Full text loading...
Abstract
Understanding genetic variation of complex traits in human populations has moved from the quantification of the resemblance between close relatives to the dissection of genetic variation into the contributions of individual genomic loci. However, major questions remain unanswered: How much phenotypic variation is genetic; how much of the genetic variation is additive and can be explained by fitting all genetic variants simultaneously in one model, and what is the joint distribution of effect size and allele frequency at causal variants? We review and compare three whole-genome analysis methods that use mixed linear models (MLMs) to estimate genetic variation. In all methods, genetic variation is estimated from the relationship between close or distant relatives on the basis of pedigree information and/or single nucleotide polymorphisms (SNPs). We discuss theory, estimation procedures, bias, and precision of each method and review recent advances in the dissection of genetic variation of complex traits in human populations. By using genome-wide data, it is now established that SNPs in total account for far more of the genetic variation than the statistically highly significant SNPs that have been detected in genome-wide association studies. All SNPs together, however, do not account for all of the genetic variance estimated by pedigree-based methods. We explain possible reasons for this remaining “missing heritability.”