019. Plk4 regulates centriole asymmetry and spindle orientation in neural stem cells. Dev. Cell 50:111–24.e10
    [Google Scholar]
  39. 39.
    Gan H, Serra-Cardona A, Hua X, Zhou H, Labib K et al. 2018. The Mcm2-Ctf4-Polα axis facilitates parental histone H3-H4 transfer to lagging strands. Mol. Cell 72:1140–51.e3
    [Google Scholar]
  40. 40.
    García del Arco A, Edgar BA, Erhardt S 2018. In vivo analysis of centromeric proteins reveals a stem cell-specific asymmetry and an essential role in differentiated, non-proliferating cells. Cell Rep 22:81982–93
    [Google Scholar]
  41. 41.
    Gassmann R, Rechtsteiner A, Yuen KW, Muroyama A, Egelhofer T et al. 2012. An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature 484:7395534–37
    [Google Scholar]
  42. 42.
    Goldberg AD, Allis CD, Bernstein E. 2007. Epigenetics: a landscape takes shape. Cell 128:4635–38
    [Google Scholar]
  43. 43.
    Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ et al. 2010. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:5678–91
    [Google Scholar]
  44. 44.
    Groth A, Ray-Gallet D, Quivy J-P, Lukas J, Bartek J, Almouzni G. 2005. Human Asf1 regulates the flow of S phase histones during replicational stress. Mol. Cell 17:2301–11
    [Google Scholar]
  45. 45.
    Gruszka DT, Xie S, Kimura H, Yardimci H. 2020. Single-molecule imaging reveals control of parental histone recycling by free histones during DNA replication. Sci. Adv. 6:38330–48
    [Google Scholar]
  46. 46.
    Halet G, Carroll J. 2007. Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev. Cell 12:2309–17
    [Google Scholar]
  47. 47.
    Han J, Zhou H, Horazdovsky B, Zhang K, Xu R-M, Zhang Z. 2007. Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315:5812653–55
    [Google Scholar]
  48. 48.
    Hara Y, Iwabuchi M, Ohsumi K, Kimura A. 2013. Intranuclear DNA density affects chromosome condensation in metazoans. Mol. Biol. Cell 24:152442–53
    [Google Scholar]
  49. 49.
    Henikoff S, Ahmad K, Malik HS 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:55321098–102
    [Google Scholar]
  50. 50.
    Hoffmann S, Dumont M, Barra V, Ly P, Nechemia-Arbely Y et al. 2016. CENP-A is dispensable for mitotic centromere function after initial centromere/kinetochore assembly. Cell Rep 17:92394–2404
    [Google Scholar]
  51. 51.
    Huang H, Strømme CB, Saredi G, Hödl M, Strandsby A et al. 2015. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22:8618–26
    [Google Scholar]
  52. 52.
    Huang H, Yu Z, Zhang S, Liang X, Chen J et al. 2010. Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability. J. Cell Sci. 123:162853–61
    [Google Scholar]
  53. 53.
    Iwata-Otsubo A, Dawicki-McKenna JM, Akera T, Falk SJ, Chmátal L et al. 2017. Expanded satellite repeats amplify a discrete CENP-A nucleosome assembly site on chromosomes that drive in female meiosis. Curr. Biol. 27:152365–73.e8
    [Google Scholar]
  54. 54.
    Jansen LET, Black BE, Foltz DR, Cleveland DW. 2007. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176:6795–805
    [Google Scholar]
  55. 55.
    Januschke J, Llamazares S, Reina J, Gonzalez C 2011. Drosophila neuroblasts retain the daughter centrosome. Nat. Commun. 2:1243
    [Google Scholar]
  56. 56.
    Januschke J, Reina J, Llamazares S, Bertran T, Rossi F et al. 2013. Centrobin controls mother–daughter centriole asymmetry in Drosophila neuroblasts. Nat. Cell Biol. 15:3241–48
    [Google Scholar]
  57. 57.
    Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293:55321074–80
    [Google Scholar]
  58. 58.
    Kahney EW, Zion EH, Sohn L, Viets-Layng K, Johnston R, Chen X 2021. Characterization of histone inheritance patterns in the Drosophila female germline. EMBO Rep 22:7e51530
    [Google Scholar]
  59. 59.
    Kaufman PD, Kobayashi R, Stillman B. 1997. Ultraviolet radiation sensitivity and reduction of telo-meric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11:3345–57
    [Google Scholar]
  60. 60.
    Kaya H, Shibahara K-I, Taoka K-I, Iwabuchi M, Stillman B, Araki T. 2001. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104:1131–42
    [Google Scholar]
  61. 61.
    Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD et al. 2019. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10:11930
    [Google Scholar]
  62. 62.
    Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT. 2001. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:55512542–45
    [Google Scholar]
  63. 63.
    Kliszczak AE, Rainey MD, Harhen B, Boisvert FM, Santocanale C. 2011. DNA mediated chromatin pull-down for the study of chromatin replication. Sci. Rep. 1:195
    [Google Scholar]
  64. 64.
    Kouzarides T. 2007. Chromatin modifications and their function. Cell 128:4693–705
    [Google Scholar]
  65. 65.
    Kruitwagen T, Chymkowitch P, Denoth-Lippuner A, Enserink J, Barral Y. 2018. Centromeres license the mitotic condensation of yeast chromosome arms. Cell 175:3780–95.e15Showed that the centromere regulates chromosome condensation state during mitosis.
    [Google Scholar]
  66. 66.
    Ladouceur A-M, Ranjan R, Maddox PS. 2011. Cell size: Chromosomes get slapped by a midzone ruler. Curr. Biol. 21:10R388–90
    [Google Scholar]
  67. 67.
    Ladouceur A-M, Ranjan R, Smith L, Fadero T, Heppert J et al. 2017. CENP-A and topoisomerase-II antagonistically affect chromosome length. J. Cell Biol. 216:92645–55Demonstrated that CENP-A nucleosome level can be manipulated within the centromere region.
    [Google Scholar]
  68. 68.
    Lampson MA, Black BE. 2017. Cellular and molecular mechanisms of centromere drive. Cold Spring Harb. Symp. Quant. Biol. 82:249–57
    [Google Scholar]
  69. 69.
    Lansdorp PM. 2007. Immortal strands? Give me a break. Cell 129:71244–47
    [Google Scholar]
  70. 70.
    Leatherman JL, Di Nardo S. 2008. Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 3:144–54
    [Google Scholar]
  71. 71.
    Lerit DA, Rusan NM. 2013. PLP inhibits the activity of interphase centrosomes to ensure their proper segregation in stem cells. J. Cell Biol. 202:71013–22
    [Google Scholar]
  72. 72.
    Li Q, Zhou H, Wurtele H, Davies B, Horazdovsky B et al. 2008. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134:2244–55
    [Google Scholar]
  73. 73.
    Li R, Albertini DF. 2013. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat. Rev. Mol. Cell Biol. 14:3141–52
    [Google Scholar]
  74. 74.
    Li Z, Hua X, Serra-Cardona A, Xu X, Gan S et al. 2020. DNA polymerase α interacts with H3-H4 and facilitates the transfer of parental histones to lagging strands. Sci. Adv. 6:35eabb5820
    [Google Scholar]
  75. 75.
    Liu S, Xu Z, Leng H, Zheng P, Yang J et al. 2017. RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly. Science 355:6323415–20
    [Google Scholar]
  76. 76.
    Liu WH, Roemer SC, Port AM, Churchill MEA. 2012. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Res 40:2211229–39 Erratum 2017. Nucleic Acids Res. 45:169809
    [Google Scholar]
  77. 77.
    Logsdon GA, Vollger MR, Hsieh P, Mao Y, Liskovykh MA et al. 2021. The structure, function and evolution of a complete human chromosome 8. Nature 593:7857101–7
    [Google Scholar]
  78. 78.
    Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G. 2006. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24:2309–16
    [Google Scholar]
  79. 79.
    Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP et al. 2009. The HP1α-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 10:7769–75
    [Google Scholar]
  80. 80.
    Ma B, Trieu TJ, Cheng J, Zhou S, Tang Q et al. 2020. Differential histone distribution patterns in induced asymmetrically dividing mouse embryonic stem cells. Cell Rep 32:6108003
    [Google Scholar]
  81. 81.
    Maddox PS, Hyndman F, Monen J, Oegema K, Desai A. 2007. Functional genomics identifies a Myb domain–containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176:6757–63
    [Google Scholar]
  82. 82.
    Maddox PS, Portier N, Desai A, Oegema K. 2006. Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay. PNAS 103:4115097–102
    [Google Scholar]
  83. 83.
    Manzano-López J, Matellán L, Álvarez-Llamas A, Blanco-Mira JC, Monje-Casas F. 2019. Asymmetric inheritance of spindle microtubule-organizing centres preserves replicative lifespan. Nat. Cell Biol. 21:8952–65
    [Google Scholar]
  84. 84.
    Marston AL. 2014. Shugoshins: tension-sensitive pericentromeric adaptors safeguarding chromosome segregation. Mol. Cell. Biol. 35:4634–48
    [Google Scholar]
  85. 85.
    Marzluff WF, Wagner EJ, Duronio RJ. 2008. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9:11843–54
    [Google Scholar]
  86. 86.
    Mattiroli F, D'Arcy S, Luger K 2015. The right place at the right time: chaperoning core histone variants. EMBO Rep 16:111454–66
    [Google Scholar]
  87. 87.
    Mattiroli F, Gu Y, Balsbaugh JL, Ahn NG, Luger K. 2017. The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1. Sci. Rep. 7:146274
    [Google Scholar]
  88. 88.
    Mattiroli F, Gu Y, Yadav T, Balsbaugh JL, Harris MR et al. 2017. DNA-mediated association of two histone-bound complexes of yeast chromatin assembly factor-1 (CAF-1) drives tetrasome assembly in the wake of DNA replication. eLife 6:e22799
    [Google Scholar]
  89. 89.
    McKinley KL, Cheeseman IM. 2016. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 17:116–29
    [Google Scholar]
  90. 90.
    McNulty SM, Sullivan BA. 2018. Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosome Res. 26:3115–38
    [Google Scholar]
  91. 91.
    Medina-Pritchard B, Lazou V, Zou J, Byron O, Abad MA et al. 2020. Structural basis for centromere maintenance by Drosophila CENP-A chaperone CAL1. EMBO J 39:7e103234
    [Google Scholar]
  92. 92.
    Mejlvang J, Feng Y, Alabert C, Neelsen KJ, Jasencakova Z et al. 2014. New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204:129–43
    [Google Scholar]
  93. 93.
    Mello JA, Silljé HHW, Roche DMJ, Kirschner DB, Nigg EA, Almouzni G. 2002. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3:4329–34
    [Google Scholar]
  94. 94.
    Mellone BG, Grive KJ, Shteyn V, Bowers SR, Oderberg I, Karpen GH. 2011. Assembly of Drosophila centromeric chromatin proteins during mitosis. PLOS Genet 7:5e1002068
    [Google Scholar]
  95. 95.
    Mendiburo MJ, Padeken J, Fülöp S, Schepers A, Heun P. 2011. Drosophila CENH3 is sufficient for centromere formation. Science 334:6056686–90
    [Google Scholar]
  96. 96.
    Miga KH. 2019. Centromeric satellite DNAs: hidden sequence variation in the human population. Genes 10:5352
    [Google Scholar]
  97. 97.
    Miga KH, Koren S, Rhie A, Vollger MR, Gershman A et al. 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585:782379–84
    [Google Scholar]
  98. 98.
    Nakano S, Stillman B, Horvitz HR. 2011. Replication-coupled chromatin assembly generates a neuronal bilateral asymmetry in C. elegans. Cell 147:71525–36
    [Google Scholar]
  99. 99.
    Naylor RM, van Deursen JM. 2016. Aneuploidy in cancer and aging. Annu. Rev. Genet. 50:45–66
    [Google Scholar]
  100. 100.
    Neurohr G, Naegeli A, Titos I, Theler D, Greber B et al. 2011. A midzone-based ruler adjusts chromosome compaction to anaphase spindle length. Science 332:6028465–68
    [Google Scholar]
  101. 101.
    Novak ZA, Wainman A, Gartenmann L, Raff JW. 2016. Cdk1 phosphorylates Drosophila Sas-4 to recruit polo to daughter centrioles and convert them to centrosomes. Dev. Cell 37:6545–57
    [Google Scholar]
  102. 102.
    Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV et al. 2022. The complete sequence of a human genome. Science 376:658844–53
    [Google Scholar]
  103. 103.
    Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA. 2001. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153:61209–26
    [Google Scholar]
  104. 104.
    Ono T, Kaya H, Takeda S, Abe M, Ogawa Y et al. 2006. Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes Cells 11:2153–62
    [Google Scholar]
  105. 105.
    Ottoline Leyser HM, Furner IJ 1992. Characterisation of three shoot apical meristem mutants of Arabidopsis thaliana. Development 116:2397–403
    [Google Scholar]
  106. 106.
    Pereira G, Tanaka TU, Nasmyth K, Schiebel E. 2001. Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex. EMBO J 20:226359–70
    [Google Scholar]
  107. 107.
    Peris L, Wagenbach M, Lafanechère L, Brocard J, Moore AT et al. 2009. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185:71159–66
    [Google Scholar]
  108. 108.
    Petruk S, Cai J, Sussman R, Sun G, Kovermann SK et al. 2017. Delayed accumulation of H3K27me3 on nascent DNA is essential for recruitment of transcription factors at early stages of stem cell differentiation. Mol. Cell 66:2247–57.e5
    [Google Scholar]
  109. 109.
    Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL et al. 2012. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:5922–33
    [Google Scholar]
  110. 110.
    Petryk N, Dalby M, Wenger A, Stromme CB, Strandsby A et al. 2018. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361:64091389–92
    [Google Scholar]
  111. 111.
    Pomp O, Lim HYG, Skory RM, Moverley AA, Tetlak P et al. 2022. A monoastral mitotic spindle determines lineage fate and position in the mouse embryo. Nat. Cell Biol.24155–67
    [Google Scholar]
  112. 112.
    Ramachandran S, Henikoff S. 2015. Replicating nucleosomes. Sci. Adv. 1:7e1500587
    [Google Scholar]
  113. 113.
    Ramdas Nair A, Singh P, Salvador Garcia D, Rodriguez-Crespo D, Egger B, Cabernard C 2016. The microcephaly-associated protein Wdr62/CG7337 is required to maintain centrosome asymmetry in Drosophila neuroblasts. Cell Rep 14:51100–13
    [Google Scholar]
  114. 114.
    Ranjan R, Chen X. 2021. Super-resolution live cell imaging of subcellular structures. J. Vis. Exp. 2021:167e61563
    [Google Scholar]
  115. 115.
    Ranjan R, Snedeker J, Chen X 2019. Asymmetric centromeres differentially coordinate with mitotic machinery to ensure biased sister chromatid segregation in germline stem cells. Cell Stem Cell 25:5666–81Showed that centromere epigenetic differences bias sister chromatid segregation during asymmetric cell division in male germline stem cells.
    [Google Scholar]
  116. 116.
    Ranjan R, Snedeker J, Wooten M, Chu C, Bracero S et al. 2022. Differential condensation of sister chromatids acts with Cdc6 to ensure asynchronous S-phase entry in Drosophila male germline stem cell lineage. Dev. Cell 57:1102–18.e7Demonstrates that global nucleosome density and chromosome condensation dictate cell cycle progression in daughter cells.
    [Google Scholar]
  117. 117.
    Richet N, Liu D, Legrand P, Velours C, Corpet A et al. 2015. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res 43:31905–17
    [Google Scholar]
  118. 118.
    Robertson WRB. 1916. Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae: V-shaped chromosomes and their significance in Acrididae, Locustidae, and Gryllidae: chromosomes and variation. J. Morphol. 27:2179–331
    [Google Scholar]
  119. 119.
    Roure V, Medina-Pritchard B, Lazou V, Rago L, Anselm E et al. 2019. Reconstituting Drosophila centromere identity in human cells. Cell Rep 29:2464–79.e5
    [Google Scholar]
  120. 120.
    Rowlands H, Dhavarasa P, Cheng A, Yankulov K. 2017. Forks on the run: Can the stalling of DNA replication promote epigenetic changes?. Front. Genet. 8:86
    [Google Scholar]
  121. 121.
    Salzmann V, Chen C, Chiang CYA, Tiyaboonchai A, Mayer M, Yamashita YM. 2014. Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. Mol. Biol. Cell 25:2267–75
    [Google Scholar]
  122. 122.
    Sandler L, Novitski E. 1957. Meiotic drive as an evolutionary force. Am. Nat. 91:857105–10
    [Google Scholar]
  123. 123.
    Saxton DS, Rine J. 2019. Epigenetic memory independent of symmetric histone inheritance. eLife 8:e51421
    [Google Scholar]
  124. 124.
    Schlissel G, Rine J. 2019. The nucleosome core particle remembers its position through DNA replication and RNA transcription. PNAS 116:4120605–11
    [Google Scholar]
  125. 125.
    Schuh M, Lehner CF, Heidmann S. 2007. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17:3237–43
    [Google Scholar]
  126. 126.
    Serra-Cardona A, Yu C, Zhang X, Hua X, Yao Y et al. 2021. A mechanism for Rad53 to couple leading- and lagging-strand DNA synthesis under replication stress in budding yeast. PNAS 118:38e2109334118
    [Google Scholar]
  127. 127.
    Shelby RD, Monier K, Sullivan KF. 2000. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151:51113–18
    [Google Scholar]
  128. 128.
    Shepelev VA, Alexandrov AA, Yurov YB, Alexandrov IA. 2009. The evolutionary origin of man can be traced in the layers of defunct ancestral alpha satellites flanking the active centromeres of human chromosomes. PLOS Genet 5:9e1000641
    [Google Scholar]
  129. 129.
    Singh P, Ramdas Nair A, Cabernard C 2014. The centriolar protein Bld10/Cep135 is required to establish centrosome asymmetry in Drosophila neuroblasts. Curr. Biol. 24:131548–55
    [Google Scholar]
  130. 130.
    Sirajuddin M, Rice LM, Vale RD. 2014. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16:4335–44
    [Google Scholar]
  131. 131.
    Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D 2011. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 25:121320–27
    [Google Scholar]
  132. 132.
    Smith DJ, Whitehouse I. 2012. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483:7390434–38
    [Google Scholar]
  133. 133.
    Smith S, Stillman B. 1989. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:115–25
    [Google Scholar]
  134. 134.
    Song Y, He F, Xie G, Guo X, Xu Y et al. 2007. CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory. Dev. Biol. 311:1213–22
    [Google Scholar]
  135. 135.
    Steiner FA, Henikoff S. 2014. Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. eLife 3:e02025
    [Google Scholar]
  136. 136.
    Stewart NB, Ahmed-Braimah YH, Cerne DG, McAllister BF. 2019. Female meiotic drive preferentially segregates derived metacentric chromosomes in Drosophila. bioRxiv 638684 https://doi.org/10.1101/638684
    [Crossref]
  137. 137.
    Stewart-Morgan KR, Petryk N, Groth A. 2020. Chromatin replication and epigenetic cell memory. Nat. Cell Biol. 22:4361–71
    [Google Scholar]
  138. 138.
    Sun Z, Tang Y, Zhang Y, Fang Y, Jia J et al. 2021. Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division. Nat. Commun. 12:15941
    [Google Scholar]
  139. 139.
    Tran V, Lim C, Xie J, Chen X 2012. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338:6107679–82
    [Google Scholar]
  140. 140.
    Tsirkas I, Dovrat D, Lei Y, Kalyva A, Lotysh D et al. 2021. Cac1 WHD and PIP domains have distinct roles in replisome progression and genomic stability. Curr. Genet. 67:1129–39
    [Google Scholar]
  141. 141.
    Tulina N, Matunis E. 2001. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:55512546–49
    [Google Scholar]
  142. 142.
    Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M et al. 2001. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol. Cell. Biol. 21:196574–84
    [Google Scholar]
  143. 143.
    Varas J, Santos JL, Pradillo M. 2017. The absence of the Arabidopsis chaperone complex CAF-1 produces mitotic chromosome abnormalities and changes in the expression profiles of genes involved in DNA repair. Front. Plant Sci. 8:525
    [Google Scholar]
  144. 144.
    Wang H, Wang M, Yang N, Xu RM 2015. Structure of the quaternary complex of histone H3-H4 heterodimer with chaperone ASF1 and the replicative helicase subunit MCM2. Protein Cell 6:9693–97
    [Google Scholar]
  145. 145.
    Wang X, Tsai J-W, Imai JH, Lian W-N, Vallee RB, Shi S-H. 2009. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:7266947–55
    [Google Scholar]
  146. 146.
    Werren JH. 2011. Selfish genetic elements, genetic conflict, and evolutionary innovation. PNAS 108:Suppl. 210863–70
    [Google Scholar]
  147. 147.
    Willard HF. 2011. The genomics of long tandem arrays of satellite DNA in the human genome. Genome 31:2737–44
    [Google Scholar]
  148. 148.
    Wooten M, Ranjan R, Chen X 2020. Asymmetric histone inheritance in asymmetrically dividing stem cells. Trends Genet 36:130–43
    [Google Scholar]
  149. 149.
    Wooten M, Snedeker J, Nizami ZF, Yang X, Ranjan R et al. 2019. Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nat. Struct. Mol. Biol. 26:8732–43Showed that D. melanogaster testis chromatin fibers display strand-specific histone incorporation at replication forks.
    [Google Scholar]
  150. 150.
    Xie J, Wooten M, Tran V, Chen B-C, Pozmanter C et al. 2015. Histone H3 threonine phosphorylation regulates asymmetric histone inheritance in the Drosophila male germline. Cell 163:4920–33
    [Google Scholar]
  151. 151.
    Xie L, Dong P, Chen X, Hsieh T-HS, Banala S et al. 2020. 3D ATAC-PALM: super-resolution imaging of the accessible genome. Nat. Methods 17:4430–36
    [Google Scholar]
  152. 152.
    Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. 2007. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:5811518–21
    [Google Scholar]
  153. 153.
    Yu C, Gan H, Han J, Zhou Z-X, Jia S et al. 2014. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 56:4551–63
    [Google Scholar]
  154. 154.
    Yu C, Gan H, Serra-Cardona A, Zhang L, Gan S et al. 2018. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361:64091386–89
    [Google Scholar]
  155. 155.
    Zanders SE, Unckless RL. 2019. Fertility costs of meiotic drivers. Curr. Biol. 29:11R512–20
    [Google Scholar]
  156. 156.
    Zasadzińska E, Huang J, Bailey AO, Guo LY, Lee NS et al. 2018. Inheritance of CENP-A nucleosomes during DNA replication requires HJURP. Dev. Cell 47:3348–62.e7
    [Google Scholar]
  157. 157.
    Zee BM, Britton L-MP, Wolle D, Haberman DM, Garcia BA. 2012. Origins and formation of histone methylation across the human cell cycle. Mol. Cell. Biol. 32:13250314
    [Google Scholar]
  158. 158.
    Zhang H, Han J, Kang B, Burgess R, Zhang Z. 2012. Human histone acetyltransferase 1 protein preferentially acetylates H4 histone molecules in H3.1-H4 over H3.3-H4. J. Biol. Chem. 287:96573–81
    [Google Scholar]
  159. 159.
    Zhang K, Gao Y, Li J, Burgess R, Han J et al. 2016. A DNA binding winged helix domain in CAF-1 functions with PCNA to stabilize CAF-1 at replication forks. Nucleic Acids Res 44:115083–94
    [Google Scholar]
  160. 160.
    Zhang W, Feng J, Li Q. 2020. The replisome guides nucleosome assembly during DNA replication. Cell Biosci. 10:37Detailed review on replisome factors that contribute to replication-coupled histone assembly.
    [Google Scholar]
  161. 161.
    Zhang Y, Sun Z, Jia J, Du T, Zhang N et al. 2021. Overview of histone modification. Adv. Exp. Med. Biol. 1283:1–16
    [Google Scholar]
  162. 162.
    Zhang Z, Shibahara KI, Stillman B. 2000. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408:6809221–25
    [Google Scholar]
  163. 163.
    Ziane R, Camasses A, Radman-Livaja M. 2022. The asymmetric distribution of RNA polymerase II and nucleosomes on replicated daughter genomes is caused by differences in replication timing between the lagging and the leading strand. Genome Res 32:2337–56Showed that parental histones and RNAPII are deposited onto the strand that was replicated first.
    [Google Scholar]
  164. 164.
    Zion E, Chen X. 2020. Asymmetric histone inheritance regulates stem cell fate in Drosophila midgut. bioRxiv 2020.08.15.252403. https://doi.org/10.1101/2020.08.15.252403
    [Crossref]
  165. 165.
    Zwinderman MRH, Lobo TJ, Van Der Wouden PE, Spierings DCJ, Van Vugt MATM et al. 2021. Deposition bias of chromatin proteins inverts under DNA replication stress conditions. ACS Chem. Biol. 16:112193–201Demonstrated that HU treatment switches leading or lagging strand bias of parental histones.
    [Google Scholar]
/content/journals/10.1146/annurev-genet-072920-125226
Loading
/content/journals/10.1146/annurev-genet-072920-125226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error