Early research on the cyanobacterial clock focused on characterizing the genes needed to keep, entrain, and convey time within the cell. As the scope of assays used in molecular genetics has expanded to capture systems-level properties (e.g., RNA-seq, ChIP-seq, metabolomics, high-throughput screening of genetic variants), so has our understanding of how the clock fits within and influences a broader cellular context. Here we review the work that has established a global perspective of the clock, with a focus on () an emerging network-centric view of clock architecture, () mechanistic insights into how temporal and environmental cues are transmitted and integrated within this network, () the systematic alteration of gene expression and cellular metabolism by the clock, and () insights into the evolution of temporal control in cyanobacteria.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Arita K, Hashimoto H, Igari K, Akaboshi M, Kutsuna S. 1.  et al. 2007. Structural and biochemical characterization of a cyanobacterium circadian clock–modifier protein. J. Biol. Chem. 282:1128–35 [Google Scholar]
  2. Ashby MK, Mullineaux CW. 2.  1999. Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II. FEMS Microbiol. Lett. 181:253–60 [Google Scholar]
  3. Axmann IM, Dühring U, Seeliger L, Arnold A, Vanselow JT. 3.  et al. 2009. Biochemical evidence for a timing mechanism in Prochlorococcus. J. Bacteriol. 191:5342–47 [Google Scholar]
  4. Baca I, Sprockett D, Dvornyk V. 4.  2010. Circadian input kinases and their homologs in cyanobacteria: evolutionary constraints versus architectural diversification. J. Mol. Evol. 70:453–65 [Google Scholar]
  5. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE. 5.  et al. 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6:544–56 [Google Scholar]
  6. Boyd JS, Bordowitz JR, Bree AC, Golden SS. 6.  2013. An allele of the crm gene blocks cyanobacterial circadian rhythms. PNAS 110:13950–55 [Google Scholar]
  7. Chang YG, Cohen SE, Phong C, Myers WK, Kim YI. 7.  et al. 2015. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. Science 349:324–28 [Google Scholar]
  8. Chang YG, Tseng R, Kuo NW, LiWang A. 8.  2012. Rhythmic ring-ring stacking drives the circadian oscillator clockwise. PNAS 109:16847–51 [Google Scholar]
  9. Diamond S, Jun D, Rubin BE, Golden SS. 9.  2015. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. PNAS 112:E1916–25 [Google Scholar]
  10. Dodd AN, Salathia N, Hall A, Kévei E, Tóth R. 10.  et al. 2005. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–33 [Google Scholar]
  11. Doi R, Oishi K, Ishida N. 11.  2010. CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. J. Biol. Chem. 285:22114–21 [Google Scholar]
  12. Doolittle WF, Singer RA. 12.  1974. Mutational analysis of dark endogenous metabolism in the blue-green bacterium Anacystis nidulans. J. Bacteriol. 119:677–83 [Google Scholar]
  13. Dunlap JC, Loros JJ, DeCoursey PJ. 13.  2004. Chronobiology: Biological Timekeeping. Sunderland, MA: Sinauer Assoc.
  14. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M. 14.  et al. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–64 [Google Scholar]
  15. Egli M. 15.  2014. Intricate protein-protein interactions in the cyanobacterial circadian clock. J. Biol. Chem. 289:21267–75 [Google Scholar]
  16. Espinosa J, Boyd JS, Cantos R, Salinas P, Golden SS, Contreras A. 16.  2015. Cross-talk and regulatory interactions between the essential response regulator RpaB and cyanobacterial circadian clock output. PNAS 112:2198–203 [Google Scholar]
  17. Garces RG, Wu N, Gillon W, Pai EF. 17.  2004. Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC. EMBO J. 23:1688–98 [Google Scholar]
  18. Gontero B, Maberly S. 18.  2012. An intrinsically disordered protein, CP12: jack of all trades and master of the Calvin cycle. Biochem. Soc. Trans. 40:995–99 [Google Scholar]
  19. Gonze D, Roussel M, Goldbeter A. 19.  2002. A model for the enhancement of fitness in cyanobacteria based on resonance of a circadian oscillator with the external light-dark cycle. J. Theor. Biol. 214:577–97 [Google Scholar]
  20. Gründel M, Scheunemann R, Lockau W, Zilliges Y. 20.  2012. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158:3032–43 [Google Scholar]
  21. Gutu A, O'Shea EK. 21.  2013. Two antagonistic clock-regulated histidine kinases time the activation of circadian gene expression. Mol. Cell 50:288–94 [Google Scholar]
  22. Hanaoka M, Takai N, Hosokawa N, Fujiwara M, Akimoto Y. 22.  et al. 2012. RpaB, another response regulator operating circadian clock–dependent transcriptional regulation in Synechococcus elongatus PCC 7942. J. Biol. Chem. 287:26321–27 [Google Scholar]
  23. Hanaoka M, Tanaka K. 23.  2008. Dynamics of RpaB-promoter interaction during high light stress, revealed by chromatin immunoprecipitation (ChIP) analysis in Synechococcus elongatus PCC 7942. Plant J. 56:327–35 [Google Scholar]
  24. Hellweger FL. 24.  2010. Resonating circadian clocks enhance fitness in cyanobacteria in silico. Ecol. Model. 221:1620–29 [Google Scholar]
  25. Hitomi K, Oyama T, Han S, Arvai AS, Getzoff ED. 25.  2005. Tetrameric architecture of the circadian clock protein KaiB: a novel interface for intermolecular interactions and its impact on the circadian rhythm. J. Biol. Chem. 280:19127–35 [Google Scholar]
  26. Holtman CK, Chen Y, Sandoval P, Gonzales A, Nalty MS. 26.  et al. 2005. High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. DNA Res. 12:103–15 [Google Scholar]
  27. Holtzendorff J, Partensky F, Mella D, Lennon JF, Hess WR, Garczarek L. 27.  2008. Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J. Biol. Rhythm. 23:187–99 [Google Scholar]
  28. Hosokawa N, Kushige H, Iwasaki H. 28.  2013. Attenuation of the posttranslational oscillator via transcription-translation feedback enhances circadian-phase shifts in Synechococcus. PNAS 110:14486–91 [Google Scholar]
  29. Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson C. 29.  et al. 1998. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–23 [Google Scholar]
  30. Ito H, Mutsuda M, Murayama Y, Tomita J, Hosokawa N. 30.  et al. 2009. Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. PNAS 106:14168–73 [Google Scholar]
  31. Ivleva NB, Bramlett MR, Lindahl PA, Golden SS. 31.  2005. LdpA: A component of the circadian clock senses redox state of the cell. EMBO J. 24:1202–10 [Google Scholar]
  32. Ivleva NB, Gao T, LiWang AC, Golden SS. 32.  2006. Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock. PNAS 103:17468–73 [Google Scholar]
  33. Iwasaki H, Williams SB, Kitayama Y, Ishiura M, Golden SS, Kondo T. 33.  2000. A KaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101:223–33 [Google Scholar]
  34. Iwase R, Imada K, Hayashi F, Uzumaki T, Morishita M. 34.  et al. 2005. Functionally important substructures of circadian clock protein KaiB in a unique tetramer complex. J. Biol. Chem. 280:43141–49 [Google Scholar]
  35. Johnson CH, Stewart PL, Egli M. 35.  2011. The cyanobacterial circadian system: from biophysics to bioevolution. Annu. Rev. Biophys. 40:143–67 [Google Scholar]
  36. Kanehisa M, Goto S. 36.  2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28:27–30 [Google Scholar]
  37. Katayama M, Kondo T, Xiong J, Golden SS. 37.  2003. ldpA encodes an iron-sulfur protein involved in light-dependent modulation of the circadian period in the cyanobacterium Synechococcus elongatus PCC 7942. J. Bacteriol. 185:1415–22 [Google Scholar]
  38. Katayama M, Tsinoremas NF, Kondo T, Golden SS. 38.  1999. cpmA, a gene involved in an output pathway of the cyanobacterial circadian system. J. Bacteriol. 181:3516–24 [Google Scholar]
  39. Kato H, Watanabe S, Nimura-Matsune K, Chibazakura T, Tozawa Y, Yoshikawa H. 39.  2012. Exploration of a possible partnership among orphan two-component system proteins in cyanobacterium Synechococcus elongatus PCC 7942. Biosci. Biotechnol. Biochem. 76:1484–91 [Google Scholar]
  40. Kim YI, Vinyard DJ, Ananyev GM, Dismukes GC, Golden SS. 40.  2012. Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator. PNAS 109:17765–69 [Google Scholar]
  41. Knowles VL, Plaxton WC. 41.  2003. From genome to enzyme: analysis of key glycolytic and oxidative pentose-phosphate pathway enzymes in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 44:758–63 [Google Scholar]
  42. Kondo T, Ishiura M. 42.  1994. Circadian rhythms of cyanobacteria: monitoring the biological clocks of individual colonies by bioluminescence. J. Bacteriol. 176:1881–85 [Google Scholar]
  43. Kondo T, Mori T, Lebedeva NV, Aoki S, Ishiura M, Golden SS. 43.  1997. Circadian rhythms in rapidly dividing cyanobacteria. Science 275:224–27 [Google Scholar]
  44. Kondo T, Strayer C, Kulkarni R, Taylor W, Ishiura M. 44.  et al. 1993. Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. PNAS 90:5672–76 [Google Scholar]
  45. Kondo T, Tsinoremas N, Golden S, Johnson C, Kutsuna S, Ishiura M. 45.  1994. Circadian clock mutants of cyanobacteria. Science 266:1233–36 [Google Scholar]
  46. Kucho Ki, Okamoto K, Tsuchiya Y, Nomura S, Nango M. 46.  et al. 2005. Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 187:2190–99 [Google Scholar]
  47. Kutsuna S, Kondo T, Aoki S, Ishiura M. 47.  1998. A period-extender gene, pex, that extends the period of the circadian clock in the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. 180:2167–74 [Google Scholar]
  48. Liu Y, Tsinoremas NF, Johnson CH, Lebedeva NV, Golden SS. 48.  et al. 1995. Circadian orchestration of gene expression in cyanobacteria. Genes Dev. 9:1469–78 [Google Scholar]
  49. Ma P, Woelfle MA, Johnson CH. 49.  2013. An evolutionary fitness enhancement conferred by the circadian system in cyanobacteria. Chaos Solitons Fractals 50:65–74 [Google Scholar]
  50. Mackey SR, Choi JS, Kitayama Y, Iwasaki H, Dong G, Golden SS. 50.  2008. Proteins found in a CikA interaction assay link the circadian clock, metabolism, and cell division in Synechococcus elongatus. J. Bacteriol. 190:3738–46 [Google Scholar]
  51. Mackey SR, Ditty JL, Clerico EM, Golden SS. 51.  2007. Detection of rhythmic bioluminescence from luciferase reporters in cyanobacteria. Methods Mol. Biol. 362:115–29 [Google Scholar]
  52. Mackey SR, Golden SS, Ditty JL. 52.  2011. The itty-bitty time machine: genetics of the cyanobacterial circadian clock. Adv. Genet. 74:13–53 [Google Scholar]
  53. Markson JS, Piechura JR, Puszynska AM, O'Shea EK. 53.  2013. Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell 155:1396–408 [Google Scholar]
  54. Moronta-Barrios F, Espinosa J, Contreras A. 54.  2012. In vivo features of signal transduction by the essential response regulator RpaB from Synechococcus elongatus PCC 7942. Microbiology 158:1229–37 [Google Scholar]
  55. Moronta-Barrios F, Espinosa J, Contreras A. 55.  2013. Negative control of cell size in the cyanobacterium Synechococcus elongatus PCC 7942 by the essential response regulator RpaB. FEBS Lett. 587:504–9 [Google Scholar]
  56. Nakahira Y, Katayama M, Miyashita H, Kutsuna S, Iwasaki H. 56.  et al. 2004. Global gene repression by KaiC as a master process of prokaryotic circadian system. PNAS 101:881–85 [Google Scholar]
  57. Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y. 57.  et al. 2005. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–15 [Google Scholar]
  58. Nishiwaki T, Satomi Y, Nakajima M, Lee C, Kiyohara R. 58.  et al. 2004. Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. PNAS 101:13927–32 [Google Scholar]
  59. Ouyang Y, Andersson C, Kondo T, Golden S, Johnson C. 59.  1998. Resonating circadian clocks enhance fitness in cyanobacteria. PNAS 95:8660–64 [Google Scholar]
  60. Paddock ML, Boyd JS, Adin DM, Golden SS. 60.  2013. Active output state of the Synechococcus Kai circadian oscillator. PNAS 110:E3849–57 [Google Scholar]
  61. Paranjpe D, Sharma V. 61.  2005. Evolution of temporal order in living organisms. J. Circadian Rhythm. 3:7 [Google Scholar]
  62. Pattanayak GK, Phong C, Rust MJ. 62.  2014. Rhythms in energy storage control the ability of the cyanobacterial circadian clock to reset. Curr. Biol. 24:1934–38 [Google Scholar]
  63. Pattanayek R, Williams DR, Pattanayek S, Xu Y, Mori T. 63.  et al. 2006. Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. EMBO J. 25:2017–28 [Google Scholar]
  64. Petit JM, Burlet-Godinot S, Magistretti PJ, Allaman I. 64.  2015. Glycogen metabolism and the homeostatic regulation of sleep. Metab. Brain Dis. 30:263–79 [Google Scholar]
  65. Rosbash M. 65.  2009. The implications of multiple circadian clock origins. PLOS Biol. 7:e1000062 [Google Scholar]
  66. Rubin BE, Wetmore KM, Price MN, Diamond S, Shultzaberger RK. 65a.  et al. 2015. The essential gene set of a photosynthetic organism. PNAS. In press [Google Scholar]
  67. Rust MJ, Golden SS, O'Shea EK. 66.  2011. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331:220–23 [Google Scholar]
  68. Rust MJ, Markson JS, Lane WS, Fisher DS, O'Shea EK. 67.  2007. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809–12 [Google Scholar]
  69. Scanlan DJ, Sundaram S, Newman J, Mann NH, Carr NG. 68.  1995. Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942. J. Bacteriol. 177:2550–53 [Google Scholar]
  70. Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS. 69.  2000. CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289:765–68 [Google Scholar]
  71. Shestakov S, Khyen NT. 70.  1970. Evidence for genetic transformation in blue-green alga Anacystis nidulans. Mol. Gen. Genet. 107:372–75 [Google Scholar]
  72. Shultzaberger RK, Boyd JS, Katsuki T, Golden SS, Greenspan RJ. 71.  2014. Single mutations in sasA enable a simpler ΔcikA gene network architecture with equivalent circadian properties. PNAS 111:E5069–75 [Google Scholar]
  73. Shultzaberger RK, Paddock ML, Katsuki T, Greenspan RJ, Golden SS. 72.  2015. High-throughput and quantitative approaches for measuring circadian rhythms in cyanobacteria using bioluminescence. Methods Enzymol. 551:53–72 [Google Scholar]
  74. Stock AM, Robinson VL, Goudreau PN. 73.  2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183–215 [Google Scholar]
  75. Suzuki E, Umeda K, Nihei S, Moriya K, Ohkawa H. 74.  et al. 2007. Role of the GlgX protein in glycogen metabolism of the cyanobacterium, Synechococcus elongatus PCC 7942. Biochim. Biophys. Acta 1770:763–73 [Google Scholar]
  76. Sweeney BM, Borgese MB. 75.  1989. A circadian rhythm in cell division in a prokaryote, the cyanobacterium Synechococcus WH78031. J. Phycol. 25:183–86 [Google Scholar]
  77. Takai N, Ikeuchi S, Manabe K, Kutsuna S. 76.  2006. Expression of the circadian clock–related gene pex in cyanobacteria increases in darkness and is required to delay the clock. J. Biol. Rhythm. 21:235–44 [Google Scholar]
  78. Takai N, Nakajima M, Oyama T, Kito R, Sugita C. 77.  et al. 2006. A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. PNAS 103:12109–14 [Google Scholar]
  79. Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S. 78.  2005. The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J. 42:504–13 [Google Scholar]
  80. Taniguchi Y, Katayama M, Ito R, Takai N, Kondo T, Oyama T. 79.  2007. labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. Genes Dev. 21:60–70 [Google Scholar]
  81. Taniguchi Y, Nishikawa T, Kondo T, Oyama T. 80.  2012. Overexpression of lalA, a paralog of labA, is capable of affecting both circadian gene expression and cell growth in the cyanobacterium Synechococcus elongatus PCC 7942. FEBS Lett. 586:753–59 [Google Scholar]
  82. Teng SW, Mukherji S, Moffitt JR, De Buyl S, O'Shea EK. 81.  2013. Robust circadian oscillations in growing cyanobacteria require transcriptional feedback. Science 340:737–40 [Google Scholar]
  83. Terauchi K, Kitayama Y, Nishiwaki T, Miwa K, Murayama Y. 82.  et al. 2007. ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. PNAS 104:16377–81 [Google Scholar]
  84. Tomita J, Nakajima M, Kondo T, Iwasaki H. 83.  2005. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–54 [Google Scholar]
  85. Tseng R, Chang YG, Bravo I, Latham R, Chaudhary A. 84.  et al. 2014. Cooperative KaiA-KaiB-KaiC interactions affect KaiB/SasA competition in the circadian clock of cyanobacteria. J. Mol. Biol. 426:389–402 [Google Scholar]
  86. Umetani M, Hosokawa N, Kitayama Y, Iwasaki H. 85.  2014. Hypersensitive photic responses and intact genome-wide transcriptional control without the KaiC phosphorylation cycle in the Synechococcus circadian system. J. Bacteriol. 196:548–55 [Google Scholar]
  87. Vijayan V, Zuzow R, O'Shea E. 86.  2009. Oscillations in supercoiling drive circadian gene expression in cyanobacteria. PNAS 106:22564 [Google Scholar]
  88. Wiegard A, Dörrich AK, Deinzer HT, Beck C, Wilde A. 87.  et al. 2013. Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence. Microbiology 159:948–58 [Google Scholar]
  89. Williams SB, Vakonakis I, Golden SS, LiWang AC. 88.  2002. Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. PNAS 99:15357–62 [Google Scholar]
  90. Woelfle MA, Johnson CH. 89.  2009. The adaptive value of the circadian clock system in cyanobacteria. Bacterial Circadian Programs JL Ditty, SR Mackey, CH Johnson 205–21 Berlin: Springer [Google Scholar]
  91. Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. 90.  2004. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr. Biol. 14:1481–86 [Google Scholar]
  92. Woelfle MA, Xu Y, Qin X, Johnson CH. 91.  2007. Circadian rhythms of superhelical status of DNA in cyanobacteria. PNAS 104:18819–24 [Google Scholar]
  93. Wood TL, Bridwell-Rabb J, Kim YI, Gao T, Chang YG. 92.  et al. 2010. The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor. PNAS 107:5804–9 [Google Scholar]
  94. Xu Y, Mori T, Pattanayek R, Pattanayek S, Egli M, Johnson CH. 93.  2004. Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses. PNAS 101:13933–38 [Google Scholar]
  95. Xu Y, Weyman PD, Umetani M, Xiong J, Qin X. 94.  et al. 2013. Circadian yin-yang regulation and its manipulation to globally reprogram gene expression. Curr. Biol. 23:2365–74 [Google Scholar]
  96. Yang C, Hua Q, Shimizu K. 95.  2002. Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Appl. Microbiol. Biotechnol. 58:813–22 [Google Scholar]
  97. Yen UC, Huang TC, Yen TC. 96.  2004. Observation of the circadian photosynthetic rhythm in cyanobacteria with a dissolved-oxygen meter. Plant Sci. 166:949–52 [Google Scholar]
  98. Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C. 97.  et al. 2009. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLOS ONE 4:e5135 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error