1932

Abstract

Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription–replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type–specific gene expression and higher-order chromatin organization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-080320-031523
2023-11-27
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/genet/57/1/annurev-genet-080320-031523.html?itemId=/content/journals/10.1146/annurev-genet-080320-031523&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aiello U, Challal D, Wentzinger G, Lengronne A, Appanah R et al. 2022. Sen1 is a key regulator of transcription-driven conflicts. Mol. Cell 82:162952–66.e6
    [Google Scholar]
  2. 2.
    Akerman I, Kasaai B, Bazarova A, Sang PB, Peiffer I et al. 2020. A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat. Commun. 11:14826
    [Google Scholar]
  3. 3.
    Alvarez V, Bandau S, Jiang H, Rios-Szwed D, Hukelmann J et al. 2023. Proteomic profiling reveals distinct phases to the restoration of chromatin following DNA replication. Cell Rep 42:1111996
    [Google Scholar]
  4. 4.
    Barlow JH, Faryabi RB, Callén E, Wong N, Malhowski A et al. 2013. Identification of early replicating fragile sites that contribute to genome instability. Cell 152:3620–32
    [Google Scholar]
  5. 5.
    Bayona-Feliu A, Barroso S, Muñoz S, Aguilera A. 2021. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription–replication conflicts. Nat. Genet. 53:71050–63
    [Google Scholar]
  6. 6.
    Bertoli C, Skotheim JM, de Bruin RAM. 2013. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14:8518–28
    [Google Scholar]
  7. 7.
    Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H et al. 2012. Unraveling cell type–specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 19:8837–44
    [Google Scholar]
  8. 8.
    Bhowmick R, Lerdrup M, Gadi SA, Rossetti GG, Singh MI et al. 2022. RAD51 protects human cells from transcription-replication conflicts. Mol. Cell 82:183366–81.e9
    [Google Scholar]
  9. 9.
    Bhowmick R, Minocherhomji S, Hickson ID. 2016. RAD52 Facilitates mitotic DNA synthesis following replication stress. Mol. Cell 64:61117–26
    [Google Scholar]
  10. 10.
    Blin M, Tallec BL, Nähse V, Schmidt M, Brossas C et al. 2019. Transcription-dependent regulation of replication dynamics modulates genome stability. Nat. Struct. Mol. Biol. 26:158–66
    [Google Scholar]
  11. 11.
    Boleslavska B, Oravetzova A, Shukla K, Nascakova Z, Ibini ON et al. 2022. DDX17 helicase promotes resolution of R-loop-mediated transcription–replication conflicts in human cells. Nucleic Acids Res. 50:2112274–90
    [Google Scholar]
  12. 12.
    Bosch PC, Segura-Bayona S, Koole W, van Heteren JT, Dewar JM et al. 2014. FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J. 33:212521–33
    [Google Scholar]
  13. 13.
    Bowry A, Kelly RDW, Petermann E. 2021. Hypertranscription and replication stress in cancer. Trends Cancer 7:9863–77
    [Google Scholar]
  14. 14.
    Brewer BJ. 1988. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53:5679–86
    [Google Scholar]
  15. 15.
    Brison O, El-Hilali S, Azar D, Koundrioukoff S, Schmidt M et al. 2019. Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide. Nat. Commun. 10:15693
    [Google Scholar]
  16. 16.
    Brüning J-G, Marians KJ. 2020. Replisome bypass of transcription complexes and R-loops. Nucleic Acids Res. 48:1810353–67
    [Google Scholar]
  17. 17.
    Chappidi N, Nascakova Z, Boleslavska B, Zellweger R, Isik E et al. 2020. Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at co-transcriptional R-loops. Mol. Cell 77:3528–41.e8
    [Google Scholar]
  18. 18.
    Chen L, Chen J-Y, Huang Y-J, Gu Y, Qiu J et al. 2018. The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol. Cell 69:3412–25.e6
    [Google Scholar]
  19. 19.
    Chen L, Chen J-Y, Zhang X, Gu Y, Xiao R et al. 2017. R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol. Cell 68:4745–57.e5
    [Google Scholar]
  20. 20.
    Chen Y-H, Jones MJK, Yin Y, Crist SB, Colnaghi L et al. 2015. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol. Cell 58:2323–38
    [Google Scholar]
  21. 21.
    Chen Y-H, Keegan S, Kahli M, Tonzi P, Fenyö D et al. 2019. Transcription shapes DNA replication initiation and termination in human cells. Nat. Struct. Mol. Biol. 26:167–77
    [Google Scholar]
  22. 22.
    Chong SY, Cutler S, Lin J-J, Tsai C-H, Tsai H-K et al. 2020. H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nat. Commun. 11:1809
    [Google Scholar]
  23. 23.
    Cimprich KA, Cortez D. 2008. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Bio. 9:8616–27
    [Google Scholar]
  24. 24.
    Claussin C, Vazquez J, Whitehouse I. 2022. Single-molecule mapping of replisome progression. Mol. Cell 82:71372–82.e4
    [Google Scholar]
  25. 25.
    Cong K, Peng M, Kousholt AN, Lee WTC, Lee S et al. 2021. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol. Cell 81:153128–44.e7
    [Google Scholar]
  26. 26.
    Crossley MP, Bocek M, Cimprich KA. 2019. R-loops as cellular regulators and genomic threats. Mol. Cell 73:3398–411
    [Google Scholar]
  27. 27.
    Dagg RA, Zonderland G, Lombardi EP, Rossetti GG, Groelly FJ et al. 2021. A transcription-based mechanism for oncogenic β-catenin-induced lethality in BRCA1/2-deficient cells. Nat. Commun. 12:14919
    [Google Scholar]
  28. 28.
    Dahan D, Tsirkas I, Dovrat D, Sparks MA, Singh SP et al. 2018. Pif1 is essential for efficient replisome progression through lagging strand G–quadruplex DNA secondary structures. Nucleic Acids Res. 46:2211847–57
    [Google Scholar]
  29. 29.
    D'Alessandro G, Whelan DR, Howard SM, Vitelli V, Renaudin X et al. 2018. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat. Commun. 9:15376
    [Google Scholar]
  30. 30.
    Deshpande AM, Newlon CS. 1996. DNA replication fork pause sites dependent on transcription. Science 272:52641030–33
    [Google Scholar]
  31. 31.
    Díaz-Talavera A, Montero-Conde C, Leandro-García LJ, Robledo M. 2022. PrimPol: a breakthrough among DNA replication enzymes and a potential new target for cancer therapy. Biomolecules 12:2248
    [Google Scholar]
  32. 32.
    Durkin SG, Glover TW. 2007. Chromosome fragile sites. Genetics 41:1169–92
    [Google Scholar]
  33. 33.
    Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. 2011. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146:4533–43
    [Google Scholar]
  34. 34.
    Edwards DS, Maganti R, Tanksley JP, Luo J, Park JJH et al. 2019. BRD4 prevents R-loop formation and transcription-replication conflicts by ensuring efficient transcription elongation. Cell Rep 32:12108166
    [Google Scholar]
  35. 35.
    Fumasoni M, Zwicky K, Vanoli F, Lopes M, Branzei D. 2015. Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/Primase/Ctf4 complex. Mol. Cell 57:5812–23
    [Google Scholar]
  36. 36.
    Gali VK, Balint E, Serbyn N, Frittmann O, Stutz F, Unk I. 2017. Translesion synthesis DNA polymerase η exhibits a specific RNA extension activity and a transcription-associated function. Sci. Rep. 7:113055
    [Google Scholar]
  37. 37.
    Ge XQ, Jackson DA, Blow JJ. 2007. Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes Dev 21:243331–41
    [Google Scholar]
  38. 38.
    Gómez-González B, Aguilera A. 2019. Transcription-mediated replication hindrance: a major driver of genome instability. Genes Dev 33:15–161008–26
    [Google Scholar]
  39. 39.
    Gostissa M, Alt FW, Chiarle R. 2011. Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Immunology 29:1319–50
    [Google Scholar]
  40. 40.
    Grishkevich V, Yanai I. 2014. Gene length and expression level shape genomic novelties. Genome Res. 24:91497–503
    [Google Scholar]
  41. 41.
    Groelly FJ, Dagg RA, Petropoulos M, Rossetti GG, Prasad B et al. 2022. Mitotic DNA synthesis is caused by transcription-replication conflicts in BRCA2-deficient cells. Mol. Cell 82:183382–97.e7
    [Google Scholar]
  42. 42.
    Gros J, Kumar C, Lynch G, Yadav T, Whitehouse I, Remus D 2015. Post-licensing specification of eukaryotic replication origins by facilitated Mcm2–7 sliding along DNA. Mol. Cell 60:5797–807
    [Google Scholar]
  43. 43.
    Guilbaud G, Murat P, Wilkes HS, Lerner LK, Sale JE, Krude T. 2022. Determination of human DNA replication origin position and efficiency reveals principles of initiation zone organisation. Nucleic Acids Res. 50:137436–50
    [Google Scholar]
  44. 44.
    Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA. 2017. Transcription–replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170:4774–86.e19
    [Google Scholar]
  45. 45.
    Hamperl S, Cimprich KA. 2016. Conflict resolution in the genome: how transcription and replication make it work. Cell 167:61455–67
    [Google Scholar]
  46. 46.
    Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A et al. 2015. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell 57:4636–47
    [Google Scholar]
  47. 47.
    Hawkins M, Dimude JU, Howard JAL, Smith AJ, Dillingham MS et al. 2019. Direct removal of RNA polymerase barriers to replication by accessory replicative helicases. Nucleic Acids Res. 47:105100–13
    [Google Scholar]
  48. 48.
    Helmrich A, Ballarino M, Tora L. 2011. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44:6966–77
    [Google Scholar]
  49. 49.
    Hill J, Eickhoff P, Drury LS, Costa A, Diffley JFX. 2020. The eukaryotic replisome requires an additional helicase to disarm dormant replication origins. bioRxiv 2020.09.17.301366. https://doi.org/10.1101/2020.09.17.301366
    [Crossref]
  50. 50.
    Hori Y, Engel C, Kobayashi T. 2023. Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-022-00573-9
    [Google Scholar]
  51. 51.
    Hsu C-L, Chong SY, Lin C-Y, Kao C-F. 2021. Histone dynamics during DNA replication stress. J. Biomed. Sci. 28:148
    [Google Scholar]
  52. 52.
    Huvet M, Nicolay S, Touchon M, Audit B, d'Aubenton-Carafa Y et al. 2007. Human gene organization driven by the coordination of replication and transcription. Genome Res. 17:91278–85
    [Google Scholar]
  53. 53.
    Irony-Tur Sinai M, Salamon A, Stanleigh N, Goldberg T, Weiss A et al. 2019. AT-dinucleotide rich sequences drive fragile site formation. Nucleic Acids Res. 47:189685–95
    [Google Scholar]
  54. 54.
    Jones RM, Mortusewicz O, Afzal I, Lorvellec M, García P et al. 2013. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene 32:3744–53
    [Google Scholar]
  55. 55.
    Jonkers I, Kwak H, Lis JT 2014. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3:e02407
    [Google Scholar]
  56. 56.
    Kamieniarz-Gdula K, Proudfoot NJ. 2019. Transcriptional control by premature termination: a forgotten mechanism. Trends Genet. 35:8553–64
    [Google Scholar]
  57. 57.
    Kim S, Kang N, Park SH, Wells J, Hwang T et al. 2020. ATAD5 restricts R-loop formation through PCNA unloading and RNA helicase maintenance at the replication fork. Nucleic Acids Res. 48:137218–38
    [Google Scholar]
  58. 58.
    Klein KN, Zhao PA, Lyu X, Sasaki T, Bartlett DA et al. 2021. Replication timing maintains the global epigenetic state in human cells. Science 372:6540371–78
    [Google Scholar]
  59. 59.
    Kotsantis P, Segura-Bayona S, Margalef P, Marzec P, Ruis P et al. 2020. RTEL1 regulates G4/R-loops to avert replication-transcription collisions. Cell Rep 33:12108546
    [Google Scholar]
  60. 60.
    Kotsantis P, Silva LM, Irmscher S, Jones RM, Folkes L et al. 2016. Increased global transcription activity as a mechanism of replication stress in cancer. Nat. Commun. 7:113087
    [Google Scholar]
  61. 61.
    Koyanagi E, Kakimoto Y, Minamisawa T, Yoshifuji F, Natsume T et al. 2022. Global landscape of replicative DNA polymerase usage in the human genome. Nat. Commun. 13:17221
    [Google Scholar]
  62. 62.
    Kumar C, Batra S, Griffith JD, Remus D 2021. The interplay of RNA:DNA hybrid structure and G-quadruplexes determines the outcome of R-loop-replisome collisions. eLife 10:e72286
    [Google Scholar]
  63. 63.
    Lalonde M, Trauner M, Werner M, Hamperl S. 2021. Consequences and resolution of transcription–replication conflicts. Life 11:7637
    [Google Scholar]
  64. 64.
    Lam FC, Kong YW, Huang Q, Han T-LV, Maffa AD et al. 2020. BRD4 prevents the accumulation of R-loops and protects against transcription–replication collision events and DNA damage. Nat. Commun. 11:14083
    [Google Scholar]
  65. 65.
    Landsverk HB, Sandquist LE, Bay LTE, Steurer B, Campsteijn C et al. 2020. WDR82/PNUTS-PP1 prevents transcription-replication conflicts by promoting RNA polymerase II degradation on chromatin. Cell Rep 33:9108469
    [Google Scholar]
  66. 66.
    Lang KS, Hall AN, Merrikh CN, Ragheb M, Tabakh H et al. 2017. Replication-transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. Cell 170:4787–99.e18
    [Google Scholar]
  67. 67.
    Lang KS, Merrikh H. 2018. The clash of macromolecular titans: replication-transcription conflicts in bacteria. Annu. Rev. Microbiol. 72:71–88
    [Google Scholar]
  68. 68.
    Lang KS, Merrikh H. 2021. Topological stress is responsible for the detrimental outcomes of head-on replication-transcription conflicts. Cell Rep 34:9108797
    [Google Scholar]
  69. 69.
    Langley AR, Gräf S, Smith JC, Krude T. 2016. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq). Nucleic Acids Res. 44:2110230–47
    [Google Scholar]
  70. 70.
    Le Tallec B, Millot GA, Blin ME, Brison O, Dutrillaux B, Debatisse M 2013. Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep 4:3420–28
    [Google Scholar]
  71. 71.
    Lee K-Y, Fu H, Aladjem MI, Myung K. 2013. ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. J. Cell Biol. 200:131–44
    [Google Scholar]
  72. 72.
    Lee WTC, Yin Y, Morten MJ, Tonzi P, Gwo PP et al. 2021. Single-molecule imaging reveals replication fork coupled formation of G-quadruplex structures hinders local replication stress signaling. Nat. Commun. 12:12525
    [Google Scholar]
  73. 73.
    Lerner LK, Sale JE. 2019. Replication of G quadruplex DNA. Genes 10:295
    [Google Scholar]
  74. 74.
    Letessier A, Millot GA, Koundrioukoff S, Lachagès A-M, Vogt N et al. 2011. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470:7332120–23
    [Google Scholar]
  75. 75.
    Li M, Xu X, Chang C-W, Liu Y. 2020. TRIM28 functions as the SUMO E3 ligase for PCNA in prevention of transcription induced DNA breaks. PNAS 117:3823588–96
    [Google Scholar]
  76. 76.
    Li Y, Xue B, Zhang M, Zhang L, Hou Y et al. 2021. Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency. Genome Biol. 22:1206
    [Google Scholar]
  77. 77.
    Liu B, Wong ML, Alberts B. 1994. A transcribing RNA polymerase molecule survives DNA replication without aborting its growing RNA chain. PNAS 91:2210660–64
    [Google Scholar]
  78. 78.
    Liu Y, Ai C, Gan T, Wu J, Jiang Y et al. 2021. Transcription shapes DNA replication initiation to preserve genome integrity. Genome Biol. 22:1176
    [Google Scholar]
  79. 79.
    Long H, Zhang L, Lv M, Wen Z, Zhang W et al. 2020. H2A.Z facilitates licensing and activation of early replication origins. Nature 577:7791576–81
    [Google Scholar]
  80. 80.
    Macheret M, Bhowmick R, Sobkowiak K, Padayachy L, Mailler J et al. 2020. High-resolution mapping of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing. Cell Res. 30:11997–1008
    [Google Scholar]
  81. 81.
    Macheret M, Halazonetis TD. 2018. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature 555:7694112–16
    [Google Scholar]
  82. 82.
    Marchal C, Sima J, Gilbert DM. 2019. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Bio. 20:12721–37
    [Google Scholar]
  83. 83.
    Matos DA, Zhang J-M, Ouyang J, Nguyen HD, Genois M-M, Zou L. 2020. ATR protects the genome against R loops through a MUS81-triggered feedback loop. Mol. Cell 77:3514–27.e4
    [Google Scholar]
  84. 84.
    Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. 2018. High speed of fork progression induces DNA replication stress and genomic instability. Nature 559:7713279–84
    [Google Scholar]
  85. 85.
    Merrikh CN, Merrikh H. 2018. Gene inversion potentiates bacterial evolvability and virulence. Nat. Commun. 9:14662
    [Google Scholar]
  86. 86.
    Meryet-Figuiere M, Alaei-Mahabadi B, Ali MM, Mitra S, Subhash S et al. 2014. Temporal separation of replication and transcription during S-phase progression. Cell Cycle 13:203241–48
    [Google Scholar]
  87. 87.
    Mosler T, Conte F, Longo GMC, Mikicic I, Kreim N et al. 2021. R-loop proximity proteomics identifies a role of DDX41 in transcription-associated genomic instability. Nat. Commun. 12:17314
    [Google Scholar]
  88. 88.
    Muniz L, Nicolas E, Trouche D 2021. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition. EMBO J. 40:15e105740
    [Google Scholar]
  89. 89.
    Nguyen HD, Yadav T, Giri S, Saez B, Graubert TA, Zou L. 2017. Functions of replication protein A as a sensor of R loops and a regulator of RNaseH1. Mol. Cell 65:5832–47.e4
    [Google Scholar]
  90. 90.
    Niehrs C, Luke B. 2020. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 21:3167–78
    [Google Scholar]
  91. 91.
    Nudler E. 2012. RNA polymerase backtracking in gene regulation and genome instability. Cell 149:71438–45
    [Google Scholar]
  92. 92.
    Osmundson JS, Kumar J, Yeung R, Smith DJ. 2017. Pif1-family helicases cooperatively suppress widespread replication-fork arrest at tRNA genes. Nat. Struct. Mol. Biol. 24:2162–70
    [Google Scholar]
  93. 93.
    Pannunzio NR, Lieber MR. 2016. Dissecting the roles of divergent and convergent transcription in chromosome instability. Cell Rep 14:51025–31
    [Google Scholar]
  94. 94.
    Papadopoulos D, Solvie D, Baluapuri A, Endres T, Ha SA et al. 2021. MYCN recruits the nuclear exosome complex to RNA polymerase II to prevent transcription-replication conflicts. Mol. Cell 82:159–76.e12
    [Google Scholar]
  95. 95.
    Parsa J-Y, Boudoukha S, Burke J, Homer C, Madhani HD. 2018. Polymerase pausing induced by sequence-specific RNA-binding protein drives heterochromatin assembly. Genes Dev 32:13–14953–64
    [Google Scholar]
  96. 96.
    Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H. 2013. Accelerated gene evolution through replication–transcription conflicts. Nature 495:7442512–15
    [Google Scholar]
  97. 97.
    Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee M-C et al. 2009. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell 35:2228–39
    [Google Scholar]
  98. 98.
    Petermann E, Lan L, Zou L. 2022. Sources, resolution and physiological relevance of R-loops and RNA–DNA hybrids. Nat. Rev. Mol. Cell Bio. 23:521–40
    [Google Scholar]
  99. 99.
    Petryk N, Kahli M, d'Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y et al. 2016. Replication landscape of the human genome. Nat. Commun. 7:110208
    [Google Scholar]
  100. 100.
    Poli J, Gerhold C-B, Tosi A, Hustedt N, Seeber A et al. 2016. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev 30:3337–54
    [Google Scholar]
  101. 101.
    Pomerantz RT, O'Donnell M 2008. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456:7223762–66
    [Google Scholar]
  102. 102.
    Pope BD, Ryba T, Dileep V, Yue F, Wu W et al. 2014. Topologically associating domains are stable units of replication-timing regulation. Nature 515:7527402–5
    [Google Scholar]
  103. 103.
    Powell SK, MacAlpine HK, Prinz JA, Li Y, Belsky JA, MacAlpine DM. 2015. Dynamic loading and redistribution of the Mcm2–7 helicase complex through the cell cycle. EMBO J. 34:4531–43
    [Google Scholar]
  104. 104.
    Prado F, Aguilera A. 2005. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 24:61267–76
    [Google Scholar]
  105. 105.
    Prioleau M-N, MacAlpine DM. 2016. DNA replication origins—where do we begin?. Genes Dev 30:151683–97
    [Google Scholar]
  106. 106.
    Promonet A, Padioleau I, Liu Y, Sanz L, Biernacka A et al. 2020. Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. Nat. Commun. 11:13940
    [Google Scholar]
  107. 107.
    Quinet A, Lemaçon D, Vindigni A. 2017. Replication fork reversal: players and guardians. Mol. Cell 68:5830–33
    [Google Scholar]
  108. 108.
    Quinet A, Tirman S, Cybulla E, Meroni A, Vindigni A. 2021. To skip or not to skip: choosing repriming to tolerate DNA damage. Mol. Cell 81:4649–58
    [Google Scholar]
  109. 109.
    Reusswig K-U, Bittmann J, Peritore M, Courtes M, Pardo B et al. 2022. Unscheduled DNA replication in G1 causes genome instability and damage signatures indicative of replication collisions. Nat. Commun. 13:17014
    [Google Scholar]
  110. 110.
    Rocha EPC, Danchin A. 2003. Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nat. Genet. 34:4377–78
    [Google Scholar]
  111. 111.
    Roeschert I, Poon E, Henssen AG, Garcia HD, Gatti M et al. 2021. Combined inhibition of Aurora-A and ATR kinases results in regression of MYCN-amplified neuroblastoma. Nat. Cancer 2:3312–26
    [Google Scholar]
  112. 112.
    Rothstein R, Michel B, Gangloff S. 2000. Replication fork pausing and recombination or “gimme a break. .” Genes Dev 14:11–10
    [Google Scholar]
  113. 113.
    Said M, Barra V, Balzano E, Talhaoui I, Pelliccia F et al. 2022. FANCD2 promotes mitotic rescue from transcription-mediated replication stress in SETX-deficient cancer cells. Commun. Biol. 5:11395
    [Google Scholar]
  114. 114.
    Sanchez A, de Vivo A, Tonzi P, Kim J, Huang TT, Kee Y. 2020. Transcription-replication conflicts as a source of common fragile site instability caused by BMI1-RNF2 deficiency. PLOS Genet. 16:3e1008524
    [Google Scholar]
  115. 115.
    Sanz LA, Chédin F. 2019. High-resolution, strand-specific R-loop mapping via S9.6-based DNA–RNA immunoprecipitation and high-throughput sequencing. Nat. Protoc. 14:61734–55
    [Google Scholar]
  116. 116.
    Schauer GD, Spenkelink LM, Lewis JS, Yurieva O, Mueller SH et al. 2020. Replisome bypass of a protein-based R-loop block by Pif1. PNAS 117:4830354–61
    [Google Scholar]
  117. 117.
    Scherr MJ, Wahab SA, Remus D, Duderstadt KE. 2022. Mobile origin-licensing factors confer resistance to conflicts with RNA polymerase. Cell Rep 38:12110531
    [Google Scholar]
  118. 118.
    Schwab RA, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D et al. 2015. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60:3351–61
    [Google Scholar]
  119. 119.
    Shin G, Jeong D, Kim H, Im J-S, Lee J-K. 2019. RecQL4 tethering on the pre-replicative complex induces unscheduled origin activation and replication stress in human cells. J. Biol. Chem. 294:4416255–65
    [Google Scholar]
  120. 120.
    Shivji MKK, Renaudin X, Williams ÇH, Venkitaraman AR. 2018. BRCA2 regulates transcription elongation by RNA polymerase II to prevent R-loop accumulation. Cell Rep 22:41031–39
    [Google Scholar]
  121. 121.
    Shyian M, Albert B, Zupan AM, Ivanitsa V, Charbonnet G et al. 2020. Fork pausing complex engages topoisomerases at the replisome. Genes Dev 34:1–287–98
    [Google Scholar]
  122. 122.
    Skourti-Stathaki K, Kamieniarz-Gdula K, Proudfoot NJ. 2014. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516:7531436–39
    [Google Scholar]
  123. 123.
    Skourti-Stathaki K, Proudfoot NJ, Gromak N. 2011. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42:6794–805
    [Google Scholar]
  124. 124.
    Solvie D, Baluapuri A, Uhl L, Fleischhauer D, Endres T et al. 2022. MYC multimers shield stalled replication forks from RNA polymerase. Nature 612:7938148–55
    [Google Scholar]
  125. 125.
    St Germain CP, Zhao H, Sinha V, Sanz LA, Chédin F, Barlow JH. 2022. Genomic patterns of transcription–replication interactions in mouse primary B cells. Nucleic Acids Res. 50:42051–73
    [Google Scholar]
  126. 126.
    Stewart-Morgan KR, Reverón-Gómez N, Groth A. 2019. Transcription restart establishes chromatin accessibility after DNA replication. Mol. Cell 75:2284–97.e6
    [Google Scholar]
  127. 127.
    Stork CT, Bocek M, Crossley MP, Sollier J, Sanz LA et al. 2016. Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. eLife 5:e17548
    [Google Scholar]
  128. 128.
    Šviković S, Crisp A, Tan-Wong SM, Guilliam TA, Doherty AJ et al. 2019. R-loop formation during S phase is restricted by PrimPol-mediated repriming. EMBO J. 38:3e99793
    [Google Scholar]
  129. 129.
    Toledo LI, Altmeyer M, Rask M-B, Lukas C, Larsen DH et al. 2013. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155:51088–103
    [Google Scholar]
  130. 130.
    Tonzi P, Yin Y, Lee CWT, Rothenberg E, Huang TT 2018. Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery. eLife 7:e41426
    [Google Scholar]
  131. 131.
    Topal S, Van C, Xue Y, Carey MF, Peterson CL. 2020. INO80C remodeler maintains genomic stability by preventing promiscuous transcription at replication origins. Cell Rep 32:10108106
    [Google Scholar]
  132. 132.
    Touchon M, Nicolay S, Audit B, Brodie of Brodie E-B, d'Aubenton-Carafa Y et al. 2005. Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. PNAS 102:289836–41
    [Google Scholar]
  133. 133.
    Tran PLT, Pohl TJ, Chen C-F, Chan A, Pott S, Zakian VA. 2017. PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes. Nat. Commun. 8:115025
    [Google Scholar]
  134. 134.
    Tsirkas I, Dovrat D, Thangaraj M, Brouwer I, Cohen A et al. 2022. Transcription-replication coordination revealed in single live cells. Nucleic Acids Res. 50:42143–56
    [Google Scholar]
  135. 135.
    Tubbs A, Sridharan S, van Wietmarschen N, Maman Y, Callen E et al. 2018. Dual roles of poly(dA:dT) tracts in replication initiation and fork collapse. Cell 174:51127–42.e19
    [Google Scholar]
  136. 136.
    Uchino S, Ito Y, Sato Y, Handa T, Ohkawa Y et al. 2021. Live imaging of transcription sites using an elongating RNA polymerase II–specific probe. J. Cell Biol. 221:2e202104134
    [Google Scholar]
  137. 137.
    Veloso A, Kirkconnell KS, Magnuson B, Biewen B, Paulsen MT et al. 2014. Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res. 24:6896–905
    [Google Scholar]
  138. 138.
    Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D. 2016. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 30:111327–38
    [Google Scholar]
  139. 139.
    Wang J, Rojas P, Mao J, Sadurnì MM, Garnier O et al. 2021. Persistence of RNA transcription during DNA replication delays duplication of transcription start sites until G2/M. Cell Rep 34:7108759
    [Google Scholar]
  140. 140.
    Wang W, Klein KN, Proesmans K, Yang H, Marchal C et al. 2021. Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Mol. Cell 81:2975–88.e6
    [Google Scholar]
  141. 141.
    Wansink DG, Manders EE, van der Kraan I, Aten JA, van Driel R, de Jong L. 1994. RNA polymerase II transcription is concentrated outside replication domains throughout S-phase. J. Cell Sci. 107:Part 61449–56
    [Google Scholar]
  142. 142.
    Wellinger RE, Prado F, Aguilera A. 2006. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol. Cell. Biol. 26:83327–34
    [Google Scholar]
  143. 143.
    Wu W, Hickson ID, Liu Y. 2020. The prevention and resolution of DNA replication–transcription conflicts in eukaryotic cells. Genome Instab. Dis. 1:3114–28
    [Google Scholar]
  144. 144.
    Wu Y, Shin-ya K, Brosh RM Jr. 2008. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol. Cell. Biol. 28:124116–28
    [Google Scholar]
  145. 145.
    Yadav P, Harcy V, Argueso JL, Dominska M, Jinks-Robertson S, Kim N. 2014. Topoisomerase I plays a critical role in suppressing genome instability at a highly transcribed G-quadruplex-forming sequence. PLOS Genet. 10:12e1004839
    [Google Scholar]
  146. 146.
    Yang Y, Xu W, Gao F, Wen C, Zhao S et al. 2022. Transcription–replication conflicts in primordial germ cells necessitate the Fanconi anemia pathway to safeguard genome stability. PNAS 119:34e2203208119
    [Google Scholar]
  147. 147.
    Yeung R, Smith DJ. 2020. Determinants of replication-fork pausing at tRNA genes in Saccharomyces cerevisiae. Genetics 214:4825–38
    [Google Scholar]
  148. 148.
    Zhao PA, Sasaki T, Gilbert DM. 2020. High-resolution Repli-Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome Biol. 21:176
    [Google Scholar]
  149. 149.
    Zhou Z-X, Follonier C, Lujan SA, Burkholder AB, Zakian VA, Kunkel TA. 2022. Pif1 family helicases promote mutation avoidance during DNA replication. Nucleic Acids Res. 50:2212844–55
    [Google Scholar]
/content/journals/10.1146/annurev-genet-080320-031523
Loading
/content/journals/10.1146/annurev-genet-080320-031523
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error