1932

Abstract

The rapid rate of current global climate change is having strong effects on many species and, at least in some cases, is driving evolution, particularly when changes in conditions alter patterns of selection. Climate change thus provides an opportunity for the study of the genetic basis of adaptation. Such studies include a variety of observational and experimental approaches, such as sampling across clines, artificial evolution experiments, and resurrection studies. These approaches can be combined with a number of techniques in genetics and genomics, including association and mapping analyses, genome scans, and transcription profiling. Recent research has revealed a number of candidate genes potentially involved in climate change adaptation and has also illustrated that genetic regulatory networks and epigenetic effects may be particularly relevant for evolution driven by climate change. Although genetic and genomic data are rapidly accumulating, we still have much to learn about the genetic architecture of climate change adaptation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-110711-155511
2012-12-15
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/46/1/annurev-genet-110711-155511.html?itemId=/content/journals/10.1146/annurev-genet-110711-155511&mimeType=html&fmt=ahah

Literature Cited

  1. Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A. 1.  et al. 2012. Genetic consequences of climate change for northern plants. Proc. R. Soc. B. In press, doi: 10.1098/rspb.2011.2363 [Google Scholar]
  2. Anderson AR, Hoffmann AA, McKechnie SW, Umina PA, Weeks AR. 2.  2005. The latitudinal cline in the In(3R)Payne inversion polymorphism has shifted in the last 20 years in Australian Drosophila melanogaster populations. Mol. Ecol. 14:851–58 [Google Scholar]
  3. Anderson JT, Willis JH, Mitchell-Olds T. 3.  2011. Evolutionary genetics of plant adaptation. Trends Genet. 27:258–66 [Google Scholar]
  4. Banta JA, Ehrenreich IM, Gerard S, Chou L, Wilczek A. 4.  et al. 2012. Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana. Ecol. Lett. 15:769–77 [Google Scholar]
  5. Barrett RDH, Paccard A, Healy TM, Bergek S, Schulte PM. 5.  et al. 2011. Rapid evolution of cold tolerance in stickleback. Proc. R. Soc. B 278:233–38 [Google Scholar]
  6. Beever EA, Ray C, Wilkening JL, Brussard PF, Mote PW. 6.  2011. Contemporary climate change alters the pace and drivers of extinction. Glob. Change Biol. 17:2054–70 [Google Scholar]
  7. Bell G, Gonzalez A. 7.  2009. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 12:942–48 [Google Scholar]
  8. Blanckenhorn WU, Demont M. 8.  2004. Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum?. Integr. Comp. Biol. 44:413–24 [Google Scholar]
  9. Bossdorf O, Richards CL, Pigliucci M. 9.  2008. Epigenetics for ecologists. Ecol. Lett. 11:106–15 [Google Scholar]
  10. Boyko A, Blevins T, Yao YL, Golubov A, Bilichak A. 10.  et al. 2010. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS ONE 5:e9514 [Google Scholar]
  11. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A. 11.  et al. 2010. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet. 6:e1000940 [Google Scholar]
  12. Bradshaw WE, Emerson KJ, Holzapfel CM. 12.  2011. Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii. Heredity 108:473–79 [Google Scholar]
  13. Bradshaw WE, Holzapfel CM. 13.  2008. Genetic response to rapid climate change: It's seasonal timing that matters. Mol. Ecol. 17:157–66 [Google Scholar]
  14. Bradshaw WE, Holzapfel CM. 14.  2010. Light, time, and the physiology of biotic response to rapid climate change in animals. Annu. Rev. Physiol. 72:147–66 [Google Scholar]
  15. Brett D, Pospisil H, Valcarcel J, Reich J, Bork P. 15.  2002. Alternative splicing and genome complexity. Nat. Genet. 30:29–30 [Google Scholar]
  16. Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD. 16.  2011. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 467:587–90 [Google Scholar]
  17. Cassone BJ, Molloy MJ, Cheng CD, Tan JC, Hahn MW, Besansky NJ. 17.  2011. Divergent transcriptional response to thermal stress by Anopheles gambiae larvae carrying alternative arrangements of inversion 2La. Mol. Ecol. 20:2567–80 [Google Scholar]
  18. Chapman RW, Mancia A, Beal M, Veloso A, Rathburn C. 18.  et al. 2011. The transcriptomic responses of the eastern oyster, Crassostrea virginica, to environmental conditions. Mol. Ecol. 20:1431–49 [Google Scholar]
  19. Charmantier A, Garant D. 19.  2005. Environmental quality and evolutionary potential: lessons from wild populations. Proc. R. Soc. B 272:1415–25 [Google Scholar]
  20. Cheviron ZA, Brumfield RT. 20.  2012. Genomic insights into adaptation to high-altitude environments. Heredity 108:354–61 [Google Scholar]
  21. Chown SL, Gaston KJ. 21.  2010. Body size variation in insects: a macroecological perspective. Biol. Rev. 85:139–69 [Google Scholar]
  22. Clark MS, Thorne MAS, Vieira FA, Cardoso JCR, Power DM, Peck LS. 22.  2010. Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics 11:362 [Google Scholar]
  23. Clowers KJ, Lyman RF, Mackay TFC, Morgan TJ. 23.  2010. Genetic variation in senescence marker protein-30 is associated with natural variation in cold tolerance in Drosophila. Genet. Res. 92:103–13 [Google Scholar]
  24. Colinet H, Lee SF, Hoffmann A. 24.  2010. Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. J. Exp. Biol. 213:4146–50 [Google Scholar]
  25. Collinge JE, Anderson AR, Weeks AR, Johnson TK, McKechnie SW. 25.  2008. Latitudinal and cold-tolerance variation associate with DNA repeat-number variation in the hsr-omega RNA gene of Drosophila melanogaster. Heredity 101:260–70 [Google Scholar]
  26. Collins S, Bell G. 26.  2004. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566–69 [Google Scholar]
  27. Conner JK, Hartl DL. 27.  2004. A Primer of Ecological Genetics Sunderland, MA: Sinauer Assoc. [Google Scholar]
  28. Cotton PA.28.  2003. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. USA 100:12219–22 [Google Scholar]
  29. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. 29.  2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58 [Google Scholar]
  30. Ekblom R, Galindo J. 30.  2011. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15 [Google Scholar]
  31. Etterson JR, Shaw RG. 31.  2001. Constraint to adaptive evolution in response to global warming. Science 294:151–54 [Google Scholar]
  32. Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM. 32.  2011. A map of local adaptation in Arabidopsis thaliana. Science 333:86–89 [Google Scholar]
  33. Franks SJ.33.  2011. Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol. 190:249–57 [Google Scholar]
  34. Franks SJ, Avise JC, Bradshaw WE, Conner JK, Etterson JR. 34.  et al. 2008. The Resurrection Initiative: storing ancestral genotypes to capture evolution in action. BioScience 58:870–73 [Google Scholar]
  35. Franks SJ, Sim S, Weis AE. 35.  2007. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. USA 104:1278–82 [Google Scholar]
  36. Franks SJ, Weis AE. 36.  2008. A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant. J. Evol. Biol. 21:1321–34 [Google Scholar]
  37. Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R. 37.  2011. Declining body size: a third universal response to warming?. Trends Ecol. Evol. 26:285–91 [Google Scholar]
  38. Garroway CJ, Bowman J, Cascaden TJ, Holloway GL, Mahan CG. 38.  et al. 2010. Climate change induced hybridization in flying squirrels. Glob. Change Biol. 16:113–21 [Google Scholar]
  39. Gibert JM, Peronnet F, Schlotterer C. 39.  2007. Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genet. 3:266–80 [Google Scholar]
  40. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J. 40.  2008. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17:167–78 [Google Scholar]
  41. Gonzalez J, Karasov TL, Messer PW, Petrov DA. 41.  2010. Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila. PLoS Genet. 6:e1000905 [Google Scholar]
  42. Grant PR, Grant BR. 42.  2002. Unpredictable evolution in a 30-year study of Darwin's finches. Science 296:707–11 [Google Scholar]
  43. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB. 43.  et al. 2011. Adaptation to climate across the Arabidopsis thaliana genome. Science 333:83–86 [Google Scholar]
  44. Hansen MM, Olivieri I, Waller DM, Nielsen EE. 44.  GeM Working Group 2012. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 21:1311–29 [Google Scholar]
  45. Hauser MT, Aufsatz W, Jonak C, Luschnig C. 45.  2011. Transgenerational epigenetic inheritance in plants. Biochim. Biophys. Acta Gene Regul. Mech. 1809:459–68 [Google Scholar]
  46. Healy TM, Tymchuk WE, Osborne EJ, Schulte PM. 46.  2010. Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches. Physiol. Genomics 41:171–84 [Google Scholar]
  47. Hendry AP, Day T. 47.  2005. Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol. Ecol. 14:901–16 [Google Scholar]
  48. Hill JK, Griffiths HM, Thomas CD. 48.  2011. Climate change and evolutionary adaptations at species' range margins. Annu. Rev. Entomol. 56:143–59 [Google Scholar]
  49. Hoffmann AA, Sgrò CM. 49.  2011. Climate change and evolutionary adaptation. Nature 470:479–85 [Google Scholar]
  50. Hoffmann AA, Sorensen JG, Loeschcke V. 50.  2003. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 28:175–216 [Google Scholar]
  51. Hoffmann AA, Weeks AR. 51.  2007. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica 129:133–47 [Google Scholar]
  52. Inouye DW.52.  2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–62 [Google Scholar]
  53. 53.  Intergov. Panel Clim. Change (IPCC) 2007. Climate change 2007: the physical science basis. Contrib. Work. Group I Fourth Assess. Rep. Intergov. Panel Clim. Change Cambridge, UK: [Google Scholar]
  54. Jablonka E, Raz G. 54.  2009. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84:131–76 [Google Scholar]
  55. James AC, Partridge L. 55.  1995. Thermal evolution of rate of larval development in Drosophila melanogaster in laboratory and field populations. J. Evol. Biol. 8:315–30 [Google Scholar]
  56. Jenkins NL, Hoffmann AA. 56.  1994. Genetic and maternal variation for heat resistance in Drosophila from the field. Genetics 137:783–89 [Google Scholar]
  57. Jensen LT, Cockerell FE, Kristensen TN, Rako L, Loeschcke V. 57.  et al. 2010. Adult heat tolerance variation in Drosophila melanogaster is not related to Hsp70 expression. J. Exp. Zool. Part A 313A:35–44 [Google Scholar]
  58. Johnson TK, Carrington LB, Hallas RJ, McKechnie SW. 58.  2009. Protein synthesis rates in Drosophila associate with levels of the hsr-omega nuclear transcript. Cell Stress Chaperones 14:569–77 [Google Scholar]
  59. Johnson TK, Cockerell FE, McKechnie SW. 59.  2011. Transcripts from the Drosophila heat-shock gene hsr-omega influence rates of protein synthesis but hardly affect resistance to heat knockdown. Mol. Genet. Genomics 285:313–23 [Google Scholar]
  60. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D. 60.  et al. 2008. Efficient control of population structure in model organism association mapping. Genetics 178:1709 [Google Scholar]
  61. Kantar M, Lucas SJ, Budaki H. 61.  2011. Drought stress: molecular genetics and genomics approaches. Plant Responses to Drought and Salinity Stress: Developments in a Post-Genomic Era I Turkan 445–93 London: Academic [Google Scholar]
  62. Karell P, Ahola K, Karstinen T, Valkama J, Brommer JE. 62.  2011. Climate change drives microevolution in a wild bird. Nat. Commun. 2:208 [Google Scholar]
  63. Kellermann V, van Heerwaarden B, Sgrò CM, Hoffmann AA. 63.  2009. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325:1244–46 [Google Scholar]
  64. Kelly MW, Sanford E, Grosberg RK. 64.  2012. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. R. Soc. B 279:349–56 [Google Scholar]
  65. Kennington WJ, Hoffmann AA, Partridge L. 65.  2007. Mapping regions within cosmopolitan inversion In(3R)Payne associated with natural variation in body size in Drosophila melanogaster. Genetics 177:549–56 [Google Scholar]
  66. Kolaczkowski B, Kern AD, Holloway AK, Begun DJ. 66.  2011. Genomic differentiation between temperate and tropical Australian populations of Drosophila melanogaster. Genetics 187:245–60 [Google Scholar]
  67. Kuparinen A, Savolainen O, Schurr FM. 67.  2009. Increased mortality can promote evolutionary adaptation of forest trees to climate change. For. Ecol. Manag. 259:1003–8 [Google Scholar]
  68. Le Corre V, Kremer A. 68.  2012. The genetic differentiation at quantitative trait loci under local adaptation. Mol. Ecol. 21:1548–66 [Google Scholar]
  69. Lee SF, Chen Y, Varan AK, Wee CW, Rako L. 69.  et al. 2011. Molecular basis of adaptive shift in body size in Drosophila melanogaster: functional and sequence analyses of the Dca gene. Mol. Biol. Evol. 28:2393–402 [Google Scholar]
  70. Lempe J, Balasubramanian S, Sureshkumar S, Singh A, Schmid M, Weigel D. 70.  2005. Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet. 1:109–18 [Google Scholar]
  71. Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H. 71.  2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–71 [Google Scholar]
  72. Levine MT, Eckert ML, Begun DJ. 72.  2011. Whole-genome expression plasticity across tropical and temperate Drosophila melanogaster populations from eastern Australia. Mol. Biol. Evol. 28:249–56 [Google Scholar]
  73. Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO. 73.  2010. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107:21199–204 [Google Scholar]
  74. Loeschcke V, Kristensen TN, Norry FM. 74.  2011. Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster. J. Insect Physiol. 57:1227–31 [Google Scholar]
  75. Lynch M, Walsh B. 75.  1998. Genetics and Analysis of Quantitative Traits Sunderland, MA: Sinauer Assoc. [Google Scholar]
  76. Malcom JW.76.  2011. Smaller gene networks permit longer persistence in fast-changing environments. PLoS ONE 6:e14747 [Google Scholar]
  77. Mariac C, Jehin L, Saidou AA, Thuillet AC, Couderc M. 77.  et al. 2011. Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combination of genome scan and association mapping. Mol. Ecol. 20:80–91 [Google Scholar]
  78. Matesanz S, Gianoli E, Valladares F. 78.  2010. Global change and the evolution of phenotypic plasticity in plants. Year in Evolutionary Biology CD Schlichting, TA Mousseau 35–55 Malden, MA: Wiley-Blackwell [Google Scholar]
  79. McDonald JH, Kreitman M. 79.  1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–54 [Google Scholar]
  80. McKay JK, Richards JH, Mitchell-Olds T. 80.  2003. Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Mol. Ecol. 12:1137–51 [Google Scholar]
  81. McKechnie SW, Blacket MJ, Song SV, Rako L, Carroll X. 81.  et al. 2010. A clinally varying promoter polymorphism associated with adaptive variation in wing size in Drosophila. Mol. Ecol. 19:775–784 [Google Scholar]
  82. McMahon SM, Harrison SP, Armbruster WS, Bartlein PJ, Beale CM. 82.  et al. 2011. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol. Evol. 26:249–59 [Google Scholar]
  83. McNamara JM, Barta Z, Klaassen M, Bauer S. 83.  2011. Cues and the optimal timing of activities under environmental changes. Ecol. Lett. 14:1183–90 [Google Scholar]
  84. Michaels SD.84.  2009. Flowering time regulation produces much fruit. Curr. Opin. Plant Biol. 12:75–80 [Google Scholar]
  85. Miller-Rushing AJ, Primack RB. 85.  2008. Global warming and flowering times in Thoreau's Concord: a community perspective. Ecology 89:332–41 [Google Scholar]
  86. Morgan TJ, Mackay TFC. 86.  2006. Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster. Heredity 96:232–42 [Google Scholar]
  87. Moritz C, Patton J, Conroy C, Parra J, White G, Beissinger S. 87.  2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–64 [Google Scholar]
  88. Narum SR, Campbell NR, Kozfkay CC, Meyer KA. 88.  2010. Adaptation of redband trout in desert and montane environments. Mol. Ecol. 19:4622–37 [Google Scholar]
  89. Neuwald JL, Valenzuela N. 89.  2011. The lesser known challenge of climate change: thermal variance and sex-reversal in vertebrates with temperature-dependent sex determination. PLoS ONE 6:e18117 [Google Scholar]
  90. Norry FM, Larsen PF, Liu YJ, Loeschcke V. 90.  2009. Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster. J. Insect Physiol. 55:1050–57 [Google Scholar]
  91. Norry FM, Scannapieco AC, Sambucetti P, Bertoli CI, Loeschcke V. 91.  2008. QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. Mol. Ecol. 17:4570–81 [Google Scholar]
  92. Nuzhdin SV, Brisson JA, Pickering A, Wayne ML, Harshman LG, McIntyre LM. 92.  2009. Natural genetic variation in transcriptome reflects network structure inferred with major effect mutations: insulin/TOR and associated phenotypes in Drosophila melanogaster. BMC Genomics 10:124 [Google Scholar]
  93. Orozco-Terwengel P, Kapun M, Nolte V, Kofler R, Flatt T, Schlötterer C. 93.  2012. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Mol. Ecol. In press, doi: 10.1111/j.1365-294X.2012.05673.x [Google Scholar]
  94. Ostling P, Bjork JK, Roos-Mattjus P, Mezger V, Sistonen L. 94.  2007. Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J. Biol. Chem. 282:7077–86 [Google Scholar]
  95. Ozgul A, Tuljapurkar S, Benton TG, Pemberton JM, Clutton-Brock TH, Coulson T. 95.  2009. The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325:464–67 [Google Scholar]
  96. Parkash R, Sharma V, Kalra B. 96.  2008. Climatic adaptations of body melanisation in Drosophila melanogaster from western Himalayas. Fly 2:111–17 [Google Scholar]
  97. Parmesan C, Yohe G. 97.  2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42 [Google Scholar]
  98. Pelini SL, Keppel JA, Kelley AE, Hellmann JJ. 98.  2010. Adaptation to host plants may prevent rapid insect responses to climate change. Glob. Change Biol. 16:2923–29 [Google Scholar]
  99. Pennisi E. 99.  2011. Banking seeds for future evolutionary scientists. Science 333:1693 [Google Scholar]
  100. Phifer-Rixey M, Heckman M, Trussell GC, Schmidt PS. 100.  2008. Maintenance of clinal variation for shell colour phenotype in the flat periwinkle Littorina obtusata. J. Evol. Biol. 21:966–78 [Google Scholar]
  101. Primack RB.101.  1985. Patterns of flowering phenology in communities, populations, individuals and single flowers. Population Structure of Vegetation J White 571–93 Dordrecht, The Netherlands: Springer [Google Scholar]
  102. Prunier J, Laroche J, Beaulieu J, Bosquet J. 102.  2011. Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. Mol. Ecol. 20:1702–16 [Google Scholar]
  103. Pulido F, Berthold P. 103.  2010. Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc. Natl. Acad. Sci. USA 107:7341–46 [Google Scholar]
  104. Quinn NL, McGowan CR, Cooper GA, Koop BF, Davidson WS. 104.  2011. Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress. Physiol. Genomics 43:685–96 [Google Scholar]
  105. Rako L, Anderson AR, Sgrò CM, Stocker AJ, Hoffmann AA. 105.  2006. The association between inversion In(3R)Payne and clinally varying traits in Drosophila melanogaster. Genetica 128:373–84 [Google Scholar]
  106. Rand DM, Weinreich DM, Lerman D, Folk D, Gilchrist GW. 106.  2010. Three selections are better than one: clinal variation of thermal QTL from independent selection experiments in Drosophila. Evolution 64:2921–34 [Google Scholar]
  107. Reed TE, Schindler DE, Hague MJ, Patterson DA, Meir E. 107.  et al. 2011. Time to evolve? Potential evolutionary responses of Fraser River sockeye salmon to climate change and effects on persistence. PLoS ONE 6:e20380 [Google Scholar]
  108. Reusch TBH, Wood TE. 108.  2007. Molecular ecology of global change. Mol. Ecol. 16:3973–92 [Google Scholar]
  109. Rezende EL, Balanya J, Rodriguez-Trelles F, Rego C, Fragata I. 109.  et al. 2010. Climate change and chromosomal inversions in Drosophila subobscura. Clim. Res. 43:103–14 [Google Scholar]
  110. Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M. 110.  2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9:981–93 [Google Scholar]
  111. Rokas A, Abbot P. 111.  2009. Harnessing genomics for evolutionary insights. Trends Ecol. Evol. 24:192–200 [Google Scholar]
  112. Samani P, Bell G. 112.  2010. Adaptation of experimental yeast populations to stressful conditions in relation to population size. J. Evol. Biol. 23:791–96 [Google Scholar]
  113. Sarup P, Sorensen JG, Kristensen TN, Hoffmann AA, Loeschcke V. 113.  et al. 2011. Candidate genes detected in transcriptome studies are strongly dependent on genetic background. PLoS ONE 6:e15644 [Google Scholar]
  114. Schlichting CD, Pigliucci M. 114.  1998. Phenotypic Evolution: A Reaction Norm Perspective Sunderland, MA: Sinauer Assoc. [Google Scholar]
  115. Sgrò CM, Overgaard J, Kristensen TN, Mitchell KA, Cockerell FE, Hoffmann AA. 115.  2010. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. J. Evol. Biol. 23:2484–93 [Google Scholar]
  116. Silver JT, Noble EG. 116.  2012. Regulation of survival gene hsp70. Cell Stress Chaperones 17:1–9 [Google Scholar]
  117. Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J. 117.  et al. 2010. Adaptation genomics: the next generation. Trends Ecol. Evol. 25:705–12 [Google Scholar]
  118. Stinchcombe JR, Weinig C, Ungerer M, Olsen KM, Mays C. 118.  et al. 2004. A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc. Natl. Acad. Sci. USA 101:4712–17 [Google Scholar]
  119. Svetec N, Werzner A, Wilches R, Pavlidis P, Alvarez-Castro JM. 119.  et al. 2011. Identification of X-linked quantitative trait loci affecting cold tolerance in Drosophila melanogaster and fine mapping by selective sweep analysis. Mol. Ecol. 20:530–44 [Google Scholar]
  120. Takahashi KH, Okada Y, Teramura K. 120.  2011. Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster. BMC Genet. 12:57 [Google Scholar]
  121. Telonis-Scott M, Gane M, DeGaris S, Sgrò CM, Hoffmann AA. 121.  2012. High resolution mapping of candidate alleles for desiccation resistance in Drosophila melanogaster under selection. Mol. Biol. Evol. 29:1335–51 [Google Scholar]
  122. Telonis-Scott M, Hoffmann AA, Sgrò CM. 122.  2011. The molecular genetics of clinal variation: a case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. Mol. Ecol. 20:2100–10 [Google Scholar]
  123. Thomas CD.123.  2010. Climate, climate change and range boundaries. Divers. Distrib. 16:488–95 [Google Scholar]
  124. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG. 124.  et al. 2001. Ecological and evolutionary processes at expanding range margins. Nature 411:577–81 [Google Scholar]
  125. Turner BM.125.  2009. Epigenetic responses to environmental change and their evolutionary implications. Philos. Trans. R. Soc. B 364:3403–18 [Google Scholar]
  126. Turner TL, Levine MT, Eckert ML, Begun DJ. 126.  2008. Genomic analysis of adaptive differentiation in Drosophila melanogaster. Genetics 179:455–73 [Google Scholar]
  127. Turner TL, Stewart AD, Fields AT, Rice WR, Tarone AM. 127.  2011. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster. PLoS Genet. 7:e1001336 [Google Scholar]
  128. Umina PA, Weeks AR, Kearney MR, McKechnie SW, Hoffmann AA. 128.  2005. A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science 308:691–93 [Google Scholar]
  129. Urano K, Kurihara Y, Seki M, Shinozaki K. 129.  2010. “Omics” analyses of regulatory networks in plant abiotic stress responses. Curr. Opin. Plant Biol. 13:132–38 [Google Scholar]
  130. Visser ME.130.  2008. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B 275:649–59 [Google Scholar]
  131. Voolstra Sunagawa CR S, Matz MV, Bayer T, Aranda M. 131.  et al. 2011. Rapid evolution of coral proteins responsible for interaction with the environment. PLoS ONE 6:e20392 [Google Scholar]
  132. Ward JK, Antonovics J, Thomas RB, Strain BR. 132.  2000. Is atmospheric CO2 a selective agent on model C3 annuals?. Oecologia 123:330–41 [Google Scholar]
  133. Wellmer F, Riechmann JL. 133.  2010. Gene networks controlling the initiation of flower development. Trends Genet. 26:519–27 [Google Scholar]
  134. Wilczek AM, Burghardt LT, Cobb AR, Cooper MD, Welch SM, Schmitt J. 134.  2010. Genetic and physiological bases for phenological responses to current and predicted climates. Philos. Trans. R. Soc. B 365:3129–47 [Google Scholar]
  135. Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G. 135.  2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6:2621–26 [Google Scholar]
  136. Williams TD, Turan N, Diab AM, Wu HF, Mackenzie C. 136.  et al. 2011. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach. PLoS Comput. Biol. 7:e1002126 [Google Scholar]
  137. Zeh DW, Zeh JA, Ishida Y. 137.  2009. Transposable elements and an epigenetic basis for punctuated equilibria. BioEssays 31:715–26 [Google Scholar]
  138. Zhu C, Gore M, Buckler ES, Yu J. 138.  2008. Status and prospects of association mapping in plants. Plant Genome 1:5–20 [Google Scholar]
  139. Zimmerman E, Palsson A, Gibson G. 139.  2000. Quantitative trait loci affecting components of wing shape in Drosophila melanogaster. Genetics 155:671–83 [Google Scholar]
  140. Zimmermann NE, Yoccoz NG, Edwards TC, Meier ES, Thuiller W. 140.  et al. 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proc. Natl. Acad. Sci. USA 106:19723–28 [Google Scholar]
/content/journals/10.1146/annurev-genet-110711-155511
Loading
/content/journals/10.1146/annurev-genet-110711-155511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error