Prokaryotes, by definition, do not segregate their genetic material from the cytoplasm. Thus, there is no barrier preventing direct interactions between chromosomal DNA and the plasma membrane. The possibility of such interactions in bacteria was proposed long ago and supported by early electron microscopy and cell fractionation studies. However, the identification and characterization of chromosome-membrane interactions have been slow in coming. Recently, this subject has seen more progress, driven by advances in imaging techniques and in the exploration of diverse cellular processes. A number of loci have been identified in specific bacteria that depend on interactions with the membrane for their function. In addition, there is growing support for a general mechanism of DNA-membrane contacts based on transertion—concurrent transcription, translation, and insertion of membrane proteins. This review summarizes the history and recent results of chromosome-membrane associations and discusses the known and theorized consequences of these interactions in the bacterial cell.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams DW, Wu LJ, Errington J. 1.  2015. Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane. EMBO J. 34:491–501 [Google Scholar]
  2. Amendola M, van Steensel B. 2.  2014. Mechanisms and dynamics of nuclear lamina-genome interactions. Curr. Opin. Cell Biol. 28:61–68 [Google Scholar]
  3. Angert ER. 3.  2006. The enigmatic cytoarchitecture of Epulopiscium spp.. Complex Intracellular Structures in Prokaryotes JM Shively 285–304 Berlin: Springer [Google Scholar]
  4. Avdeeva ON, Myasnikov AG, Sergiev PV, Bogdanov AA, Brimacombe R, Dontsova OA. 4.  2002. Construction of the “minimal” SRP that interacts with the translating ribosome but not with specific membrane receptors in Escherichia coli. FEBS Lett. 514:70–73 [Google Scholar]
  5. Azam TA, Hiraga S, Ishihama A. 5.  2000. Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells 5:613–26 [Google Scholar]
  6. Bakshi S, Choi H, Mondal J, Weisshaar JC. 6.  2014. Time-dependent effects of transcription- and translation-halting drugs on the spatial distributions of the Escherichia coli chromosome and ribosomes. Mol. Microbiol. 94:871–87 [Google Scholar]
  7. Bakshi S, Siryaporn A, Goulian M, Weisshaar JC. 7.  2012. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85:21–38 [Google Scholar]
  8. Binenbaum Z, Parola AH, Zaritsky A, Fishov I. 8.  1999. Transcription- and translation-dependent changes in membrane dynamics in bacteria: testing the transertion model for domain formation. Mol. Microbiol. 32:1173–82 [Google Scholar]
  9. Bohrmann B, Villiger W, Johansen R, Kellenberger E. 9.  1991. Coralline shape of the bacterial nucleoid after cryofixation. J. Bacteriol. 173:3149–58 [Google Scholar]
  10. Bouet JY, Stouf M, Lebailly E, Cornet F. 10.  2014. Mechanisms for chromosome segregation. Curr. Opin. Microbiol. 22C:60–65 [Google Scholar]
  11. Briegel A, Dias DP, Li Z, Jensen RB, Frangakis AS, Jensen GJ. 11.  2006. Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Mol. Microbiol. 62:15–14 [Google Scholar]
  12. Cabrera JE, Cagliero C, Quan S, Squires CL, Jin DJ. 12.  2009. Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion. J. Bacteriol. 191:4180–85 [Google Scholar]
  13. Cabrera JE, Jin DJ. 13.  2003. The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol. Microbiol. 50:1493–505 [Google Scholar]
  14. Chai Q, Singh B, Peisker K, Metzendorf N, Ge X. 14.  et al. 2014. Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence. J. Biol. Chem. 289:11342–52 [Google Scholar]
  15. Cook DN, Ma D, Pon NG, Hearst JE. 15.  1992. Dynamics of DNA supercoiling by transcription in Escherichia coli. PNAS 89:10603–7 [Google Scholar]
  16. Crawford JA, Krukonis ES, DiRita VJ. 16.  2003. Membrane localization of the ToxR winged-helix domain is required for TcpP-mediated virulence gene activation in Vibrio cholerae. Mol. Microbiol. 47:1459–73 [Google Scholar]
  17. Dalia AB, Lazinski DW, Camilli A. 17.  2014. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. mBio 5:e01028–13 [Google Scholar]
  18. Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. 18.  2014. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol. Membr. Biol. 31:2–358–84 [Google Scholar]
  19. de Vries R. 19.  2010. DNA condensation in bacteria: interplay between macromolecular crowding and nucleoid proteins. Biochimie 92:1715–21 [Google Scholar]
  20. dos Santos VT, Bisson-Filho AW, Gueiros-Filho FJ. 20.  2012. DivIVA-mediated polar localization of ComN, a posttranscriptional regulator of Bacillus subtilis. J. Bacteriol. 194:3661–69 [Google Scholar]
  21. Dubochet J, McDowall AW, Menge B, Schmid EN, Lickfeld KG. 21.  1983. Electron microscopy of frozen-hydrated bacteria. J. Bacteriol. 155:381–90 [Google Scholar]
  22. Dworsky P, Schaechter M. 22.  1973. Effect of rifampin on the structure and membrane attachment of the nucleoid of Escherichia coli. J. Bacteriol. 116:1364–74 [Google Scholar]
  23. Evinger M, Agabian N. 23.  1977. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132:294–301 [Google Scholar]
  24. Fishov I, Norris V. 24.  2012. Membrane heterogeneity created by transertion is a global regulator in bacteria. Curr. Opin. Microbiol. 15:724–30 [Google Scholar]
  25. Franklin RM, Granboulan N. 25.  1966. Ultrastructure of Escherichia coli cells infected with bacteriophage R17. J. Bacteriol. 91:2834–48 [Google Scholar]
  26. Golding I, Cox EC. 26.  2004. RNA dynamics in live Escherichia coli cells. PNAS 101:11310–15 [Google Scholar]
  27. Golding I, Cox EC. 27.  2006. Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96:098102 [Google Scholar]
  28. Gorke B, Reinhardt J, Rak B. 28.  2005. Activity of Lac repressor anchored to the Escherichia coli inner membrane. Nucleic Acids Res. 33:2504–11 [Google Scholar]
  29. Govindarajan S, Nevo-Dinur K, Amster-Choder O. 29.  2012. Compartmentalization and spatiotemporal organization of macromolecules in bacteria. FEMS Microbiol. Rev. 36:1005–22 [Google Scholar]
  30. Guillen N, Le Hegaret F, Fleury AM, Hirschbein L. 30.  1978. Folded chromosomes of vegetative Bacillus subtilis: composition and properties. Nucleic Acids Res. 5:475–89 [Google Scholar]
  31. Hallez R, Bellefontaine AF, Letesson JJ, De Bolle X. 31.  2004. Morphological and functional asymmetry in alpha-proteobacteria. Trends Microbiol 12:8361–65 [Google Scholar]
  32. Higgins D, Dworkin J. 32.  2012. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36:131–48 [Google Scholar]
  33. Jacob F, Brenner S. 33.  1963. On the regulation of DNA synthesis in bacteria: the hypothesis of the replicon. C. R. Hebd. Seances Acad. Sci. 256:298–300 [Google Scholar]
  34. Jacob F, Brenner S, Cuzin F. 34.  1963. On the regulation of DNA replication in bacteria. Cold Spring Harb. Symp. Quant. Biol. 28:329–48 [Google Scholar]
  35. Jacob F, Ryter A, Cuzin F. 35.  1966. On the association between DNA and membrane in bacteria. Proc. R. Soc. Lond. B 164:267–78 [Google Scholar]
  36. Kahng LS, Shapiro L. 36.  2003. Polar localization of replicon origins in the multipartite genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti. J. Bacteriol 185:113384–91 [Google Scholar]
  37. Kavenoff R, Ryder OA. 37.  1976. Electron microscopy of membrane-associated folded chromosomes of Escherichia coli. Chromosoma 55:13–25 [Google Scholar]
  38. Kellenberger E, Ryter A, Sechaud J. 38.  1958. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J. Biophys. Biochem. Cytol. 4:671–78 [Google Scholar]
  39. Kim J, Heindl JE, Fuqua C. 39.  2013. Coordination of division and development influences complex multicellular behavior in Agrobacterium tumefaciens. PLOS ONE 8:2e56682 [Google Scholar]
  40. Kleckner N, Fisher JK, Stouf M, White MA, Bates D, Witz G. 40.  2014. The bacterial nucleoid: nature, dynamics and sister segregation. Curr. Opin. Microbiol. 22:127–37 [Google Scholar]
  41. Kleppe K, Ovrebo S, Lossius I. 41.  1979. The bacterial nucleoid. J. Gen. Microbiol. 112:1–13 [Google Scholar]
  42. Kudva R, Denks K, Kuhn P, Vogt A, Muller M, Koch HG. 42.  2013. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res. Microbiol. 164:505–34 [Google Scholar]
  43. Le TB, Laub MT. 43.  2014. New approaches to understanding the spatial organization of bacterial genomes. Curr. Opin. Microbiol. 22C:15–21 [Google Scholar]
  44. Leibowitz PJ, Schaechter M. 44.  1975. The attachment of the bacterial chromosome to the cell membrane. Int. Rev. Cytol. 41:1–28 [Google Scholar]
  45. Lewis PJ, Thaker SD, Errington J. 45.  2000. Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J. 19:710–18 [Google Scholar]
  46. Libby EA, Roggiani M, Goulian M. 46.  2012. Membrane protein expression triggers chromosomal locus repositioning in bacteria. PNAS 109:7445–50 [Google Scholar]
  47. Liu LF, Wang JC. 47.  1987. Supercoiling of the DNA template during transcription. PNAS 84:7024–27 [Google Scholar]
  48. Lodge JK, Kazic T, Berg DE. 48.  1989. Formation of supercoiling domains in plasmid pBR322. J. Bacteriol. 171:2181–87 [Google Scholar]
  49. Lynch AS, Wang JC. 49.  1993. Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J. Bacteriol. 175:1645–55 [Google Scholar]
  50. Ma D, Cook DN, Pon NG, Hearst JE. 50.  1994. Efficient anchoring of RNA polymerase in Escherichia coli during coupled transcription-translation of genes encoding integral inner membrane polypeptides. J. Biol. Chem. 269:15362–70 [Google Scholar]
  51. Marko JF. 51.  2011. Scaling of linking and writhing numbers for spherically confined and topologically equilibrated flexible polymers. J. Stat. Phys. 142:1353–70 [Google Scholar]
  52. Mascarenhas J, Weber MH, Graumann PL. 52.  2001. Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription. EMBO Rep. 2:685–89 [Google Scholar]
  53. Mendell JE, Clements KD, Choat JH, Angert ER. 53.  2008. Extreme polyploidy in a large bacterium. PNAS 105:6730–34 [Google Scholar]
  54. Miller OL Jr, Hamkalo BA, Thomas CA Jr. 54.  1970. Visualization of bacterial genes in action. Science 169:392–95 [Google Scholar]
  55. Miller VL, Taylor RK, Mekalanos JJ. 55.  1987. Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48:271–79 [Google Scholar]
  56. Mondal J, Bratton BP, Li Y, Yethiraj A, Weisshaar JC. 56.  2011. Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells. Biophys. J. 100:2605–13 [Google Scholar]
  57. Montero Llopis P, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J. 57.  et al. 2010. Spatial organization of the flow of genetic information in bacteria. Nature 466:77–81 [Google Scholar]
  58. Morgan C, Rosenkranz HS, Carr HS, Rose HM. 58.  1967. Electron microscopy of chloramphenicol-treated Escherichia coli. J. Bacteriol. 93:1987–2002 [Google Scholar]
  59. Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O. 59.  2011. Translation-independent localization of mRNA in E. coli.. Science 331:1081–84 [Google Scholar]
  60. Nielsen HJ, Li Y, Youngren B, Hansen FG, Austin S. 60.  2006. Progressive segregation of the Escherichia coli chromosome. Mol. Microbiol. 61:383–93 [Google Scholar]
  61. Norris V. 61.  1995. Hypothesis: chromosome separation in Escherichia coli involves autocatalytic gene expression, transertion and membrane-domain formation. Mol. Microbiol. 16:1051–57 [Google Scholar]
  62. Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R. 62.  et al. 2007. Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev. 71:230–53 [Google Scholar]
  63. Norris V, den Blaauwen T, Doi RH, Harshey RM, Janniere L. 63.  et al. 2007. Toward a hyperstructure taxonomy. Annu. Rev. Microbiol. 61:309–29 [Google Scholar]
  64. Norris V, Madsen MS. 64.  1995. Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: a model. J. Mol. Biol. 253:739–48 [Google Scholar]
  65. Ogura M, Tanaka T. 65.  2009. The Bacillus subtilis late competence operon comE is transcriptionally regulated by yutB and under post-transcription initiation control by comN (yrzD). J. Bacteriol. 191:949–58 [Google Scholar]
  66. Oliva MA, Halbedel S, Freund SM, Dutow P, Leonard TA. 66.  et al. 2010. Features critical for membrane binding revealed by DivIVA crystal structure. EMBO J. 29:1988–2001 [Google Scholar]
  67. Pilhofer M, Ladinsky MS, McDowall AW, Jensen GJ. 67.  2010. Bacterial TEM: new insights from cryo-microscopy. Methods Cell Biol. 96:21–45 [Google Scholar]
  68. Pini F, De Nisco NJ, Ferri L, Penterman J, Fioravanti A. 68.  et al. 2015. Cell cycle control by the master regulator CtrA in Sinorhizobium meliloti. PLOS Genet 11:5e1005232 [Google Scholar]
  69. Ptacin JL, Gahlmann A, Bowman GR, Perez AM, von Diezmann AR. 69.  et al. 2014. Bacterial scaffold directs pole-specific centromere segregation. PNAS 111:E2046–55 [Google Scholar]
  70. Ptacin JL, Shapiro L. 70.  2013. Chromosome architecture is a key element of bacterial cellular organization. Cell. Microbiol. 15:45–52 [Google Scholar]
  71. Reyes-Lamothe R, Nicolas E, Sherratt DJ. 71.  2012. Chromosome replication and segregation in bacteria. Annu. Rev. Genet. 46:121–43 [Google Scholar]
  72. Robinow C, Kellenberger E. 72.  1994. The bacterial nucleoid revisited. Microbiol. Rev. 58:211–32 [Google Scholar]
  73. Rossy J, Ma Y, Gaus K. 73.  2014. The organisation of the cell membrane: Do proteins rule lipids?. Curr. Opin. Chem. Biol. 20:54–59 [Google Scholar]
  74. Ryter A, Jacob F. 74.  1966. Morphologic study of the relationship of the membrane wall in E. coli and the protoplasts of B. subtilis. Ann. Inst. Pasteur 110:801–12 [Google Scholar]
  75. Sanamrad A, Persson F, Lundius EG, Fange D, Gynna AH, Elf J. 75.  2014. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid.. PNAS 111:11413–18 [Google Scholar]
  76. Saraogi I, Shan SO. 76.  2014. Co-translational protein targeting to the bacterial membrane. Biochim. Biophys. Acta 1843:1433–41 [Google Scholar]
  77. Stewart CL, Roux KJ, Burke B. 77.  2007. Blurring the boundary: the nuclear envelope extends its reach. Science 318:1408–12 [Google Scholar]
  78. Tetsch L, Koller C, Haneburger I, Jung K. 78.  2008. The membrane-integrated transcriptional activator CadC of Escherichia coli senses lysine indirectly via the interaction with the lysine permease LysP. Mol. Microbiol. 67:570–83 [Google Scholar]
  79. Toro E, Shapiro L. 79.  2010. Bacterial chromosome organization and segregation. Cold Spring Harb. Perspect. Biol. 2:a000349 [Google Scholar]
  80. Tremblay GY, Daniels MJ, Schaechter M. 80.  1969. Isolation of a cell membrane-DNA-nascent RNA complex from bacteria. J. Mol. Biol. 40:65–76 [Google Scholar]
  81. Tsokos CG, Laub MT. 81.  2012. Polarity and cell fate asymmetry in Caulobacter crescentus. Curr. Opin. Microbiol. 15:744–50 [Google Scholar]
  82. Ulrich LE, Koonin EV, Zhulin IB. 82.  2005. One-component systems dominate signal transduction in prokaryotes. Trends Microbiol. 13:52–56 [Google Scholar]
  83. Van Helvoort JM, Huls PG, Vischer NO, Woldringh CL. 83.  1998. Fused nucleoids resegregate faster than cell elongation in Escherichia coli pbpB(Ts) filaments after release from chloramphenicol inhibition. Microbiology 144:Pt. 51309–17 [Google Scholar]
  84. van Helvoort JM, Woldringh CL. 84.  1994. Nucleoid partitioning in Escherichia coli during steady-state growth and upon recovery from chloramphenicol treatment. Mol. Microbiol. 13:577–83 [Google Scholar]
  85. Wang JC. 85.  1985. DNA supercoiling and gene expression. Interrelationship Among Aging, Cancer and Differentiation B Pullman, POP Ts'o, EL Schneider 173–81 Dordrecht, Neth: Reidel Publ. [Google Scholar]
  86. Wang X, Montero Llopis P, Rudner DZ. 86.  2013. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 14:191–203 [Google Scholar]
  87. Wang X, Rudner DZ. 87.  2014. Spatial organization of bacterial chromosomes. Curr. Opin. Microbiol. 22C:66–72 [Google Scholar]
  88. Wang X, Sherratt DJ. 88.  2010. Independent segregation of the two arms of the Escherichia coli ori region requires neither RNA synthesis nor MreB dynamics. J. Bacteriol. 192:6143–53 [Google Scholar]
  89. Wiggins PA, Cheveralls KC, Martin JS, Lintner R, Kondev J. 89.  2010. Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament. PNAS 107:4991–95 [Google Scholar]
  90. Woldringh CL. 90.  2002. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol. Microbiol. 45:17–29 [Google Scholar]
  91. Woldringh CL. 91.  2010. Nucleoid structure and segregation. Bacterial Chromatin RT Dame, CJ Dorman 71–96 London: Springer [Google Scholar]
  92. Woldringh CL, Jensen PR, Westerhoff HV. 92.  1995. Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces?. FEMS Microbiol. Lett. 131:235–42 [Google Scholar]
  93. Worcel A, Burgi E. 93.  1974. Properties of a membrane-attached form of the folded chromosome of Escherichia coli. J. Mol. Biol. 82:91–105 [Google Scholar]
  94. Wu LJ, Errington J. 94.  2012. Nucleoid occlusion and bacterial cell division. Nat. Rev. Microbiol. 10:8–12 [Google Scholar]
  95. Yamaichi Y, Bruckner R, Ringgaard S, Moll A, Cameron DE. 95.  et al. 2012. A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole. Genes Dev. 26:2348–60 [Google Scholar]
  96. Yamamoto S, Mitobe J, Ishikawa T, Wai SN, Ohnishi M. 96.  et al. 2014. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol. Microbiol. 91:326–47 [Google Scholar]
  97. Yosef I, Bochkareva ES, Bibi E. 97.  2010. Escherichia coli SRP, its protein subunit Ffh, and the Ffh M domain are able to selectively limit membrane protein expression when overexpressed. mBio 1:e00020–10 [Google Scholar]
  98. Zhou B, Schrader JM, Kalogeraki VS, Abeliuk E, Dinh CB. 98.  et al. 2015. The global regulatory architecture of transcription during the Caulobacter cell cycle. PLOS Genet 11:1e1004831 [Google Scholar]
  99. Zimmerman SB. 99.  2006. Shape and compaction of Escherichia coli nucleoids. J. Struct. Biol. 156:255–61 [Google Scholar]
  100. Zusman DR, Carbonell A, Haga JY. 100.  1973. Nucleoid condensation and cell division in Escherichia coli MX74T2 ts52 after inhibition of protein synthesis. J. Bacteriol. 115:1167–78 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error