1932

Abstract

The Alphaproteobacteria uniquely integrate features of two-component signal transduction and alternative σ factor regulation to control transcription of genes that ensure growth and survival across a range of stress conditions. Research over the past decade has led to the discovery of the key molecular players of this general stress response (GSR) system, including the sigma factor σEcfG, its anti-σ factor NepR, and the anti-anti-σ factor PhyR. The central molecular event of GSR activation entails aspartyl phosphorylation of PhyR, which promotes its binding to NepR and thereby releases σEcfG to associate with RNAP and direct transcription. Recent studies are providing a new understanding of complex, multilayered sensory networks that activate and repress this central protein partner switch. This review synthesizes our structural and functional understanding of the core GSR regulatory proteins and highlights emerging data that are defining the systems that regulate GSR transcription in a variety of species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112414-054813
2015-11-23
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/genet/49/1/annurev-genet-112414-054813.html?itemId=/content/journals/10.1146/annurev-genet-112414-054813&mimeType=html&fmt=ahah

Literature Cited

  1. Abromaitis S, Koehler JE. 1.  2013. The Bartonella quintana extracytoplasmic function sigma factor RpoE has a role in bacterial adaptation to the arthropod vector environment. J. Bacteriol. 195:2662–74 [Google Scholar]
  2. Akbar S, Lee SY, Boylan SA, Price CW. 2.  1999. Two genes from Bacillus subtilis under the sole control of the general stress transcription factor σB. Microbiology 145:Pt. 51069–78 [Google Scholar]
  3. Alvarez-Martinez CE, Baldini RL, Gomes SL. 3.  2006. A Caulobacter crescentus extracytoplasmic function sigma factor mediating the response to oxidative stress in stationary phase. J. Bacteriol. 188:1835–46 [Google Scholar]
  4. Alvarez-Martinez CE, Lourenco RF, Baldini RL, Laub MT, Gomes SL. 4.  2007. The ECF sigma factor σT is involved in osmotic and oxidative stress responses in Caulobacter crescentus. Mol. Microbiol. 66:1240–55 [Google Scholar]
  5. Anantharaman V, Aravind L. 5.  2001. The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends Biochem. Sci. 26:579–82 [Google Scholar]
  6. Aravind L, Ponting CP. 6.  1997. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22:458–59 [Google Scholar]
  7. Atkinson MR, Ninfa AJ. 7.  1993. Mutational analysis of the bacterial signal-transducing protein kinase/phosphatase nitrogen regulator II (NRII or NtrB). J. Bacteriol. 175:7016–23 [Google Scholar]
  8. Bastiat B, Sauviac L, Bruand C. 8.  2010. Dual control of Sinorhizobium meliloti RpoE2 sigma factor activity by two PhyR-type two-component response regulators. J. Bacteriol. 192:2255–65 [Google Scholar]
  9. Battesti A, Majdalani N, Gottesman S. 9.  2011. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65:189–213 [Google Scholar]
  10. Batut J, Andersson SG, O'Callaghan D. 10.  2004. The evolution of chronic infection strategies in the Alphaproteobacteria. Nat. Rev. Microbiol. 2:933–45 [Google Scholar]
  11. Britos L, Abeliuk E, Taverner T, Lipton M, McAdams H, Shapiro L. 11.  2011. Regulatory response to carbon starvation in Caulobacter crescentus. PLOS ONE 6:e18179 [Google Scholar]
  12. Brown KL, Hughes KT. 12.  1995. The role of anti-sigma factors in gene regulation. Mol. Microbiol. 16:397–404 [Google Scholar]
  13. Calhoun LN, Kwon YM. 13.  2011. Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. J. Appl. Microbiol. 110:375–86 [Google Scholar]
  14. Campagne S, Allain FH, Vorholt JA. 14.  2015. Extra cytoplasmic function sigma factors, recent structural insights into promoter recognition and regulation. Curr. Opin. Struct. Biol. 30C:71–78 [Google Scholar]
  15. Campagne S, Damberger FF, Kaczmarczyk A, Francez-Charlot A, Allain FH, Vorholt JA. 15.  2012. Structural basis for sigma factor mimicry in the general stress response of Alphaproteobacteria. PNAS 109:E1405–14 [Google Scholar]
  16. Campbell EA, Westblade LF, Darst SA. 16.  2008. Regulation of bacterial RNA polymerase sigma factor activity: a structural perspective. Curr. Opin. Microbiol. 11:121–27 [Google Scholar]
  17. Capra EJ, Laub MT. 17.  2012. Evolution of two-component signal transduction systems. Annu. Rev. Microbiol. 66:325–47 [Google Scholar]
  18. Casino P, Miguel-Romero L, Marina A. 18.  2014. Visualizing autophosphorylation in histidine kinases. Nat. Commun. 5:3258 [Google Scholar]
  19. Casino P, Rubio V, Marina A. 19.  2009. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139:325–36 [Google Scholar]
  20. Chiang SM, Schellhorn HE. 20.  2010. Evolution of the RpoS regulon: origin of RpoS and the conservation of RpoS-dependent regulation in bacteria. J. Mol. Evol. 70:557–71 [Google Scholar]
  21. Correa F, Ko WH, Ocasio V, Bogomolni RA, Gardner KH. 21.  2013. Blue light regulated two-component systems: enzymatic and functional analyses of light-oxygen-voltage (LOV)-histidine kinases and downstream response regulators. Biochemistry 52:4656–66 [Google Scholar]
  22. Crooks GE, Hon G, Chandonia JM, Brenner SE. 22.  2004. WebLogo: a sequence logo generator. Genome Res. 14:1188–90 [Google Scholar]
  23. Crosson S, Moffat K. 23.  2002. Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14:1067–75 [Google Scholar]
  24. Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang WS. 24.  et al. 2007. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J. Bacteriol. 189:6751–62 [Google Scholar]
  25. da Silva Batista JS, Hungria M. 25.  2012. Proteomics reveals differential expression of proteins related to a variety of metabolic pathways by genistein-induced Bradyrhizobium japonicum strains. J. Proteomics 75:1211–19 [Google Scholar]
  26. Delory M, Hallez R, Letesson JJ, De Bolle X. 26.  2006. An RpoH-like heat shock sigma factor is involved in stress response and virulence in Brucella melitensis 16M. J. Bacteriol. 188:7707–10 [Google Scholar]
  27. Dutta R, Inouye M. 27.  1996. Reverse phosphotransfer from OmpR to EnvZ in a kinase−/phosphatase +mutant of EnvZ (EnvZ.N347D), a bifunctional signal transducer of Escherichia coli. J. Biol. Chem. 271:1424–29 [Google Scholar]
  28. Ettema TJ, Andersson SG. 28.  2009. The Alphaproteobacteria: the Darwin finches of the bacterial world. Biol. Lett. 5:429–32 [Google Scholar]
  29. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY. 29.  et al. 2014. Pfam: the protein families database. Nucleic Acids Res. 42:D222–30 [Google Scholar]
  30. Flechard M, Fontenelle C, Blanco C, Goude R, Ermel G, Trautwetter A. 30.  2010. RpoE2 of Sinorhizobium meliloti is necessary for trehalose synthesis and growth in hyperosmotic media. Microbiology 156:1708–18 [Google Scholar]
  31. Flechard M, Fontenelle C, Trautwetter A, Ermel G, Blanco C. 31.  2009. Sinorhizobium meliloti rpoE2 is necessary for H2O2 stress resistance during the stationary growth phase. FEMS Microbiol. Lett. 290:25–31 [Google Scholar]
  32. Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA. 32.  2003. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11:671–83 [Google Scholar]
  33. Foreman R, Fiebig A, Crosson S. 33.  2012. The LovK-LovR two-component system is a regulator of the general stress pathway in Caulobacter crescentus. J. Bacteriol. 194:3038–49 [Google Scholar]
  34. Francez-Charlot A, Frunzke J, Reichen C, Ebneter JZ, Gourion B, Vorholt JA. 34.  2009. Sigma factor mimicry involved in regulation of general stress response. PNAS 106:3467–72 [Google Scholar]
  35. Francez-Charlot A, Kaczmarczyk A, Fischer HM, Vorholt JA. 35.  2015. The general stress response in Alphaproteobacteria. Trends Microbiol. 23:164–71 [Google Scholar]
  36. Galperin MY. 36.  2006. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol. 188:4169–82 [Google Scholar]
  37. Galperin MY. 37.  2010. Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol. 13:150–59 [Google Scholar]
  38. Gourion B, Francez-Charlot A, Vorholt JA. 38.  2008. PhyR is involved in the general stress response of Methylobacterium extorquens AM1. J. Bacteriol. 190:1027–35 [Google Scholar]
  39. Gourion B, Rossignol M, Vorholt JA. 39.  2006. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. PNAS 103:13186–91 [Google Scholar]
  40. Gourion B, Sulser S, Frunzke J, Francez-Charlot A, Stiefel P. 40.  et al. 2009. The PhyR-sigma(EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. Mol. Microbiol. 73:291–305 [Google Scholar]
  41. Grebe TW, Stock JB. 41.  1999. The histidine protein kinase superfamily. Adv. Microb. Physiol. 41:139–227 [Google Scholar]
  42. Haldenwang WG. 42.  1995. The sigma factors of Bacillus subtilis. Microbiol. Rev. 59:1–30 [Google Scholar]
  43. Hecker M, Pane-Farre J, Volker U. 43.  2007. SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu. Rev. Microbiol. 61:215–36 [Google Scholar]
  44. Helmann JD. 44.  1999. Anti-sigma factors. Curr. Opin. Microbiol. 2:135–41 [Google Scholar]
  45. Helmann JD. 45.  2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46:47–110 [Google Scholar]
  46. Helmann JD. 46.  2011. Regulation by alternative sigma factors. Bacterial Stress Responses G Storz, R Hengge 31–43 Washington, DC: ASM Press, 2nd ed.. [Google Scholar]
  47. Hengge R. 47.  2009. Proteolysis of σS (RpoS) and the general stress response in Escherichia coli. Res. Microbiol. 160:667–76 [Google Scholar]
  48. Henry JT, Crosson S. 48.  2011. Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu. Rev. Microbiol. 65:261–86 [Google Scholar]
  49. Herrou J, Crosson S. 49.  2011. Function, structure and mechanism of bacterial photosensory LOV proteins. Nat. Rev. Microbiol. 9:713–23 [Google Scholar]
  50. Herrou J, Foreman R, Fiebig A, Crosson S. 50.  2010. A structural model of anti-anti-sigma inhibition by a two-component receiver domain: the PhyR stress response regulator. Mol. Microbiol. 78:290–304 [Google Scholar]
  51. Herrou J, Rotskoff G, Luo Y, Roux B, Crosson S. 51.  2012. Structural basis of a protein partner switch that regulates the general stress response of Alpha-proteobacteria. PNAS 109:E1415–23 [Google Scholar]
  52. Herrou J, Willett JW, Crosson S. 52.  2015. Structured and dynamic disordered domains regulate the activity of a multi-functional anti-sigma factor. mBio 6:e00910–15 [Google Scholar]
  53. Ho YS, Burden LM, Hurley JH. 53.  2000. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J. 19:5288–99 [Google Scholar]
  54. Horstmann N, Sahasrabhojane P, Saldana M, Ajami NJ, Flores AR. 54.  et al. 2015. Characterization of the effect of the histidine kinase CovS on response regulator phosphorylation in group A Streptococcus. Infect. Immun. 83:1068–77 [Google Scholar]
  55. Hsing W, Russo FD, Bernd KK, Silhavy TJ. 55.  1998. Mutations that alter the kinase and phosphatase activities of the two-component sensor EnvZ. J. Bacteriol. 180:4538–46 [Google Scholar]
  56. Hughes KT, Mathee K. 56.  1998. The anti-sigma factors. Annu. Rev. Microbiol. 52:231–86 [Google Scholar]
  57. Huynh TN, Noriega CE, Stewart V. 57.  2010. Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX. PNAS 107:21140–5 [Google Scholar]
  58. Huynh TN, Stewart V. 58.  2011. Negative control in two-component signal transduction by transmitter phosphatase activity. Mol. Microbiol. 82:275–86 [Google Scholar]
  59. Iguchi H, Sato I, Yurimoto H, Sakai Y. 59.  2013. Stress resistance and C1 metabolism involved in plant colonization of a methanotroph Methylosinus sp. B4S. Arch. Microbiol. 195:717–26 [Google Scholar]
  60. Jans A, Vercruysse M, Gao S, Engelen K, Lambrichts I. 60.  et al. 2013. Canonical and non-canonical EcfG sigma factors control the general stress response in Rhizobium etli. MicrobiologyOpen 2:976–87 [Google Scholar]
  61. Jenal U, Galperin MY. 61.  2009. Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics. Curr. Opin. Microbiol. 12:152–60 [Google Scholar]
  62. Jishage M, Kvint K, Shingler V, Nystrom T. 62.  2002. Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev. 16:1260–70 [Google Scholar]
  63. Kaczmarczyk A, Campagne S, Danza F, Metzger LC, Vorholt JA, Francez-Charlot A. 63.  2011. Role of Sphingomonas sp. strain Fr1 PhyR-NepR-σEcfG cascade in general stress response and identification of a negative regulator of PhyR. J. Bacteriol. 193:6629–38 [Google Scholar]
  64. Kaczmarczyk A, Hochstrasser R, Vorholt JA, Francez-Charlot A. 64.  2014. Complex two-component signaling regulates the general stress response in Alphaproteobacteria. PNAS 111:E5196–204 [Google Scholar]
  65. Kaczmarczyk A, Hochstrasser R, Vorholt JA, Francez-Charlot A. 65.  2015. Two-tiered histidine kinase pathway involved in heat shock and salt sensing in the general stress response of Sphingomonas melonis Fr1. J. Bacteriol. 197:1466–77 [Google Scholar]
  66. Karniol B, Vierstra RD. 66.  2004. The HWE histidine kinases, a new family of bacterial two-component sensor kinases with potentially diverse roles in environmental signaling. J. Bacteriol. 186:445–53 [Google Scholar]
  67. Kim HS, Caswell CC, Foreman R, Roop RM 2nd, Crosson S. 67.  2013. The Brucella abortus general stress response system regulates chronic mammalian infection and is controlled by phosphorylation and proteolysis. J. Biol. Chem. 288:13906–16 [Google Scholar]
  68. Kim HS, Willett JW, Jain-Gupta N, Fiebig A, Crosson S. 68.  2014. The Brucella abortus virulence regulator, LovhK, is a sensor kinase in the general stress response signalling pathway. Mol. Microbiol. 94:913–25 [Google Scholar]
  69. Kristensen DM, Kannan L, Coleman MK, Wolf YI, Sorokin A. 69.  et al. 2010. A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics 26:1481–87 [Google Scholar]
  70. Kulkarni G, Wu CH, Newman DK. 70.  2013. The general stress response factor EcfG regulates expression of the C-2 hopanoid methylase HpnP in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 195:2490–98 [Google Scholar]
  71. Lourenco RF, Kohler C, Gomes SL. 71.  2011. A two-component system, an anti-sigma factor and two paralogous ECF sigma factors are involved in the control of general stress response in Caulobacter crescentus. Mol. Microbiol. 80:1598–612 [Google Scholar]
  72. Magnusson LU, Farewell A, Nystrom T. 72.  2005. ppGpp: a global regulator in Escherichia coli. Trends Microbiol. 13:236–42 [Google Scholar]
  73. Maillard AP, Girard E, Ziani W, Petit-Hartlein I, Kahn R, Coves J. 73.  2014. The crystal structure of the anti-sigma factor CnrY in complex with the sigma factor CnrH shows a new structural class of anti-sigma factors targeting extracytoplasmic function sigma factors. J. Mol. Biol. 426:2313–27 [Google Scholar]
  74. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F. 74.  et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43:D222–26 [Google Scholar]
  75. Martinez-Salazar JM, Salazar E, Encarnacion S, Ramirez-Romero MA, Rivera J. 75.  2009. Role of the extracytoplasmic function sigma factor RpoE4 in oxidative and osmotic stress responses in Rhizobium etli. J. Bacteriol. 191:4122–32 [Google Scholar]
  76. Martinez-Salazar JM, Sandoval-Calderon M, Guo X, Castillo-Ramirez S, Reyes A. 76.  et al. 2009. The Rhizobium etli RpoH1 and RpoH2 sigma factors are involved in different stress responses. Microbiology 155:386–97 [Google Scholar]
  77. Mascher T. 77.  2013. Signaling diversity and evolution of extracytoplasmic function (ECF) sigma factors. Curr. Opin. Microbiol. 16:148–55 [Google Scholar]
  78. McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK. 78.  et al. 2007. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat. Biotechnol. 25:584–92 [Google Scholar]
  79. Metzger LC, Francez-Charlot A, Vorholt JA. 79.  2013. Single-domain response regulator involved in the general stress response of Methylobacterium extorquens. Microbiology 159:1067–76 [Google Scholar]
  80. Mougel C, Zhulin IB. 80.  2001. CHASE: an extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants. Trends Biochem. Sci. 26:582–84 [Google Scholar]
  81. Nystrom T. 81.  2004. Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition?. Mol. Microbiol. 54:855–62 [Google Scholar]
  82. Ocasio VJ, Correa F, Gardner KH. 82.  2015. Ligand-induced folding of a two-component signaling receiver domain. Biochemistry 54:1353–63 [Google Scholar]
  83. Osterberg S, del Peso-Santos T, Shingler V. 83.  2011. Regulation of alternative sigma factor use. Annu. Rev. Microbiol. 65:37–55 [Google Scholar]
  84. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY. 84.  et al. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33:5691–702 [Google Scholar]
  85. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ. 85.  et al. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42:D206–14 [Google Scholar]
  86. Podgornaia AI, Laub MT. 86.  2013. Determinants of specificity in two-component signal transduction. Curr. Opin. Microbiol. 16:156–62 [Google Scholar]
  87. Price CW. 87.  2011. General stress response in Bacillus subtilis and related Gram-positive bacteria. Bacterial Stress Responses G Storz, R Hengge 301–18 Washington, DC: ASM Press, 2nd ed.. [Google Scholar]
  88. Purcell EB, Siegal-Gaskins D, Rawling DC, Fiebig A, Crosson S. 88.  2007. A photosensory two-component system regulates bacterial cell attachment. PNAS 104:18241–46 [Google Scholar]
  89. Rivera-Cancel G, Ko WH, Tomchick DR, Correa F, Gardner KH. 89.  2014. Full-length structure of a monomeric histidine kinase reveals basis for sensory regulation. PNAS 111:17839–44 [Google Scholar]
  90. Salomon M, Eisenreich W, Durr H, Schleicher E, Knieb E. 90.  et al. 2001. An optomechanical transducer in the blue light receptor phototropin from Avena sativa. PNAS 98:12357–61 [Google Scholar]
  91. Sauviac L, Bruand C. 91.  2014. A putative bifunctional histidine kinase/phosphatase of the HWE family exerts positive and negative control on the Sinorhizobium meliloti general stress response. J. Bacteriol. 196:2526–35 [Google Scholar]
  92. Sauviac L, Philippe H, Phok K, Bruand C. 92.  2007. An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. J. Bacteriol. 189:4204–16 [Google Scholar]
  93. Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O. 93.  et al. 2008. Rewiring the specificity of two-component signal transduction systems. Cell 133:1043–54 [Google Scholar]
  94. Sourjik V, Schmitt R. 94.  1998. Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37:2327–35 [Google Scholar]
  95. Staron A, Mascher T. 95.  2010. General stress response in Alphaproteobacteria: PhyR and beyond. Mol. Microbiol. 78:271–27 [Google Scholar]
  96. Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T. 96.  2009. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol. Microbiol. 74:557–81 [Google Scholar]
  97. Swartz TE, Tseng TS, Frederickson MA, Paris G, Comerci DJ. 97.  et al. 2007. Blue-light-activated histidine kinases: two-component sensors in bacteria. Science 317:1090–93 [Google Scholar]
  98. Ulrich LE, Koonin EV, Zhulin IB. 98.  2005. One-component systems dominate signal transduction in prokaryotes. Trends Microbiol. 13:52–56 [Google Scholar]
  99. Ulrich LE, Zhulin IB. 99.  2010. The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res. 38:D401–7 [Google Scholar]
  100. Varughese KI. 100.  2005. Conformational changes of Spo0F along the phosphotransfer pathway. J. Bacteriol. 187:8221–27 [Google Scholar]
  101. Vercruysse M, Fauvart M, Jans A, Beullens S, Braeken K. 101.  et al. 2011. Stress response regulators identified through genome-wide transcriptome analysis of the (p)ppGpp-dependent response in Rhizobium etli. Genome Biol. 12:R17 [Google Scholar]
  102. Vijay K, Brody MS, Fredlund E, Price CW. 102.  2000. A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the σB transcription factor of Bacillus subtilis. Mol. Microbiol. 35:180–88 [Google Scholar]
  103. Willett JW, Kirby JR. 103.  2012. Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities. PLOS Genet. 8:e1003084 [Google Scholar]
  104. Willett JW, Tiwari N, Muller S, Hummels KR, Houtman JC. 104.  et al. 2013. Specificity residues determine binding affinity for two-component signal transduction systems. mBio 4:e00420–13 [Google Scholar]
  105. Williams KP, Sobral BW, Dickerman AW. 105.  2007. A robust species tree for the Alphaproteobacteria. J. Bacteriol. 189:4578–86 [Google Scholar]
  106. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. 106.  2010. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta 1804:996–1010 [Google Scholar]
  107. Yang X, Kang CM, Brody MS, Price CW. 107.  1996. Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev. 10:2265–75 [Google Scholar]
  108. Zhulin IB, Nikolskaya AN, Galperin MY. 108.  2003. Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J. Bacteriol. 185:285–94 [Google Scholar]
/content/journals/10.1146/annurev-genet-112414-054813
Loading
/content/journals/10.1146/annurev-genet-112414-054813
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error