1932

Abstract

Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-080320-025104
2022-11-30
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/genet/56/1/annurev-genet-080320-025104.html?itemId=/content/journals/10.1146/annurev-genet-080320-025104&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abad M, Mosteiro L, Pantoja C, Cañamero M, Rayon T et al. 2013. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502:7471340–45
    [Google Scholar]
  2. 2.
    Aguilaniu H, Gustafsson L, Rigoulet M, Nyström T. 2003. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:56131751–53
    [Google Scholar]
  3. 3.
    Ain Q, Schmeer C, Wengerodt D, Witte OW, Kretz A. 2020. Extrachromosomal circular DNA: current knowledge and implications for CNS aging and neurodegeneration. Int. J. Mol. Sci. 21:72477
    [Google Scholar]
  4. 4.
    An H, Ordureau A, Paulo JA, Shoemaker CJ, Denic V, Harper JW. 2019. TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress. Mol. Cell 74:5891–908.e10
    [Google Scholar]
  5. 5.
    Aufschnaiter A, Büttner S. 2019. The vacuolar shapes of ageing: from function to morphology. Biochim. Biophys. Acta Mol. Cell Res. 1866:5957–70
    [Google Scholar]
  6. 6.
    Beck M, Hurt E. 2017. The nuclear pore complex: understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 18:273–89
    [Google Scholar]
  7. 7.
    Berchowitz LE, Kabachinski G, Walker MR, Carlile TM, Gilbert WV et al. 2015. Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell 163:2406–18
    [Google Scholar]
  8. 8.
    Billingsley ML, Kincaid RL. 1997. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem. J. 323:Part 3577–91
    [Google Scholar]
  9. 9.
    Boettcher B, Barral Y. 2013. The cell biology of open and closed mitosis. Nucleus 4:3160–65
    [Google Scholar]
  10. 10.
    Bohnert KA, Kenyon C. 2017. A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage. Nature 551:7682629–33
    [Google Scholar]
  11. 11.
    Brandon M, Baldi P, Wallace DC. 2006. Mitochondrial mutations in cancer. Oncogene 25:344647–62
    [Google Scholar]
  12. 12.
    Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS. 2012. High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335:6068552–57
    [Google Scholar]
  13. 13.
    Bretscher A. 2003. Polarized growth and organelle segregation in yeast. J. Cell Biol. 160:6811–16
    [Google Scholar]
  14. 14.
    Brewer BJ, Fangman WL. 1980. Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores. PNAS 77:95380–84
    [Google Scholar]
  15. 15.
    Bruggeman JW, Koster J, Lodder P, Repping S, Hamer G. 2018. Massive expression of germ cell-specific genes is a hallmark of cancer and a potential target for novel treatment development. Oncogene 37:425694–700
    [Google Scholar]
  16. 16.
    Bryant JM, Govin J, Zhang L, Donahue G, Pugh BF, Berger SL. 2012. The linker histone plays a dual role during gametogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 32:142771–83
    [Google Scholar]
  17. 17.
    Buchwalter A, Hetzer MW. 2017. Nucleolar expansion and elevated protein translation in premature aging. Nat. Commun. 8:1328
    [Google Scholar]
  18. 18.
    Cabib E, Bowers B. 1971. Chitin and yeast budding: localization of chitin in yeast bud scars. J. Biol. Chem. 246:1152–59
    [Google Scholar]
  19. 19.
    Cabrera M, Novarina D, Rempel IL, Veenhoff LM, Chang M. 2017. A simple microfluidic platform to study age-dependent protein abundance and localization changes in Saccharomyces cerevisiae. Microb. Cell 4:5169–74
    [Google Scholar]
  20. 20.
    Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. 2019. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571:7764183–92
    [Google Scholar]
  21. 21.
    Carpenter K, Bell RB, Yunus J, Amon A, Berchowitz LE. 2018. Phosphorylation-mediated clearance of amyloid-like assemblies in meiosis. Dev. Cell 45:3392–405.e6
    [Google Scholar]
  22. 22.
    Chao JT, Wong AKO, Tavassoli S, Young BP, Chruscicki A et al. 2014. Polarization of the endoplasmic reticulum by ER-septin tethering. Cell 158:3620–32
    [Google Scholar]
  23. 23.
    Chen J, Brunner A-D, Cogan JZ, Nuñez JK, Fields AP et al. 2020. Pervasive functional translation of noncanonical human open reading frames. Science 367:64821140–46
    [Google Scholar]
  24. 24.
    Chen J, Tresenrider A, Chia M, McSwiggen DT, Spedale G et al. 2017. Kinetochore inactivation by expression of a repressive mRNA. eLife 6:e27417
    [Google Scholar]
  25. 25.
    Cheng Z, Otto GM, Powers EN, Keskin A, Mertins P et al. 2018. Pervasive, coordinated protein-level changes driven by transcript isoform switching during meiosis. Cell 172:5910–14.e16
    [Google Scholar]
  26. 26.
    Chia M, Li C, Marques S, Pelechano V, Luscombe NM, van Werven FJ. 2021. High-resolution analysis of cell-state transitions in yeast suggests widespread transcriptional tuning by alternative starts. Genome Biol 22:134
    [Google Scholar]
  27. 27.
    Chia M, Tresenrider A, Chen J, Spedale G, Jorgensen V et al. 2017. Transcription of a 5′ extended mRNA isoform directs dynamic chromatin changes and interference of a downstream promoter. eLife 6:e27420
    [Google Scholar]
  28. 28.
    Chou C-C, Zhang Y, Umoh ME, Vaughan SW, Lorenzini I et al. 2018. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21:2228–39
    [Google Scholar]
  29. 29.
    Chou Y-Y, Upadhyayula S, Houser J, He K, Skillern W et al. 2021. Inherited nuclear pore substructures template post-mitotic pore assembly. Dev. Cell 56:121786–1803.e9
    [Google Scholar]
  30. 30.
    Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D et al. 1998. The transcriptional program of sporulation in budding yeast. Science 282:5389699–705
    [Google Scholar]
  31. 31.
    Clay L, Caudron F, Denoth-Lippuner A, Boettcher B, Buvelot Frei S et al. 2014. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. eLife 3:3e01883
    [Google Scholar]
  32. 32.
    Cunningham CN, Williams JM, Knupp J, Arunagiri A, Arvan P, Tsai B. 2019. Cells deploy a two-pronged strategy to rectify misfolded proinsulin aggregates. Mol. Cell 75:3442–56.e4
    [Google Scholar]
  33. 33.
    D'Angelo MA, Raices M, Panowski SH, Hetzer MW 2009. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136:2284–95
    [Google Scholar]
  34. 34.
    De Virgilio C, DeMarini DJ, Pringle JR. 1996. SPR28, a sixth member of the septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells. Microbiology 142:102897–905
    [Google Scholar]
  35. 35.
    Denoth-Lippuner A, Julou T, Barral Y. 2014. Budding yeast as a model organism to study the effects of age. FEMS Microbiol. Rev. 38:2300–25
    [Google Scholar]
  36. 36.
    Denoth-Lippuner A, Krzyzanowski MK, Stober C, Barral Y 2014. Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing. eLife 3:3e03790
    [Google Scholar]
  37. 37.
    Derry WB, Putzke AP, Rothman JH. 2001. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294:5542591–95
    [Google Scholar]
  38. 38.
    Diamond AE, Park J-S, Inoue I, Tachikawa H, Neiman AM. 2009. The anaphase promoting complex targeting subunit Ama1 links meiotic exit to cytokinesis during sporulation in Saccharomyces cerevisiae. Mol. Biol. Cell 20:1134–45
    [Google Scholar]
  39. 39.
    Dujon B, Alexandraki D, André B, Ansorge W, Baladron V et al. 1994. Complete DNA sequence of yeast chromosome XI. Nature 369:6479371–78
    [Google Scholar]
  40. 40.
    Duncan CDS, Mata J. 2014. The translational landscape of fission-yeast meiosis and sporulation. Nat. Struct. Mol. Biol. 21:7641–47
    [Google Scholar]
  41. 41.
    Duro E, Marston AL. 2015. From equator to pole: splitting chromosomes in mitosis and meiosis. Genes Dev 29:2109–22
    [Google Scholar]
  42. 42.
    Eastwood MD, Cheung SWT, Lee KY, Moffat J, Meneghini MD. 2012. Developmentally programmed nuclear destruction during yeast gametogenesis. Dev. Cell 23:135–44
    [Google Scholar]
  43. 43.
    Eastwood MD, Meneghini MD. 2015. Developmental coordination of gamete differentiation with programmed cell death in sporulating yeast. Eukaryot. Cell 14:9858–67
    [Google Scholar]
  44. 44.
    Eisenberg AR, Higdon AL, Hollerer I, Fields AP, Jungreis I et al. 2020. Translation initiation site profiling reveals widespread synthesis of non-AUG-initiated protein isoforms in yeast. Cell Syst 11:2145–60.e5
    [Google Scholar]
  45. 45.
    Eisenberg AR, Higdon A, Keskin A, Hodapp S, Jovanovic M, Brar GA. 2018. Precise post-translational tuning occurs for most protein complex components during meiosis. Cell Rep 25:133603–17.e2
    [Google Scholar]
  46. 46.
    Eisenberg-Bord M, Zung N, Collado J, Drwesh L, Fenech EJ et al. 2021. Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels. J. Cell Biol. 220:11e202104100
    [Google Scholar]
  47. 47.
    Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J et al. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:6937293–98
    [Google Scholar]
  48. 48.
    Erjavec N, Larsson L, Grantham J, Nyström T. 2007. Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21:192410–21
    [Google Scholar]
  49. 49.
    Fan W, Waymire KG, Narula N, Li P, Rocher C et al. 2008. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:5865958–62
    [Google Scholar]
  50. 50.
    Fares H, Goetsch L, Pringle JR. 1996. Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae. J. Cell Biol. 132:3399–411
    [Google Scholar]
  51. 51.
    Fawcett DW, Chemes HE. 1979. Changes in distribution of nuclear pores during differentiation of the male germ cells. Tissue Cell 11:1147–62
    [Google Scholar]
  52. 52.
    Forrester A, De Leonibus C, Grumati P, Fasana E, Piemontese M et al. 2019. A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex. EMBO J 38:2e99847
    [Google Scholar]
  53. 53.
    Frakes AE, Dillin A. 2017. The UPRER: sensor and coordinator of organismal homeostasis. Mol. Cell 66:6761–71
    [Google Scholar]
  54. 54.
    Fuchs J, Loidl J. 2004. Behaviour of nucleolus organizing regions (NORs) and nucleoli during mitotic and meiotic divisions in budding yeast. Chromosome Res 12:5427–38
    [Google Scholar]
  55. 55.
    Garcia G, Finnigan GC, Heasley LR, Sterling SM, Aggarwal A et al. 2016. Assembly, molecular organization, and membrane-binding properties of development-specific septins. J. Cell Biol. 212:5515–29
    [Google Scholar]
  56. 56.
    Gasset-Rosa F, Chillon-Marinas C, Goginashvili A, Atwal RS, Artates JW et al. 2017. Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport. Neuron 94:148–57.e4
    [Google Scholar]
  57. 57.
    Gawriluk TR, Hale AN, Flaws JA, Dillon CP, Green DR, Rucker EB. 2011. Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction 141:6759–65
    [Google Scholar]
  58. 58.
    Gems D, Partridge L. 2008. Stress-response hormesis and aging: “That which does not kill us makes us stronger. .” Cell Metab 7:3200–3
    [Google Scholar]
  59. 59.
    Girke P, Seufert W. 2019. Compositional reorganization of the nucleolus in budding yeast mitosis. Mol. Biol. Cell 30:5591–606
    [Google Scholar]
  60. 60.
    Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B et al. 1996. Life with 6000 genes. Science 274:5287546–67
    [Google Scholar]
  61. 61.
    Goodman JS, King GA, Ünal E. 2020. Cellular quality control during gametogenesis. Exp. Cell Res. 396:1112247
    [Google Scholar]
  62. 62.
    Goudeau J, Aguilaniu H. 2010. Carbonylated proteins are eliminated during reproduction in C. elegans. Aging Cell 9:6991–1003
    [Google Scholar]
  63. 63.
    Grima JC, Daigle JG, Arbez N, Cunningham KC, Zhang K et al. 2017. Mutant huntingtin disrupts the nuclear pore complex. Neuron 94:193–107.e6
    [Google Scholar]
  64. 64.
    Haber JE. 2012. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191:133–64
    [Google Scholar]
  65. 65.
    Henderson KA, Hughes AL, Gottschling DE 2014. Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. eLife 3:e03504
    [Google Scholar]
  66. 66.
    Hendrickson DG, Soifer I, Wranik BJ, Kim G, Robles M et al. 2018. A new experimental platform facilitates assessment of the transcriptional and chromatin landscapes of aging yeast. eLife 7:e9911
    [Google Scholar]
  67. 67.
    Higdon AL, Brar GA. 2021. Rules are made to be broken: a “simple” model organism reveals the complexity of gene regulation. Curr. Genet. 67:149–56
    [Google Scholar]
  68. 68.
    Higuchi R, Vevea JD, Swayne TC, Chojnowski R, Hill V et al. 2013. Actin dynamics affect mitochondrial quality control and aging in budding yeast. Curr. Biol. 23:232417–22
    [Google Scholar]
  69. 69.
    Higuchi-Sanabria R, Pernice WMA, Vevea JD, Alessi Wolken DM, Boldogh IR, Pon LA 2014. Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Res 14:81133–46
    [Google Scholar]
  70. 70.
    Ho H-C. 2010. Redistribution of nuclear pores during formation of the redundant nuclear envelope in mouse spermatids. J. Anat. 216:4525–32
    [Google Scholar]
  71. 71.
    Hong S, Joo JH, Yun H, Kim K 2019. The nature of meiotic chromosome dynamics and recombination in budding yeast. J. Microbiol. 57:4221–31
    [Google Scholar]
  72. 72.
    Hongay CF, Grisafi PL, Galitski T, Fink GR. 2006. Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127:4735–45
    [Google Scholar]
  73. 73.
    Hu J, Donahue G, Dorsey J, Govin J, Yuan Z et al. 2015. H4K44 acetylation facilitates chromatin accessibility during meiosis. Cell Rep 13:91772–80
    [Google Scholar]
  74. 74.
    Hughes AL, Gottschling DE. 2012. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:7428261–65
    [Google Scholar]
  75. 75.
    Hughes CE, Coody TK, Jeong M-Y, Berg JA, Winge DR, Hughes AL. 2020. Cysteine toxicity drives age-related mitochondrial decline by altering iron homeostasis. Cell 180:2296–310.e18
    [Google Scholar]
  76. 76.
    Janssens GE, Veenhoff LM. 2016. Evidence for the hallmarks of human aging in replicatively aging yeast. Microb. Cell 3:7263–74
    [Google Scholar]
  77. 77.
    Janssens GE, Veenhoff LM. 2016. The natural variation in lifespans of single yeast cells is related to variation in cell size, ribosomal protein, and division time. PLOS ONE 11:12e0167394
    [Google Scholar]
  78. 78.
    Kim Guisbert KS, Zhang Y, Flatow J, Hurtado S, Staley JP et al. 2012. Meiosis-induced alterations in transcript architecture and noncoding RNA expression in S. cerevisiae. RNA 18:61142–53
    [Google Scholar]
  79. 79.
    King GA, Goodman JS, Schick JG, Chetlapalli K, Jorgens DM et al. 2019. Meiotic cellular rejuvenation is coupled to nuclear remodeling in budding yeast. eLife 8:e47156
    [Google Scholar]
  80. 80.
    King GA, Ünal E. 2020. The dynamic nuclear periphery as a facilitator of gamete health and rejuvenation. Curr. Genet. 66:3487–93
    [Google Scholar]
  81. 81.
    Kirkwood TBL 1987. Immortality of the germ-line versus disposability of the soma. Evolution of Longevity in Animals AD Woodhead, KH Thompson 209–18 Boston, MA: Springer
    [Google Scholar]
  82. 82.
    Klecker T, Scholz D, Fortsch J, Westermann B. 2013. The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture. J. Cell Sci. 126:132924–30
    [Google Scholar]
  83. 83.
    Knop M, Strasser K. 2000. Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis. EMBO J 19:143657–67
    [Google Scholar]
  84. 84.
    Krishnamoorthy T, Chen X, Govin J, Cheung WL, Dorsey J et al. 2006. Phosphorylation of histone H4 Ser1 regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis. Genes Dev 20:182580–92
    [Google Scholar]
  85. 85.
    Kundu D, Pasrija R 2020. The ERMES (Endoplasmic Reticulum and Mitochondria Encounter Structures) mediated functions in fungi. Mitochondrion 52:89–99
    [Google Scholar]
  86. 86.
    Kunisada T, Yamagishi H, Ogita Z, Kirakawa T, Mitsui Y. 1985. Appearance of extrachromosomal circular DNAs during in vivo and in vitro ageing of mammalian cells. Mech. Ageing Dev. 29:189–99
    [Google Scholar]
  87. 87.
    Lackner LL, Ping H, Graef M, Murley A, Nunnari J. 2013. Endoplasmic reticulum-associated mitochondria–cortex tether functions in the distribution and inheritance of mitochondria. PNAS 110:6E458–67
    [Google Scholar]
  88. 88.
    Lam C, Santore E, Lavoie E, Needleman L, Fiacco N et al. 2014. A visual screen of protein localization during sporulation identifies new components of prospore membrane-associated complexes in budding yeast. Eukaryot. Cell 13:3383–91
    [Google Scholar]
  89. 89.
    Lam YT, Aung-Htut MT, Lim YL, Yang H, Dawes IW 2011. Changes in reactive oxygen species begin early during replicative aging of Saccharomyces cerevisiae cells. Free Radic. Biol. Med. 50:8963–70
    [Google Scholar]
  90. 90.
    Lamoureux JS, Stuart D, Tsang R, Wu C, Glover JNM. 2002. Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. EMBO J 21:215721–32
    [Google Scholar]
  91. 91.
    Li Y, Jiang Y, Paxman J, O'Laughlin R, Klepin S et al. 2020. A programmable fate decision landscape underlies single-cell aging in yeast. Science 369:6501325–29
    [Google Scholar]
  92. 92.
    Lieber T, Jeedigunta SP, Palozzi JM, Lehmann R, Hurd TR. 2019. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570:7761380–84
    [Google Scholar]
  93. 93.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell 153:61194–217
    [Google Scholar]
  94. 94.
    Lord CL, Timney BL, Rout MP, Wente SR. 2015. Altering nuclear pore complex function impacts longevity and mitochondrial function in S. cerevisiae. J. Cell Biol. 208:6729–44
    [Google Scholar]
  95. 95.
    MacAlpine DM, Perlman PS, Butow RA. 2000. The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J 19:4767–75
    [Google Scholar]
  96. 96.
    Mahmoudi S, Xu L, Brunet A. 2019. Turning back time with emerging rejuvenation strategies. Nat. Cell Biol. 21:132–43
    [Google Scholar]
  97. 97.
    Maier P, Rathfelder N, Finkbeiner MG, Taxis C, Mazza M et al. 2007. Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. EMBO J 26:71843–52
    [Google Scholar]
  98. 98.
    Manford AG, Stefan CJ, Yuan HL, MacGurn JA, Emr SD 2012. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev. Cell 23:112940
    [Google Scholar]
  99. 99.
    McFaline-Figueroa JR, Vevea J, Swayne TC, Zhou C, Liu C et al. 2011. Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10:5885–95
    [Google Scholar]
  100. 100.
    McMurray MA, Thorner J. 2008. Septin stability and recycling during dynamic structural transitions in cell division and development. Curr. Biol. 18:161203–8
    [Google Scholar]
  101. 101.
    Mészáros N, Cibulka J, Mendiburo MJ, Romanauska A, Schneider M, Köhler A. 2015. Nuclear pore basket proteins are tethered to the nuclear envelope and can regulate membrane curvature. Dev. Cell 33:3285–98
    [Google Scholar]
  102. 102.
    Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H et al. 2015. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522:7556359–62
    [Google Scholar]
  103. 103.
    Mochida K, Otani T, Katsumata Y, Kirisako H, Kakuta C et al. 2022. Atg39 links and deforms the outer and inner nuclear membranes in selective autophagy of the nucleus. J. Cell Biol. 221:2e202103178
    [Google Scholar]
  104. 104.
    Moens PB. 1971. Fine structure of ascospore development in the yeast Saccharomyces cerevisiae. Can. J. Microbiol. 17:4507–10
    [Google Scholar]
  105. 105.
    Moreno-Borchart AC, Strasser K, Finkbeiner MG, Shevchenko A, Shevchenko A, Knop M. 2001. Prospore membrane formation linked to the leading edge protein (LEP) coat assembly. EMBO J 20:246946–57
    [Google Scholar]
  106. 106.
    Morlot S, Song J, Léger-Silvestre I, Matifas A, Gadal O, Charvin G. 2019. Excessive rDNA transcription drives the disruption in nuclear homeostasis during entry into senescence in budding yeast. Cell Rep 28:2408–22.e4
    [Google Scholar]
  107. 107.
    Mortimer RK, Johnston JR. 1959. Life span of individual yeast cells. Nature 183:46771751–52
    [Google Scholar]
  108. 108.
    Mosteiro L, Pantoja C, Alcazar N, Marión RM, Chondronasiou D et al. 2016. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354:6315aaf4445
    [Google Scholar]
  109. 109.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T et al. 2008. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26:1101–6
    [Google Scholar]
  110. 110.
    Neiman AM. 1998. Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J. Cell Biol. 140:129–37
    [Google Scholar]
  111. 111.
    Neiman AM. 2005. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev 69:4565–84
    [Google Scholar]
  112. 112.
    Neiman AM. 2011. Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189:3737–65
    [Google Scholar]
  113. 113.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC et al. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:5796130–33
    [Google Scholar]
  114. 114.
    Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP et al. 2019. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell 176:51083–97.e18
    [Google Scholar]
  115. 115.
    Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F et al. 2016. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167:71719–33.e12
    [Google Scholar]
  116. 116.
    Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A et al. 2014. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156:4663–77
    [Google Scholar]
  117. 117.
    Okada M, Kusunoki S, Ishibashi Y, Kito K. 2017. Proteomics analysis for asymmetric inheritance of preexisting proteins between mother and daughter cells in budding yeast. Genes Cells 22:6591–601
    [Google Scholar]
  118. 118.
    Otto GM, Cheunkarndee T, Leslie JM, Brar GA. 2021. Programmed cortical ER collapse drives selective ER degradation and inheritance in yeast meiosis. J. Cell Biol. 220:12e202108105
    [Google Scholar]
  119. 119.
    Ozsarac N, Bhattacharyya M, Dawes IW, Clancy MJ. 1995. The SPR3 gene encodes a sporulation-specific homologue of the yeast CDC3/10/11/12 family of bud neck microfilaments and is regulated by ABFI. Gene 164:1157–62
    [Google Scholar]
  120. 120.
    Paulissen SM, Slubowski CJ, Roesner JM, Huang LS. 2016. Timely closure of the prospore membrane requires SPS1 and SPO77 in Saccharomyces cerevisiae. Genetics 203:31203–16
    [Google Scholar]
  121. 121.
    Paxman J, Zhou Z, Li Y, Tian W, Su H et al. 2021. Age-dependent aggregation of ribosomal RNA-binding proteins links deterioration in chromatin stability with loss of proteostasis. bioRxiv 2021.12.06.471495. https://doi.org/10.1101/2021.12.06.471495
    [Crossref]
  122. 122.
    Powell CD, Quain DE, Smart KA. 2003. Chitin scar breaks in aged Saccharomyces cerevisiae. Microbiology 149:Part 113129–37
    [Google Scholar]
  123. 123.
    Preuss D, Mulholland J, Kaiser CA, Orlean P, Albright C et al. 1991. Structure of the yeast endoplasmic reticulum: localization of ER proteins using immunofluorescence and immunoelectron microscopy. Yeast 7:9891–911
    [Google Scholar]
  124. 124.
    Ptak C, Aitchison JD, Wozniak RW. 2014. The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr. Opin. Cell Biol. 28:146–53
    [Google Scholar]
  125. 125.
    Rempel IL, Crane MM, Thaller DJ, Mishra A, Jansen DPM et al. 2019. Age-dependent deterioration of nuclear pore assembly in mitotic cells decreases transport dynamics. eLife 8:e48186
    [Google Scholar]
  126. 126.
    Roeder AD, Shaw JM. 1996. Vacuole partitioning during meiotic division in yeast. Genetics 144:2445–58
    [Google Scholar]
  127. 127.
    Rose MD, Misra LM, Vogel JP. 1989. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57:71211–21
    [Google Scholar]
  128. 128.
    Saarikangas J, Caudron F, Prasad R, Moreno DF, Bolognesi A et al. 2017. Compartmentalization of ER-bound chaperone confines protein deposit formation to the aging yeast cell. Curr. Biol. 27:6773–83
    [Google Scholar]
  129. 129.
    Samaddar M, Goudeau J, Sanchez M, Hall DH, Bohnert KA et al. 2021. A genetic screen identifies new steps in oocyte maturation that enhance proteostasis in the immortal germ lineage. eLife 10:e62653
    [Google Scholar]
  130. 130.
    Sarkar TJ, Quarta M, Mukherjee S, Colville A, Paine P et al. 2020. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11:11545
    [Google Scholar]
  131. 131.
    Savas JN, Toyama BH, Xu T, Yates JR, Hetzer MW. 2012. Extremely long-lived nuclear pore proteins in the rat brain. Science 335:6071942
    [Google Scholar]
  132. 132.
    Sawyer EM, Joshi PR, Jorgensen V, Yunus J, Berchowitz LE, Ünal E. 2019. Developmental regulation of an organelle tether coordinates mitochondrial remodeling in meiosis. J. Cell Biol. 218:2559–79
    [Google Scholar]
  133. 133.
    Sinclair DA, Guarente L. 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:71033–42
    [Google Scholar]
  134. 134.
    Sinclair DA, Mills K, Guarente L. 1997. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277:53301313–16
    [Google Scholar]
  135. 135.
    Sinclair DA, Mills K, Guarente L. 1998. Aging in Saccharomyces cerevisiae. Annu. Rev. Microbiol. 52:533–60
    [Google Scholar]
  136. 136.
    Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z et al. 2008. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLOS Biol 6:1e10
    [Google Scholar]
  137. 137.
    Suda Y, Nakanishi H, Mathieson EM, Neiman AM. 2007. Alternative modes of organellar segregation during sporulation in Saccharomyces cerevisiae. Eukaryot. Cell 6:112009–17
    [Google Scholar]
  138. 138.
    Sugiyama S, Tanaka M. 2019. Distinct segregation patterns of yeast cell-peripheral proteins uncovered by a method for protein segregatome analysis. PNAS 116:188909–18
    [Google Scholar]
  139. 139.
    Suh E-K, Yang A, Kettenbach A, Bamberger C, Michaelis AH et al. 2006. p63 protects the female germ line during meiotic arrest. Nature 444:7119624–28
    [Google Scholar]
  140. 140.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:5861–72
    [Google Scholar]
  141. 141.
    Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:4663–76
    [Google Scholar]
  142. 142.
    Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD. 2000. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290:5490341–44
    [Google Scholar]
  143. 143.
    Taxis C, Maeder C, Reber S, Rathfelder N, Miura K et al. 2006. Dynamic organization of the actin cytoskeleton during meiosis and spore formation in budding yeast. Traffic 7:121628–42
    [Google Scholar]
  144. 144.
    Thayer NH, Leverich CK, Fitzgibbon MP, Nelson ZW, Henderson KA et al. 2014. Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. PNAS 111:3914019–26
    [Google Scholar]
  145. 145.
    Tiku V, Antebi A. 2018. Nucleolar function in lifespan regulation. Trends Cell Biol 28:8662–72
    [Google Scholar]
  146. 146.
    Tiku V, Jain C, Raz Y, Nakamura S, Heestand B et al. 2017. Small nucleoli are a cellular hallmark of longevity. Nat. Commun. 8:689516083
    [Google Scholar]
  147. 147.
    Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT et al. 2013. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154:5971–82
    [Google Scholar]
  148. 148.
    Tresenrider A, Morse K, Jorgensen V, Chia M, Liao H et al. 2021. Integrated genomic analysis reveals key features of long undecoded transcript isoform-based gene repression. Mol. Cell 81:102231–45.e11
    [Google Scholar]
  149. 149.
    Tresenrider A, Ünal E. 2018. One-two punch mechanism of gene repression: a fresh perspective on gene regulation. Curr. Genet. 64:3581–88
    [Google Scholar]
  150. 150.
    Troyer D, Schwager P. 1982. Evidence for nuclear membrane fluidity: proacrosome migration and nuclear pore redistribution during grasshopper spermiogenesis. Cell Motil 2:4355–67
    [Google Scholar]
  151. 151.
    Tworzydlo W, Kisiel E, Jankowska W, Witwicka A, Bilinski SM. 2016. Exclusion of dysfunctional mitochondria from Balbiani body during early oogenesis of Thermobia. Cell Tissue Res 366:1191–201
    [Google Scholar]
  152. 152.
    Ünal E, Kinde B, Amon A. 2011. Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science 332:60371554–57
    [Google Scholar]
  153. 153.
    Van Dalfsen KM, Hodapp S, Keskin A, Otto GM, Berdan CA et al. 2018. Global proteome remodeling during ER stress involves Hac1-driven expression of long undecoded transcript isoforms. Dev. Cell 46:2219–35.e8
    [Google Scholar]
  154. 154.
    van Werven FJ, Neuert G, Hendrick N, Lardenois A, Buratowski S et al. 2012. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 150:61170–81
    [Google Scholar]
  155. 155.
    von Mikecz A. 2009. Protein aggregation in the cell nucleus: structure, function and topology. Open Biol. J. 2:1193–99
    [Google Scholar]
  156. 156.
    Wasko BM, Kaeberlein M. 2014. Yeast replicative aging: a paradigm for defining conserved longevity interventions. FEMS Yeast Res 14:1148–59
    [Google Scholar]
  157. 157.
    Wu S, Turner KM, Nguyen N, Raviram R, Erb M et al. 2019. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575:7784699–703
    [Google Scholar]
  158. 158.
    Wuttke D, Connor R, Vora C, Craig T, Li Y et al. 2012. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes. PLOS Genet 8:8e1002834
    [Google Scholar]
  159. 159.
    Yang J, McCormick MA, Zheng J, Xie Z, Tsuchiya M et al. 2015. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry. PNAS 112:3811977–82
    [Google Scholar]
  160. 160.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:58581917–20
    [Google Scholar]
  161. 161.
    Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB et al. 2015. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525:756756–61
    [Google Scholar]
  162. 162.
    Zhou S, Sternglanz R, Neiman AM. 2017. Developmentally regulated internal transcription initiation during meiosis in budding yeast. PLOS ONE 12:11e0188001
    [Google Scholar]
/content/journals/10.1146/annurev-genet-080320-025104
Loading
/content/journals/10.1146/annurev-genet-080320-025104
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error